Про природу

Теорема ферма простыми словами. Великая теорема ферма. Краткая история доказательств

Лекция 6. Применение производных к исследованию функций

Если функция f (x ) имеет производную в каждой точке отрезка [а , b ], то ее поведение можно исследовать с помощью производной f" (х ).

Рассмотрим основные теоремы дифференциального исчисления, лежащие в основе приложений производной.

Теорема Ферма

Теорема (Ферма) (о равенстве нулю производной ). Если функция f (x ), дифференцируема на интервале (a , b ) и достигает наибольшего или наименьшего значения в точке с є (a , b ), тогда производная функции в этой точке равна нулю , т.е. f" (с ) = 0.

Доказательство . Пусть функция f (x ) дифференцируема на интервале (a , b ) и в точке х = с принимает наибольшее значение M при с є (a , b ) (рис. 1), т.е.

f (с ) ≥ f (x ) или f (x ) – f (c ) ≤ 0 или f (с + Δх ) – f (с ) ≤ 0.

Производная f" (x ) в точке х = с : .

Если x > c , Δх > 0 (т.е. Δх → 0 справа от точки с ), то и поэтому f" (с ) ≤ 0.

Если x < с , Δх < 0 (т.е. Δх → 0 слева от точки с ), то , откуда следует, что f" (с ) ≥ 0.

По условию f (x ) дифференцируема в точке с , следовательно, ее предел при x с не зависит от выбора направления приближения аргумента x к точке с , т.е. .

Получаем систему , из которой следует f" (с ) = 0.

В случае, когда f (с ) = т (т.е. f (x ) принимает в точке с наименьшее значение), доказательство аналогичное. Теорема доказана.

Геометрический смысл теоремы Ферма : в точке наибольшего или наименьшего значения, достигаемого внутри промежутка, касательная к графику функции параллельна оси абсцисс.

В 17 веке во Франции жил юрист и по совместительству математик Пьер Ферма , который отдавал своему увлечению долгие часы досуга. Как-то зимним вечером, сидя у камина, он выдвинул одно прелюбопытнейшее утверждение из области теории чисел – именно оно в дальнейшем было названо Великой или Большой теоремой Ферма. Возможно, ажиотаж не был бы настолько весомым в математических кругах, не случись одно событие. Математик часто проводил вечера за штудированием любимой книги Диофанта Александрийского «Арифметика» (3 век), при этом записывал на ее полях важные мысли – этот раритет бережно сохранил для потомков его сын. Так вот, на широких полях этой книги рукой Ферма была оставлена такая надпись: «У меня есть довольно поразительное доказательство, но оно слишком большое, чтобы его можно было поместить на полях». Именно эта запись стала причиной ошеломительного ажиотажа вокруг теоремы. У математиков не вызывало сомнений, что великий ученый заявил о том, что доказал собственную теорему. Вы наверняка задаетесь вопросом: «Неужели он на самом деле ее доказал, или это была банальная ложь, а может есть другие версии, зачем эта запись, не дававшая умиротворенно спать математикам последующих поколений, оказалась на полях книги?».

Суть Великой теоремы

Довольно известная теорема Ферма проста по своей сути и заключается в том, что при условии, когда n больше двойки, положительного числа, уравнение Х n +Y n =Z n не будет иметь решений нулевого типа в рамках натуральных чисел. В этой с виду простой формуле была замаскирована невероятная сложность, и на ее доказательством бились целых три века. Есть одна странность – теорема опоздала с рождением на свет, так как ее частный случай при n=2 появился еще 2200 лет тому назад – это не менее знаменитая теорема Пифагора.

Необходимо отметить, что история, касающаяся всем известной теоремы Ферма, является очень поучительной и занимательной, причем не только для ученых-математиков. Что самое интересное, так это то, что наука являлась для ученого не работой, а простым хобби, которое в свою очередь, доставляла Фермеру огромное удовольствие. Также он постоянно поддерживал связь с ученым-математиком, а по совместительству, еще и другом, делился идеями, но как ни странно, собственные работы опубликовывать в свет не стремился.

Труды математика Фермера

Что касается самих работ Фермера, то их обнаружили именно в форме обычных писем. Местами не было целых страниц, и сохранились лишь обрывки переписок. Более интересен тот факт, что на протяжении трех веков ученые искали ту теорему, которая была обнаружена в трудах Фермера.

Но кто бы не решался ее доказать, попытки сводились к «нулю». Известный математик Декарт и вовсе обвинял ученого в хвастовстве, но все это сводилось лишь к самой обычной зависти. Помимо создания, Фермер еще и доказал собственную теорему. Правда решение было найдено для того случая, где n=4. Что касается случая для n=3, то его выявил математик Эйлер.

Как пытались доказать теорему Фермера

В самом начале 19 века данная теорема продолжила свое существование. Математики нашли много доказательств теорем, которые ограничивались натуральными числами в пределах двухсот.

А в 1909 году была поставлена на кон довольно крупная сумма, равная ста тысячам маркам немецкого происхождения – и все это только лишь за то, чтобы решить вопрос, связанный с этой теоремой. Сам фонд призовой категории был оставлен богатым любителем математики Паулем Вольфскелем, родом из Германии, кстати, именно он хотел «наложить на себя руки», но благодаря такой вовлеченности в теорему Фермера, захотел жить. Возникший ажиотаж породил тонны «доказательств», заполонивших германские университеты, а в кругу математиков родилось прозвище «фермист», которым полупрезрительно называли всякого амбициозного выскочку, не сумевшего привести явные доказательства.

Гипотеза японского математика Ютаки Танияма

Сдвигов в истории Великой теоремы до середины 20 столетия так и не наблюдалось, но одно занимательное событие все-таки произошло. В 1955 году математик из Японии Ютака Танияма, которому было 28 лет, явил миру утверждение из абсолютно другой математической области – его гипотеза в отличие от Ферма опередило свое время. Она гласит: «Каждой эллиптической кривой соответствует определенная модулярная форма». Вроде бы абсурд для каждого математика, подобно, что дерево состоит из определенного металла! Парадоксальную гипотезу, как и большинство прочих ошеломляющих и гениальных открытий, не приняли, так как еще попросту не доросли до нее. И Ютака Танияма покончил жизнь самоубийством, спустя три года – поступок необъяснимый, но, вероятно, честь для истинного гения-самурая была превыше всего.

Целое десятилетие о гипотезе не вспоминали, но в семидесятые она поднялась на пик популярности – ее подтверждали все, кто мог в ней разобраться, но, как и теорема Ферма, она оставалась недоказанной.

Как связаны гипотеза Таниямы и теорема Ферма

Спустя 15 лет в математике произошло ключевое событие, и оно объединило гипотезу прославленного японца и теорему Ферма. Герхард Грей заявил, что когда будет доказана гипотеза Танияма, тогда и найдутся доказательства теоремы Ферма. То есть последняя – это следствие гипотезы Танияма, и уже через полтора года профессором университета в Калифорнии Кеннетом Рибетом теорема Ферма была доказана.

Шло время, регресс заменялся прогрессом, а наука стремительно продвигалась вперед, особенно в области компьютерных технологий. Таким образом, значение n стало все больше повышаться.

В самом конце 20 века самые мощные компьютеры находились в лабораториях военного направления, было осуществлено программирование на вывод решения задачи всем известного Ферма. Как следствие всем попыткам было выявлено то, что данная теорема правильная для многих значений n, x, y. Но, к сожалению, окончательным доказательством это не стало, так как не было конкретики как таковой.

Джон Уайлс доказал великую Теорему Ферма

И вот, наконец, только в конце 1994 года, математик из Англии, Джон Уайлс нашел и продемонстрировал точное доказательство спорной теоремы Фермера. Тогда, после множества доработок, дискуссии по этому поводу пришли к своему логическому завершению.

Опровержение было размещено на более ста страницах одного журнала! Причем теорема была доказана на более современном аппарате высшей математики. И что удивительно, на тот момент, когда Фермер писал свой труд, такого аппарата в природе не существовало. Словом, человек был признан гением в этой области, с чем поспорить не мог никто. Несмотря на все что было, на сегодняшний день можно быть уверенными в том, что представленная теорема великого ученого Фермера оправдана и доказана, и споры и на эту тему не заведет ни одни математик со здравым смыслом, с чем согласны даже самые заядлые скептики всего человечества.

Полное имя человека, в честь которого была названа представленная теорема, звали Пьер де Фермер. Он внес свой вклад в самые разнообразные области математики. Но, к сожалению, большинство его трудов были опубликованы только после его смерти.

Для целых чисел n больше 2 уравнение x n + y n = z n не имеет ненулевых решений в натуральных числах.

Вы, наверное, помните со школьных времен теорему Пифагора : квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Возможно, вы помните и классический прямоугольный треугольник со сторонами, длины которых соотносятся как 3: 4: 5. Для него теорема Пифагора выглядит так:

Это пример решения обобщенного уравнения Пифагора в ненулевых целых числах при n = 2. Великая теорема Ферма (ее также называют «Большой теоремой Ферма» и «Последней теоремой Ферма») состоит в утверждении, что при значениях n > 2 уравнения вида x n + y n = z n не имеют ненулевых решений в натуральных числах.

История Великой теоремы Ферма весьма занимательна и поучительна, и не только для математиков. Пьер де Ферма внес вклад в развитие самых различных областей математики, однако основная часть его научного наследия была опубликована лишь посмертно. Дело в том, что математика для Ферма была чем-то вроде хобби, а не профессиональным занятием. Он переписывался с ведущими математиками своего времени, однако публиковать свои работы не стремился. Научные труды Ферма в основном обнаружены в форме частной переписки и обрывочных записей, часто сделанных на полях различных книг. Именно на полях (второго тома древнегреческой «Арифметики» Диофанта. - Прим. переводчика ) вскоре после смерти математика потомки и обнаружили формулировку знаменитой теоремы и приписку:

«Я нашел этому поистине чудесное доказательство, но поля эти для него слишком узки ».

Увы, судя по всему, Ферма так и не удосужился записать найденное им «чудесное доказательство», и потомки безуспешно искали его три с лишним века. Из всего разрозненного научного наследия Ферма, содержащего немало удивительных утверждений, именно Великая теорема упорно не поддавалась решению.

Кто только не брался за доказательство Великой теоремы Ферма - всё тщетно! Другой великий французский математик, Рене Декарт (René Descartes, 1596–1650), называл Ферма «хвастуном», а английский математик Джон Уоллис (John Wallis, 1616–1703) - и вовсе «чертовым французом». Сам Ферма, правда, все-таки оставил после себя доказательство своей теоремы для случая n = 4. С доказательством для n = 3 справился великий швейцарско-российский математик XVIII века Леонард Эйлер (1707–83), после чего, не сумев найти доказательств для n > 4, в шутку предложил устроить обыск в доме Ферма, чтобы найти ключ к утерянному доказательству. В XIX веке новые методы теории чисел позволили доказать утверждение для многих целых чисел в пределах 200, однако, опять же, не для всех.

В 1908 году была учреждена премия в размере 100 000 немецких марок за решение этой задачи. Призовой фонд был завещан германским промышленником Паулем Вольфскелем (Paul Wolfskehl), который, согласно преданию, собирался покончить жизнь самоубийством, но так увлекся Великой теоремой Ферма, что передумал умирать. С появлением арифмометров, а затем и компьютеров планка значений n стала подниматься всё выше - до 617 к началу Второй мировой войны, до 4001 в 1954 году, до 125 000 в 1976 году. В конце XX столетия мощнейшие компьютеры военных лабораторий в Лос-Аламосе (Нью-Мексико, США) были запрограммированы на решение задачи Ферма в фоновом режиме (по аналогии с режимом экранной заставки персонального компьютера). Таким образом удалось показать, что теорема верна для невероятно больших значений x, y, z и n , но строгим доказательством это послужить не могло, поскольку любые следующие значения n или тройки натуральных чисел могли опровергнуть теорему в целом.

Наконец в 1994 году английский математик Эндрю Джон Уайлс (Andrew John Wiles, р. 1953), работая в Принстоне, опубликовал доказательство Великой теоремы Ферма, которое, после некоторых доработок, было признано исчерпывающим. Доказательство заняло более ста журнальных страниц и основывалось на использовании современного аппарата высшей математики, который в эпоху Ферма разработан не был. Так что же тогда имел в виду Ферма, оставляя на полях книги сообщение о том, что доказательство им найдено? Большинство математиков, с которыми я беседовал на эту тему, указывали, что за века накопилось более чем достаточно некорректных доказательств Великой теоремы Ферма, и что, скорее всего, сам Ферма нашел подобное доказательство, однако не сумел усмотреть в нем ошибку. Впрочем, не исключено, что все-таки имеется какое-то короткое и изящное доказательство Великой теоремы Ферма, которое никто до сих пор не нашел. С уверенностью можно утверждать лишь одно: сегодня мы точно знаем, что теорема верна. Большинство математиков, я думаю, безоговорочно согласятся с Эндрю Уайлсом, который заметил по поводу своего доказательства: «Теперь наконец мой ум спокоен».

Что премию Абеля в 2016 году получит Эндрю Уайлз за доказательство гипотезы Таниямы-Шимуры для полустабильных эллиптических кривых и следующее из этой гипотезы доказательство великой теоремы Ферма. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью».

Теорема Ферма, доказанная более 20 лет назад, до сих пор привлекает внимание математиков. Отчасти, это связано с ее формулировкой, которая понятна даже школьнику: доказать, что для натуральных n>2 не существует таких троек целых ненулевых чисел, что a n + b n = c n . Это выражение Пьер Ферма записал на полях «Арифметики» Диофанта, снабдив замечательной подписью «Я нашёл этому поистине чудесное доказательство [этого утверждения], но поля книги слишком узки для него». В отличие от большинства математических баек, эта - настоящая.

Вручение премии - прекрасный повод вспомнить десять занимательных историй, связанных с теоремой Ферма.

1.

До того, как Эндрю Уайлз доказал теорему Ферма, ее правильнее было называть гипотезой, то есть гипотезой Ферма. Дело в том, что теорема - это по определению уже доказанное утверждение. Однако, почему-то к этому утверждению приклеилось именно такое название.

2.

Если в теореме Ферма положить n = 2, то у такого уравнения существует бесконечно много решений. Эти решения называются «пифагоровы тройки». Такое название они получили потому, что им соответствуют прямоугольные треугольники, стороны которых выражаются именно такими наборами чисел. Генерировать пифагоровы тройки можно с помощью таких вот трех формул (m 2 - n 2 , 2mn, m 2 + n 2). В эти формулы надо подставлять разные значения m и n, и в результате будут получаться нужные нам тройки. Главное тут, впрочем, убедиться, что полученные числа будут больше нуля - длины не могут выражаться отрицательными числами.

Кстати, легко заметить, что если все числа в пифагоровой тройке умножить на некоторое ненулевое, получится новая пифагорова тройка. Поэтому разумно изучать тройки, в которых у трех чисел в совокупности нет общего делителя. Схема, которую мы описали, позволяет получить все такие тройки - это уже совсем не простой результат.

3.

1 марта на 1847 года заседании Парижской академии наук сразу два математика - Габриэль Ламе и Огюстен Коши - объявили, что находятся на пороге доказательства замечательной теоремы. Они устроили гонку, публикуя кусочки доказательства. Большинство академиков болело за Ламе, поскольку Коши был самодовольным, нетерпимым к чужому мнению религиозным фанатиком (и, разумеется, совершенно блестящим математиком по совместительству). Однако, матчу не суждено было завершиться - через своего друга Жозефа Лиувилля немецкий математик Эрнст Куммер сообщил академикам, что в доказательствах Коши и Ламе есть одна и та же ошибка.

В школе доказывается, что разложение числа на простые множители единственно. Оба математика полагали, что если смотреть на разложение целых чисел уже в комплексном случае, то это свойство - единственность - сохранится. Однако это не так.

Примечательно, что если рассматривать только m + i n, то разложение единственно. Такие числа называются гауссовыми. Но для работы Ламе и Коши потребовалось разложение на множители в циклотомических полях . Это, например, числа, в которых m и n - рациональные, а i удовлетворяет свойству i^k = 1.

4.

Теорема Ферма для n = 3 имеет понятный геометрический смысл. Представим себе, что у нас есть много маленьких кубиков. Пусть мы собрали из них два больших куба. В этом случае, понятное дело, стороны будут целыми числами. Можно ли найти два таких больших куба, что, разобрав их на составляющие мелкие кубы, мы бы могли собрать из них один большой куб? Теорема Ферма говорит, что так сделать никогда нельзя. Забавно, что если задать тот же вопрос для трех кубов, то ответ утвердительный. Например, есть вот такая четверка чисел, открытая замечательным математиком Шринивасом Рамануджаном:

3 3 + 4 3 + 5 3 = 6 3

5.

В истории с теоремой Ферма отметился Леонард Эйлер. Доказать утверждение (или даже подступиться к доказательству) у него толком не получилось, однако он сформулировал гипотезу о том, что уравнение

x 4 + y 4 + z 4 = u 4

не имеет решения в целых числах. Все попытки найти решение такого уравнения в лоб оказались безрезультатны. Только в 1988 году Науму Элкиесу из Гарварда удалось найти контрпример. Он выглядит вот так:

2 682 440 4 + 15 365 639 4 + 18 796 760 4 = 20 615 673 4 .

Обычно эту формулу вспоминают в контексте численного эксперимента. Как правило, в математике это выглядит так: есть некоторая формула. Математик проверяет эту формулу в простых случаях, убеждается в истинности и формулирует некоторую гипотезу. Затем он (хотя чаще какой-нибудь его аспирант или студент) пишет программу для того, чтобы проверить, что формула верна для достаточно больших чисел, которые руками не посчитать (про один такой эксперимент с простыми числами мы ). Это не доказательство, конечно, но отличный повод заявить о гипотезе. Все эти построения базируются на разумном предположении, что, если к некоторой разумной формуле есть контрпример, то мы найдем его достаточно быстро.

Гипотеза Эйлера напоминает, что жизнь гораздо разнообразнее наших фантазий: первый контрпример может быть сколь угодно большим.

6.

На самом деле, конечно, Эндрю Уайлз не пытался доказать теорему Ферма - он решал более сложную задачу под названием гипотеза Таниямы-Шимуры. В математике есть два замечательных класса объектов. Первый называется модулярными формами и представляет собой по сути функции на пространстве Лобачевского. Эти функции не меняются при движениях этой самой плоскости. Второй называется «эллиптическими кривыми и представляет собой кривые, задаваемые уравнением третьей степени на комплексной плоскости. Оба объекта очень популярны в теории чисел.

В 50-х годах прошлого века два талантливых математика Ютака Танияма и Горо Шимура познакомились в библиотеке Токийского университета. В то время особой математики в университете не было: она просто не успела восстановиться после войны. В результате ученые занимались по старым учебникам и разбирали на семинарах задачи, которые в Европе и США считались решенными и не особенно актуальными. Именно Танияма и Шимура обнаружили, что между модулярными формами и эллиптическими функциями есть некое соответствие.

Свою гипотезу они проверили на некоторых простых классах кривых. Оказалось, что она работает. Вот они и предположили, что эта связь есть всегда. Так появилась гипотеза Таниямы-Шимуры, а спустя три года Танияма покончил с собой. В 1984 году немецкий математик Герхард Фрей показал, что если теорема Ферма неверна, то, следовательно, неверна гипотеза Таниямы-Шимуры. Из этого вытекало, что доказавший эту гипотезу, докажет и теорему. Именно это и сделал - правда не совсем в общем виде - Уайлз.

7.

На доказательство гипотезы Уайлз потратил восемь лет. И во время проверки рецензенты нашли в ней ошибку, которая «убивала» большую часть доказательства, сводя на нет все годы работы. Один из рецензентов по имени Ричард Тейлор взялся заделать вместе с Уайлзом эту дырку. Пока они работали, появилось сообщение, что Элкиес, тот самый, который нашел контрпример к гипотезе Эйлера, нашел и контрпример и к теореме Ферма (позже оказалось, что это была первоапрельская шутка). Уайлз впал в депрессию и не хотел продолжать - дырка в доказательстве никак не закрывалась. Тейлор уговорил Уайлза побороться еще месяц.

Случилось чудо и к концу лета математикам удалось сделать прорыв - так на свет появились работы «Модулярные эллиптические кривые и великая теорема Ферма» Эндрю Уайлза (pdf) и «Теоретико-кольцевые свойства некоторых алгебр Гекке» Ричарда Тейлора и Эндрю Уайлза. Это было уже правильное доказательство. Опубликовано оно было в 1995 году.

8.

В 1908 году в Дармштадте скончался математик Пауль Вольфскель. После себя он оставил завещание, в котором давал математическому сообществу 99 лет, чтобы найти доказательство великой теоремы Ферма. Автор доказательства должен был получить 100 тысяч марок (автор контрпримера, кстати, не получил бы ничего). Согласно распространенной легенде, сделать такой подарок математикам Вольфскеля побудила любовь. Вот как описывает легенду Саймон Сингх в своей книге «Великая теорема Ферма »:

История начинается с того, что Вольфскель увлекся красивой женщиной, личность которой так никогда и не была установлена. К великому сожалению для Вольфскеля, загадочная женщина отвергла его. Он впал в такое глубокое отчаяние, что решил совершить самоубийство. Вольфскель был человеком страстным, но не импульсивным, и поэтому принялся во всех подробностях разрабатывать свою смерть. Он назначил дату своего самоубийства и решил выстрелить себе в голову с первым ударом часов ровно в полночь. За оставшиеся дни Вольфскель решил привести в порядок свои дела, которые шли великолепно, а в последний день составил завещание и написал письма близким друзьям и родственникам.

Вольфскель трудился с таким усердием, что закончил все свои дела до полуночи и, чтобы как-нибудь заполнить оставшиеся часы, отправился в библиотеку, где стал просматривать математические журналы. Вскоре ему на глаза попалась классическая статья Куммера, в которой тот объяснял, почему потерпели неудачу Коши и Ламе. Работа Куммера принадлежала к числу самых значительных математических публикаций своего века и как нельзя лучше подходила для чтения математику, задумавшему совершить самоубийство. Вольфскель внимательно, строка за строкой, проследил за выкладками Куммера. Неожиданно Вольфскелю показалось, что он обнаружил пробел: автор сделал некое предположение и не обосновал этот шаг в своих рассуждениях. Вольфскель заинтересовался, действительно ли ему удалось обнаружить серьезный пробел, или сделанное Куммером предположение было обоснованным. Если был обнаружен пробел, то имелся шанс, что Великую теорему Ферма удастся доказать гораздо проще, чем полагали многие.

Вольфскель сел за стол, тщательно проанализировал «ущербную» часть рассуждений Куммера и принялся набрасывать минидоказательство, которое должно было либо подкрепить работу Куммера, либо продемонстрировать ошибочность принятого им предположения и, как следствие, опровергнуть все его доводы. К рассвету Вольфскель закончил свои вычисления. Плохие (с точки зрения математики) новости состояли в том, что доказательство Куммера удалось исцелить, и Великая теорема Ферма по-прежнему осталась недоступной. Но были и хорошие новости: время, назначенное для самоубийства, миновало, а Вольфскель был так горд тем, что ему удалось обнаружить и восполнить пробел в работе великого Эрнеста Куммера, что его отчаяние и печаль развеялись сами собой. Математика вернула ему жажду жизни.

Впрочем, есть и альтернативная версия. Согласно ей, Вольфскель занялся математикой (и, собственно, теоремой Ферма) из-за прогрессирующего рассеянного склероза, который помешал заниматься ему любимым делом - быть врачом. А деньги математикам он оставил, чтобы не оставлять своей жене, которую к концу жизни просто ненавидел.

9.

Попытки доказать теорему Ферма элементарными методами привели к появлению целого класса странных людей под названием «ферматисты». Они занимались тем, что производили огромное количество доказательств и совершенно не отчаивались, когда в этих доказательствах находили ошибку.

На мехмате МГУ был легендарный персонаж по фамилии Добрецов. Он собирал справки из разных ведомств и, пользуясь ими, проникал на мехмат. Делалось это исключительно для того, чтобы найти жертву. Как-то ему попался молодой аспирант (будущий академик Новиков). Он, по наивности своей, принялся внимательно изучать стопку бумаг, которую Добрецов подсунул ему со словами, мол, вот доказательство. После очередного «вот ошибка...» Добрецов забрал стопку, запихнул ее в портфель. Из второго портфеля (да, он ходил по мехмату с двумя портфелями) он достал вторую стопку, вздохнул и сказал: «Ну тогда посмотрим вариант 7 Б».

Кстати, большинство таких доказательств начинается с фразы «Перенесем одно из слагаемых в правую часть равенства и разложим на множители».

10.


Рассказ о теореме будет неполон без замечательного фильма «Математик и черт».

Поправка

В разделе 7 этой статьи первоначально говорилось, что Наум Элкиес нашел контрпример к теореме Ферма, который впоследствии оказался ошибочным. Это неверно: сообщение о контрпримере было первоапрельской шуткой. Приносим извинения за неточность.


Андрей Коняев