Про природу

Звезда белый карлик малой массы. Белый карлик, нейтронная звезда, черная дыра. Как же образуются белые карлики

Белые карлики - распространенный тип звезд с малой светимостью и огромной массой. В нашей галактике они составляют несколько процентов от общего числа звезд. Это компактные объекты, размером примерно с . Температура внутри них невысока, так что ядерные реакции не протекают. Запасенная энергия постепенно уменьшается за счет излучения электромагнитных волн. Температура поверхности белых карликов колеблется в пределах от 5 000° K у старых, «холодных» звезд до 50 000° K у молодых и «горячих».

Массы белых карликов не превосходят 1,4 массы Солнца, хотя плотность вполне приличная - 1 000 000 - 100 000 000 г/см³

Белые карлики относятся к объектам, находящимся в последней стадии эволюции. Плотность вещества белых карликов больше плотности обычных звёзд в миллион раз, а распространённость их среди звёзд – 3 – 10%. Также белые карлики от звезд отличаются тем,что в их недрах не идут термоядерные реакции.

Когда на закончится весь гелий (через 100 – 110 млн. лет), оно превратится в белый карлик.

Молодые белые карлики имеют температуру больше 2 . 10 5 °К на поверхности. Классический пример – снимки самой яркой звезды нашего неба, Сириуса.

Их удалось получить при помощи рентгеновского телескопа «Чандра». В оптике Сириус А в 10 000 раз ярче своего напарника, Сириуса В, но в рентгеновском диапазоне белый карлик имеет бо льшую яркость.

Из чего состоят

Белые карлики не так просты и скучны, как это может показаться на первый взгляд. Действительно, если ядерные реакции не идут и температура невысока, то откуда берется высокое давление, сдерживающее гравитационное сжатие вещества? Оказывается, что решающую роль играют квантовые свойства электронов. Под действием гравитации вещество сжимается настолько, что ядра атомов проникают внутрь электронных оболочек соседних атомов. Электроны уже не принадлежат конкретным ядрам, а вольны летать по всему пространству внутри звезды. Ядра же образуют плотно связанную систему наподобие кристаллической решетки. Далее происходит самое интересное. Хотя в результате излучения в окружающее пространство белый карлик остывает, средняя скорость электронов не уменьшается. Это связано с тем, что, согласно законам квантовой механики, два электрона, имея полуцелый спин, не могут находиться в одном состоянии (принцип Паули). Значит, число различных состояний электронов белого карлика не может быть меньше числа электронов. Но понятно, что число состояний уменьшается с уменьшением скоростей электронов. В предельном случае, если бы скорость всех электронов стала равной нулю, все они оказались бы в одном состоянии (точнее - в двух, с учетом проекции спина). Поскольку электронов в белом карлике много, то и состояний должно быть много, а это обеспечивается сохранением их скоростей. Ну а большие скорости частиц создают большое давление, противодействующее гравитационному сжатию. Конечно, если масса объекта слишком велика, гравитация преодолеет и этот барьер.

Эволюция

Большинство белых карликов являются одним из последних этапов эволюции нормальных, не очень массивных звезд. Звезда, исчерпав запасы ядерного горючего, переходит в стадию красного гиганта, теряет часть вещества, превращаясь в белый карлик. При этом наружная оболочка - нагретый газ - разлетается в космическом пространстве и с Земли она наблюдается как . За сотни тысяч лет такие туманности рассеиваются в пространстве, а их плотные ядра, белые карлики, постепенно остывают аналогично раскалённому куску металла, но очень медленно, поскольку его поверхность мала. Со временем они должны превратиться в коричневые (черные) карлики - сгустки материи с температурой окружающей среды. Правда, как показывают расчеты, на это может потребоваться множество миллиардов лет.

Очевидно, что открытие коричневых карликов затруднено их слабой светимостью. Один из коричневых карликов находится в созвездии Гидры. Его блеск составляет лишь 22,3. Уникальность открытия заключается в том, что ранее обнаруженные коричневые карлики входили в двойные системы, именно поэтому их и могли обнаружить, а этот - одиночный. Его нашли только благодаря близости к Земле: до него всего 33 световых года.

Предполагается, что нынешние коричневые карлики - это не остывшие белые (слишком мало времени прошло), а «недоразвившиеся» звезды. Как известно, звезды рождаются из газопылевого облака, причем одно облако порождает несколько звезд разной массы. Если сжимающийся сгусток газа имеет массу в 10-100 раз меньше солнечной, образуются коричневые карлики. Они довольно сильно разогреваются силами гравитационного сжатия и излучают в инфракрасном диапазоне. Ядерные реакции в коричневых карликах не происходят.

Открытие

К началу 30-х гг. XX в. в общих чертах сложилась теория внутреннего строения звезд. Задавая массу звезды и ее химический состав, теоретики могли рассчитать все наблюдаемые характеристики звезды - ее светимость, радиус, температуру поверхности и т. д. Однако эту стройную картину нарушала невзрачная звездочка 40 Эридана В , открытая английским астрономом Вильямом Гершелем в 1783 г. Для своей высокой температуры она имела слишком небольшую светимость, а следовательно, слишком малые размеры. С точки зрения классической физики это не поддавалось объяснению. Спустя некоторое время были найдены и другие необычные звезды. Самым знаменитым из этих открытий стало открытие Сириуса В - невидимого спутника самой яркой звезды - Сириуса. Астроном Фридрих Вильгельм Бессель (немецкий математик и астроном), наблюдая за Сириусом, обнаружил, что он движется не по прямой, а «слегка по синусоиде». Примерно десять лет наблюдений и размышлений привели Бесселя к выводу, что рядом с Сириусом находится вторая звезда, оказывающая на него гравитационное воздействие.

Предсказание Бесселя подтвердились после того, как А. Кларк в 1862 г. сконструировал телескоп с объективом диаметром 46 см, на тот момент самый большой телескоп в мире. Для проверки качества линзы его направили на Сириус - самую яркую звезду. В поле зрения телескопа появилась еще одна звезда, неяркая, которую и предсказывал Бессель.

Температура Сириуса В оказалась равной 25 000 К - в 2,5 раза выше, чем у яркого Сириуса А. С учетом размеров звезды это указывало на чрезвычайно высокую плотность ее вещества - 106г/см³. Наперсток такого вещества весил бы на Земле миллион тонн.

Как оказалось, белые карлики - это звездные «огарки», ведущие свое происхождение от обычных звезд. Равновесие обычных звезд поддерживается силой давления раскаленной плазмы, которая противостоит силе гравитации (тяготения). Чтобы равновесие сохранялось, необходимы внутренние источники энергии, иначе звезда, теряя энергию на излучение потоков света в окружающее пространство, не выдержала бы противоборства с силами. Таким внутренним источником служат термоядерные реакции превращения водорода в гелий. Как только в центральных областях звезды «выгорает» весь водород, равновесие нарушается и звезда начинает сжиматься под действием собственной тяжести. Типичная плотность окружающих нас предметов составляет несколько граммов на 1 см³ (примерно такова характерная плотность атома). Такую же среднюю плотность имеют звезды типа нашего Солнца. Однако, если обычную звезду сжать в 100 раз, атомы «вожмутся» друг в друга и звезда превратится в один гигантский атом, в котором энергетические уровни отдельных атомов «сцепятся» воедино. При таких плотно­стях электроны образуют так называемый вырожденный элек­тронный газ - особое квантовое состояние, при котором все электроны белого карлика «чувствуют» друг друга и образу­ют единый коллектив - именно он и противостоит гравитаци­онному сжатию. Так звезда превращается в плотное ядро - белый карлик.

Солнце - это огненный шар, в недрах которого беспрестанно идёт термоядерная реакция. В результате этого атомы водорода превращаются в атомы гелия, и выделяется огромная энергия. Её малая толика и даёт жизнь планете Земля . Огненный шар, образованный посредством термоядерного синтеза, называют звездой главной последовательности .

Наша родная звезда характеризуется как «жёлтый карлик ». То есть в масштабах космоса это образование маленькое, а цвет у него жёлтый. Но человеческий глаз воспринимает его как белый. Продолжительность жизни жёлтого карлика до обидного мала. Она составляет всего каких-то 10 млрд. лет. По меркам Вселенной возраст смешной. Но именно столько времени требуется водороду, чтобы полностью превратиться в гелий.

После этого звезда расширяется и трансформируется в другое космическое образование, которое называется красным гигантом. При этом гелий воспламеняется. Он начинает превращаться в углерод, а размеры звезды всё увеличиваются и увеличиваются. К примеру, внешние границы нашего Солнца достигнут Земли, поглотив по пути Меркурий и Венеру . На голубой планете, естественно, никакой жизни уже не будет. Океаны испарятся, а ведь основой всего является именно вода.

В состоянии красного гиганта звезда обычно находится 1 млрд. лет. Затем она переходит в планетарную туманность. Это газовое облако, в центре которого располагается белый карлик. Это тоже звезда, но без какого-либо источника энергии. У неё огромная плотность и ничтожная светимость. Таких белых карликов в нашей галактике от общего числа звёзд насчитывается порядка 10%.

Но это конец пути, а с чего же он начинается. Как образуется молодая звезда, как появилось наше Солнце и Солнечная система ? На этот счёт существует чёткая теория, объясняющая возникновение звёзд главной последовательности.

Возникновение Солнца

Каких-то 5 млрд. лет назад на том месте, где мы сейчас находимся, ничего не было. Отсутствовала Земля, другие планеты, не было и Солнца. Всё пространство заполняли молекулы водорода. Они образовывали огромную туманность и свободно перемещались в пространстве. Но ничто не вечно под Луной (в данном случае под центром галактики). Под действием сил гравитации водородное облако стало постепенно закручиваться в воронку и вращаться вокруг своей оси.

Почему это произошло? Во всём виноваты силы гравитации. На той же Земле, к примеру, благодаря им, образуются мощные смерчи и вихри. Весь космос живёт по одним и тем же законам. Только смерчи в безвоздушном пространстве имеют значительно большие размеры, а существуют многие миллионы лет. Подобный смерч возник и 5 млрд. лет назад. Именно он и послужил причиной появления жёлтого карлика.

Огромная газовая воронка вращалась всё быстрее, а в её центре росла плотность водорода. Соответственно повышалась температура. Наконец она достигла критической величины и спровоцировала начало термоядерной реакции. Так зародилось Солнце. Полностью сформировалось оно 4,6 млрд. лет тому назад. То есть на данный момент жёлтый карлик уже прожил половину своей жизни. С каждым новым прожитым миллиардом лет он становится всё ярче и ярче. Какое же у него внутреннее строение?

Внутреннее строение Солнца

Масса Солнца соответствует 99% всей Солнечной системы и равна 2×10 27 тонн. Оставшийся процент приходится на планеты, спутники, кометы, астероиды. Диаметр светила равен 109 диаметрам Земли и составляет 1,39 млн. км. От жёлтого карлика до голубой планеты 149,6 млн. км. Это, так называемая, одна астрономическая единица . До центра Млечного пути от Солнца 26 тысяч световых лет. Один оборот по своей орбите светило делает за 200 млн. лет. Вокруг центра галактики оно движется со скоростью 217 км/с.

В центре светила находится ядро . В нём содержится 40% всей солнечной массы. Диаметр его примерно равен 350 тыс. км. Плотность ядра огромная и в 150 раз превышает плотность воды. Температура солнечного ядра составляет около 13,6 млн. градусов по Цельсию. Именно в ядре происходит термоядерная реакция и выделяется энергия, так как молекулы водорода под воздействием температуры и плотности сливаются друг с другом и превращаются в гелий. При этом испускаются нейтрино и гамма-фотоны.

Гамма-фотоны, в процессе своего движения к внешней солнечной оболочке, распадаются на фотоны с более низкой энергией, а нейтрино никак не видоизменяются, проходя через раскалённую массу.

За ядром находится конвективная зона . Температурные режимы в ней значительно ниже и не превышают рядом с ядром 5 млн. градусов по Цельсию. Естественно, при такой температуре ядерный синтез происходить не может. Толщина этой зоны составляет примерно 300 тыс. км. На этом расстоянии температура падает до 6 тыс. градусов по Цельсию. Задача зоны состоит в том, чтобы очень медленно и постепенно передавать к поверхности светила высокую температуру. В конвективной зоне также создаётся магнитное поле жёлтого карлика.

Далее тянется фотосфера . Она и считается поверхностью нашего родного светила. Именно из неё исходит солнечное излучение. На внешнем крае фотосферы температура достигает 4,5 тысячи градусов по Цельсию. От поверхности этого слоя рассчитываются все расстояния, в том числе и расстояние до Земли.

Фотосферу окружает очень тонкая внешняя оболочка. Называется она - хромосфера . Толщина её не превышает 2 тыс. км. Температура в фотосфере увеличивается и достигает 10 тысяч градусов по Цельсию. На некоторых участках она может доходить до 20 тысяч градусов. Плотность в этой зоне сравнительно небольшая, преобладают молекулы водорода. Они придают внешней оболочке красный цвет.

Солнечная корона над поверхностью Солнца

Сверху фотосферу окружает солнечная корона . Плотность слоя очень низкая, а вот температура высокая. Она достигает 1-2 миллионов градусов по Цельсию. Почему это происходит? Существует гипотеза, что причиной является магнитное поле. Благодаря его воздействию, возникают солнечные вспышки. Они и нагревают корону до высоких температур. Сама корона практически не видима из-за низкой плотности. С земли её можно наблюдать во время солнечного затмения, когда Луна полностью загораживает Солнце. Именно в этот момент вокруг спутника Земли и наблюдается свечение, являющееся ничем иным как короной.

Из короны постоянно истекает огромный поток ионизированных частиц. Это солнечный ветер , представляющий собой гелиево-водородную плазму. Частицы несутся со скоростью от 400 до 750 км/с. Они пронизывают всю солнечную систему, а свой путь заканчивают в гелиосфере. Это место, где начинается межзвёздная среда, а скорость ионизированных частиц стремится к нулю.

Солнечный ветер негативно влияет на поверхности планет Солнечной системы. Также негативно он воздействует и на Землю. Но мощное магнитное поле голубой планеты создаёт защитный экран. Именно благодаря ему, солнечный ветер и не может проникнуть на поверхность Земли.

Магнитное поле

Солнечная плазма обладает очень высокой электропроводностью. Соответственно в ней возникает электрический ток и, как следствие, магнитное поле. Солнце имеет общее магнитное поле и локальные магнитные поля. Общее магнитное поле меняет свою полярность через каждые 22 года. Зависит этот процесс от солнечной активности. Когда активность в минимуме, напряжённость на полюсах максимальная. Солнечная активность растёт, напряжённость поля уменьшается.

Локальные магнитные поля имеют большую напряжённость и меньшую регулярность при небольшой площади по-сравнению с общим полем. Если же площадь обширная, то напряжённость маленькая. Самые сильные магнитные поля наблюдаются в солнечных пятнах. Особенно это ощутимо, когда полярность локального поля совпадает по направлению с полярностью общего поля. В целом, эти поля неустойчивые и живут на протяжении всего лишь нескольких оборотов Солнца.

Тёмные пятна на Солнце

Солнечная активность

Вначале дадим определение солнечным пятнам . Это хорошо различимые тёмные области, температура в которых ниже других участков фотосферы. Всё дело в том, что в этих местах из недр жёлтого карлика выходят силовые линии мощных магнитных полей. Они подавляют движение вещества, а следовательно уменьшают равномерное распределение тепловой энергии. Количество пятен - основной показатель солнечной активности.

Сама же солнечная активность представляет собой различные явления, вызванные генерацией магнитных полей. Проявляется она в виде вспышек, изменении силы электромагнитного излучения, возмущении солнечного ветра и других явлениях. В результате всего этого межпланетная среда возмущается. Что проявляется в виде геомагнитной активности, скажем, на той же Земле.

По времени солнечная активность бывает кратковременной и большой длительности. Во втором случае она кардинально воздействует на климат голубой планеты. К примеру, глобальное потепление, наблюдаемое в наши дни, напрямую связано с длительной активностью жёлтой звезды. Но механизм подобного воздействия пока ещё изучен очень мало.

Луна закрыла Солнце и наступило затмение

Солнечное затмение возникает, когда Луна полностью или частично закрывает Солнце от наблюдателя, находящегося на Земле. Данное явление возможно лишь в новолуние . Это определённая фаза, когда жёлтая звезда, голубая планета и Луна находятся на одной прямой. При этом земной спутник располагается в середине. Длительность интервала между новолунием составляет 29,5 суток.

За 100 лет происходит в среднем 235 солнечных затмений. Причём полностью солнечный диск закрывается в 62 случаях. 159 случаев - это частичное закрытие диска. То есть спутник Земли проходит не по центру солнечного диска, а скрывает от наблюдателя лишь его часть. Небо при этом темнеет незначительно. Такое затмение можно наблюдать на расстоянии около 2 тыс. километров от той зоны, где Луна полностью закрывает Солнце.

В 14 случаях наблюдается кольцевое затмение. В этом случае спутник проходит по солнечному диску, но оказывается меньше его в диаметре, поэтому не может скрыть звезду от наблюдателя.

При полном затмении хорошо видна солнечная корона. Но любоваться ей человечество сможет ещё не более 600 миллионов лет. По прошествию этого периода времени Луна отдалится от Земли так далеко, что полное солнечное затмение станет невозможным. Дело же в том, что спутник движется всё быстрее и быстрее, а голубая планета постепенно замедляет своё вращение. Таким образом, Луна отодвигается от земли на 4 см каждый год.

Что же касается Солнца, то оно ещё долго будет сиять в космической дали, давая землянам тепло и жизнь. Пройдут миллиарды лет, прежде чем начнутся кардинальные изменения, способные негативно повлиять на голубую планету. Будем надеяться, что к этому времени человеческая цивилизация найдёт возможность обезопасить себя от уничтожения. Единственное, что не удастся - это спасти само Солнце. Ведь Вселенная живёт в рамках космических циклов, каждый из которых имеет своё начало и свой конец.

Если внимательно присмотреться к ночному небу, легко заметить, что звезды, глядящие на нас, различаются по цвету. Голубоватые, белые, красные, они светят ровно или мерцают, подобно елочной гирлянде. В телескоп различия в цвете становятся более очевидными. Причина, приведшая к такому разнообразию, кроется в температуре фотосферы. И, вопреки логичному предположению, самыми горячими являются не красные, а голубые, бело-голубые и белые звезды. Но обо всем по порядку.

Спектральная классификация

Звезды — громадные раскаленные шары, состоящие из газа. То, какими мы видим их с Земли, зависит от множества параметров. Например, звезды в действительности не мерцают. Убедиться в этом очень легко: достаточно вспомнить Солнце. Эффект мерцания возникает из-за того, что свет, идущий от космических тел к нам, преодолевает межзвездную среду, полную пыли и газа. Другое дело - цвет. Он является следствием нагрева оболочек (в особенности фотосферы) до определенных температур. Истинный цвет может отличаться от видимого, но разница, как правило, невелика.

Сегодня во всем мире используется гарвардская спектральная классификация звезд. Она является температурной и основывается на виде и относительной интенсивности линий спектра. Каждому классу соответствуют звезды определенного цвета. Разработана классификация была в обсерватории Гарварда в 1890-1924 гг.

Один Бритый Англичанин Финики Жевал Как Морковь

Основных спектральных классов семь: O—B—A—F—G—K—M. Эта последовательность отражает постепенное снижение температуры (от О к М). Для ее запоминания существуют специальные мнемонические формулы. На русском языке одна из них звучит так: «Один Бритый Англичанин Финики Жевал Как Морковь». К этим классам добавляются еще два. Буквами C и S обозначаются холодные светила с полосами окислов металла в спектре. Рассмотрим звездные классы подробнее:

  • Класс О характеризуется самой высокой температурой поверхности (от 30 до 60 тысяч Кельвинов). Звезды такого типа превышают Солнце по массе в 60, а по радиусу — в 15 раз. Их видимый цвет — голубой. По светимости они опережают нашу звезду более чем в миллион раз. Голубая звезда HD93129A, относящаяся к этому классу, характеризуется одним из самых больших показателей светимости среди известных космических тел. По этому показателю она опережает Солнце в 5 миллионов раз. Голубая звезда располагается на расстоянии в 7,5 тысяч световых лет от нас.
  • Класс В обладает температурой в 10-30 тысяч Кельвинов, массой, в 18 раз превышающей аналогичный параметр Солнца. Это бело-голубые и белые звезды. Их радиус больше, чем у Солнца, в 7 раз.
  • Класс А характеризуется температурой в 7,5-10 тысяч Кельвинов, радиусом и массой, превышающими в 2,1 и 3,1 раз соответственно аналогичные параметры Солнца. Это белые звезды.
  • Класс F: температура 6000-7500 К. Масса больше солнечной в 1,7 раз, радиус — в 1,3. С Земли такие звезды выглядят также белыми, их истинный цвет — желтовато-белый.
  • Класс G: температура 5-6 тысяч Кельвинов. К этому классу относится Солнце. Видимый и истинный цвет таких звезд — желтый.
  • Класс К: температура 3500-5000 К. Радиус и масса меньше солнечных, составляют 0,9 и 0,8 от соответствующих параметров светила. Видимый с Земли цвет этих звезд - желтовато-оранжевый.
  • Класс М: температура 2-3,5 тысячи Кельвинов. Масса и радиус — 0,3 и 0,4 от аналогичных параметров Солнца. С поверхности нашей планеты они выглядят красно-оранжевыми. К классу М принадлежат Бета Андромеды и Альфа Лисички. Яркая красная звезда, знакомая многим, — это Бетельгейзе (альфа Ориона). Лучше всего искать ее на небе зимой. Красная звезда расположена выше и чуть левее

Каждый класс делится на подклассы от 0 до 9, то есть от самых горячих до самых холодных. Номера звезд обозначают принадлежность к определенному спектральному типу и степень нагрева фотосферы по сравнению с другими светилами в группе. Например, Солнце относится к классу G2.

Визуальные белые

Таким образом, классы звезд с B по F с Земли могут выглядеть белыми. И только объекты, относящиеся к А-типу, имеют такую окраску на самом деле. Так, звезда Саиф (созвездие Орион) и Алголь (бета Персея) наблюдателю, не вооруженному телескопом, покажутся белыми. Они относятся к спектральному классу B. Их истинный цвет - бело-голубой. Также белыми кажутся Мифрак и Процион, самые яркие звезды в небесных рисунках Персей и Малый Пес. Однако их истинный цвет ближе к желтому (класс F).

Почему звезды белые для земного наблюдателя? Цвет искажается из-за огромного расстояния, отделяющего нашу планету от подобных объектов, а также объемных облаков пыли и газа, нередко встречающихся в космосе.

Класс А

Белые звезды характеризуются не столь высокой температурой, как представители класса О и В. Их фотосфера нагревается до 7,5-10 тысяч Кельвинов. Звезды спектрального класса А значительно крупнее Солнца. Их светимость также больше — примерно в 80 раз.

В спектрах А-звезд сильно выражены линии водорода серии Бальмера. Линии прочих элементов заметно слабее, однако они становятся более существенными по мере продвижения от подкласса А0 к А9. Для гигантов и сверхгигантов, относящихся к спектральному классу А, характерны чуть менее выраженные линии водорода, чем для звезд главной последовательности. В случае этих светил более заметными становятся линии тяжелых металлов.

К спектральному классу А относится немало пекулярных звезд. Таким термином обозначают светила, обладающие заметными особенностями в спектре и физических параметрах, что затрудняет их классификацию. Например, довольно редкие звезды типа лямбды Волопаса характеризуются недостатком тяжелых металлов и очень медленным вращением. В число пекулярных светил входят и белые карлики.

Классу А принадлежат такие яркие объекты ночного неба, как Сириус, Менкалинан, Алиот, Кастор и другие. Познакомимся с ними поближе.

Альфа Большого Пса

Сириус — самая яркая, хотя и не ближайшая, звезда на небе. Расстояние до него — 8,6 световых года. Для земного наблюдателя он кажется столь ярким потому, что имеет внушительные размеры и все-таки удален не так значительно, как многие другие крупные и яркие объекты. Ближайшая звезда к Солнцу — это Сириус в этом списке располагается на пятом месте.

Относится он к и представляет собой систему из двух компонентов. Сириус А и Сириус В разделены расстоянием в 20 астрономических единиц и вращаются с периодом чуть меньше 50 лет. Первый компонент системы — звезда главной последовательности, принадлежит спектральному классу А1. Его масса в два раза превышает солнечную, а радиус — в 1,7 раз. Именно его можно наблюдать невооруженным глазом с Земли.

Второй компонент системы — белый карлик. Звезда Сириус В практически равна нашему светилу по массе, что нетипично для таких объектов. Обычно белые карлики характеризуются массой в 0,6-0,7 солнечных. При этом размеры Сириуса В приближены к земным. Предполагается, что стадия белого карлика началась для этой звезды примерно 120 миллионов лет назад. Когда Сириус В располагался на главной последовательности, он, вероятно, представлял собой светило с массой в 5 солнечных и относился к спектральному классу В.

Сириус А, по подсчетам ученых, перейдет на следующую стадию эволюции примерно через 660 млн лет. Тогда он превратится в красного гиганта, а еще чуть позже — в белого карлика, как и его компаньон.

Альфа Орла

Как и Сириус, многие белые звезды, названия которых приведены ниже, из-за яркости и нередкого упоминания на страницах научно-фантастической литературы хорошо знакомы не только людям, увлекающимся астрономией. Альтаир — одно из таких светил. Альфа Орла встречается, например, у и Стивина Кинга. На ночном небе эта звезда хороша заметна из-за яркости и относительно близкого расположения. Расстояние, разделяющее Солнце и Альтаир, составляет 16,8 световых лет. Из звезд спектрального класса А ближе к нам только Сириус.

Альтаир по массе превышает Солнце в 1,8 раз. Его характерной особенностью является очень быстрое вращение. Один оборот вокруг оси звезда совершает меньше чем за девять часов. Скорость вращения в районе экватора — 286 км/с. Как результат «шустрый» Альтаир сплюснут с полюсов. Кроме того, из-за эллиптичной формы от полюсов к экватору снижается температура и яркость звезды. Этот эффект назван «гравитационным потемнением».

Еще одна особенность Альтаира в том, что его блеск со временем меняется. Он относится к переменным типа дельты Щита.

Альфа Лиры

Вега — самая изученная звезда после Солнца. Альфа Лиры — первая звезда, у которой определили спектр. Она же стала вторым после Солнца светилом, запечатленным на фотографии. Вега вошла и в число первых звезд, до которых ученые измерили расстояние методом парлакса. Длительный период яркость светила принималась за 0 при определении звездных величин других объектов.

Хорошо знакома альфа Лиры и астроному-любителю, и простому наблюдателю. Она является пятой по яркости среди звезд, входит в астеризм Летний треугольник вместе с Альтаиром и Денеб.

Расстояние от Солнца до Веги - 25,3 световых года. Ее экваториальный радиус и масса больше аналогичных параметров нашего светила в 2,78 и 2,3 раз соответственно. Форма звезды далека от идеального шара. Диаметр в районе экватора заметно больше, чем у полюсов. Причина — огромная скорость вращения. На экваторе она достигает 274 км/с (для Солнца этот параметр равен чуть больше двух километров в секунду).

Одна из особенностей Веги — окружающий ее пылевой диск. Предположительно, что он возник в результате большого числа столкновений комет и метеоритов. Пылевой диск вращается вокруг звезды и разогревается под действием ее излучения. В результате возрастает интенсивность инфракрасного излучения Веги. Не так давно в диске были обнаружены несимметричности. Вероятное их объяснение — наличие у звезды по крайней мере одной планеты.

Альфа Близнецов

Второй по яркости объект в созвездии Близнецов — это Кастор. Он так же, как и предыдущие светила, относится к спектральному классу А. Кастор — одна из самых ярких звезд ночного неба. В соответствующем списке он располагается на 23 месте.

Кастор представляет собой кратную систему, состоящую из шести компонентов. Два основные элемента (Кастор А и Кастор В) вращаются вокруг общего центра масс с периодом 350 лет. Каждая из двух звезд является спектральной-двойной. Компоненты Кастора А и Кастора В менее яркие и относятся предположительно к спектральному классу М.

Кастор С не сразу был связан с системой. Изначально он обозначался как самостоятельная звезда YY Близнецов. В процессе исследований этой области неба стало известно, что это светило физически связано с системой Кастора. Звезда вращается вокруг общего для всех компонентов центра масс с периодом в несколько десятков тысяч лет и также является спектральной-двойной.

Бета Возничего

Небесный рисунок Возничего включает примерно 150 «точек», многие из них — это белые звезды. Названия светил мало что скажут человеку, далекому от астрономии, но это не умаляет их значения для науки. Самым ярким объектом небесного рисунка, относящимся к спектральному классу А, является Менкалинан или бета Возничего. Имя звезды в переводе с арабского означает «плечо обладателя поводьев».

Менкалинан — тройная система. Два ее компонента — субгиганты спектрального класса А. Яркость каждого из них превышает аналогичный параметр Солнца в 48 раз. Они разделены расстоянием в 0,08 астрономические единицы. Третий компонент — это красный карлик, удаленный от пары на 330 а. е.

Эпсилон Большой Медведицы

Самая яркая «точка» в, пожалуй, наиболее известном созвездии северного неба (Большая Медведица) — это Алиот, также относящийся к классу А. Видимая величина — 1,76. В списке самых ярких светил звезда занимает 33 место. Алиот входит в астеризм Большой ковш и располагается ближе других светил к чаше.

Спектр Алиота характеризуется необычными линиями, колеблющимися с периодом в 5,1 дня. Предполагается, что особенности связаны с воздействием магнитного поля звезды. Колебания спектра, по последним данным, могут возникать из-за близкого расположения космического тела с массой в почти 15 масс Юпитера. Так ли это, пока загадка. Ее, как и другие тайны звезд, астрономы пытаются понять каждый день.

Белые карлики

Рассказ о белых звездах будет неполным, если не упомянуть о той стадии эволюции светил, которая обозначается как «белый карлик». Название свое такие объекты получили из-за того, что первые обнаруженные из них принадлежали спектральному классу А. Это был Сириус В и 40 Эридана В. На сегодняшний день белыми карликами называют один из вариантов финальной стадии жизни звезды.

Остановимся более подробно на жизненном цикле светил.

Звездная эволюция

За одну ночь звезды не рождаются: любая из них проходит несколько стадий. Сначала облако газа и пыли начинает сжиматься под действием собственных Медленно оно приобретает форму шара, при этом энергия гравитации превращается в тепло — растет температура объекта. В тот момент, когда она достигает величины в 20 миллионов Кельвинов, начинается реакция ядерного синтеза. Эта стадия и считается началом жизни полноценной звезды.

Большую часть времени светила проводят на главной последовательности. В их недрах постоянно идут реакции водородного цикла. Температура звезд при этом может различаться. Когда в ядре заканчивается весь водород, начинается новая стадия эволюции. Теперь топливом становится гелий. При этом звезда начинает расширяться. Ее светимость увеличивается, а температура поверхности, наоборот, падает. Звезда сходит с главной последовательности и становится красным гигантом.

Масса гелиевого ядра постепенно увеличивается, и оно начинает сжиматься под собственным весом. Стадия красного гиганта заканчивается гораздо быстрее, чем предыдущая. Путь, по которому пойдет дальнейшая эволюция, зависит от изначальной массы объекта. Маломассивные звезды на стадии красного гиганта начинают раздуваться. В результате этого процесса объект сбрасывает оболочки. Образуется и оголенное ядро звезды. В таком ядре завершились все реакции синтеза. Оно называется гелиевым белым карликом. Более массивные красные гиганты (до определенного предела) эволюционируют в углеродных белых карликов. В их ядрах присутствуют более тяжелые элементы, чем гелий.

Характеристики

Белые карлики — тела, по массе, как правило, очень близкие к Солнцу. При этом их размер соответствует земному. Колоссальная плотность этих космических тел и происходящие в их недрах процессы необъяснимы с точки зрения классической физики. Тайны звезд помогла раскрыть квантовая механика.

Вещество белых карликов представляет собой электронно-ядерную плазму. Сконструировать его даже в условиях лаборатории практически невозможно. Поэтому многие характеристики таких объектов остаются непонятными.

Даже если изучать всю ночь звезды, обнаружить хотя бы один белый карлик без специальной аппаратуры не получится. Их светимость значительно меньше солнечной. По подсчетам ученых, белые карлики составляют примерно от 3 до 10% всех объектов Галактики. Однако на сегодняшний день найдены лишь те из них, которые расположены не дальше, чем на расстоянии 200-300 парсек от Земли.

Белые карлики продолжают эволюционировать. Сразу после образования они имеют высокую температуру поверхности, но быстро остывают. Через несколько десятков миллиардов лет после образования, согласно теории, белый карлик превращается в черного карлика — не излучающее видимый свет тело.

Белая, красная или синяя звезда для наблюдателя отличаются прежде всего цветом. Астроном смотрит глубже. Цвет для него сразу многое рассказывает о температуре, размерах и массе объекта. Голубая или светлая синяя звезда — гигантский раскаленный шар, по всем параметрам сильно опережающий Солнце. Белые светила, примеры которых описаны в статье, несколько меньше. Номера звезд в различных каталогах также многое сообщают профессионалам, но далеко не все. Большое количество сведений о жизни далеких космических объектов либо еще не получили объяснения, либо остаются даже не обнаруженными.

Белый карлик - звезда, в нашем космосе довольно распространенная. Ученые называют ее результатом эволюции звезд, финальным этапом развития. Всего есть два сценария видоизменения звездного тела, в одном случае завершающий этап - нейтронная звезда, в другом - черная дыра. Карлики - это окончательный эволюционный шаг. Вокруг них есть планетарные системы. Ученые смогли определить это, изучив обогащенные металлами экземпляры.

История вопроса

Белые карлики - звезды, привлекшие внимание астрономов в 1919. Впервые удалось открыть такое небесное тело ученому из Нидерландов Маанену. Для своего времени специалист сделал довольно нетипичное и неожиданное открытие. Увиденный им карлик был похож на звезду, но имел нестандартные маленькие размеры. Спектр, однако, был таков, словно бы это массивное и большое небесное тело.

Причины такого странного явления привлекали ученых довольно долгое время, поэтому было приложено немало усилий для изучения строения белых карликов. Прорыв совершился, когда высказали и доказали предположение обилия в атмосфере небесного тела разнообразных металлических структур.

Необходимо уточнить, что металлы в астрофизике - это всевозможные элементы, молекулы которых тяжелее водородных, гелиевых, а химический состав их более прогрессивен, нежели эти два соединения. Гелий, водород, как удалось установить ученым, в нашей вселенной распространены шире, нежели любые другие вещества. Отталкиваясь от этого, было решено все прочее обозначать металлами.

Развитие темы

Хотя впервые сильно отличающиеся размерами от Солнца белые карлики были замечены в двадцатых годах, только через половину века люди выявили, что наличие металлических структур в звездной атмосфере не является типичным явлением. Как выяснилось, при включении в атмосферу помимо двух самых распространенных веществ более тяжелых происходит их смещение в глубокие слои. Тяжелые вещества, оказавшись среди молекул гелия, водорода, со временем должны переместиться в ядро звезды.

Причин такого процесса удалось обнаружить несколько. Радиус белого карлика мал, такие звездные тела очень компактные - не зря они получили свое название. В среднем радиус сравним с земным, в то время как вес сходен с весом звезды, освещающей нашу планетарную систему. Такое соотношение габаритов и веса становится причиной исключительно большого гравитационного поверхностного ускорения. Следовательно, оседание тяжелых металлов в водородной и гелиевой атмосфере происходит всего лишь за несколько земных дней после попадания молекулы в общую газовую массу.

Возможности и продолжительность

Иногда характеристики белых карликов таковы, что процесс оседания молекул тяжелых веществ может затянуться надолго. Наиболее благоприятные варианты, с точки зрения наблюдателя с Земли, - это процессы, на которые уходят миллионы, десятки миллионов лет. И все же такие временные промежутки исключительно малы в сравнении с продолжительностью существования самого звездного тела.

Эволюция белого карлика такова, что большая часть наблюдаемых человеком в настоящий момент формирований уже насчитывает несколько сотен миллионов земных лет. Если сравнить это с самым медленным процессом поглощения металлов ядром, разница получается более чем существенная. Следовательно, выявление металла в атмосфере определенной наблюдаемой звезды позволяет с уверенностью заключить, что изначально тело не имело такого состава атмосферы, иначе все металлические включения давно пропали бы.

Теория и практика

Описанные выше наблюдения, а также собранная за долгие десятилетия информация о белых карликах, нейтронных звездах, черных дырах позволила предположить, что атмосфера получает металлические включения из внешних источников. Ученые сперва решили, что таковой является среда между звездами. Небесное тело перемещается сквозь такое вещество, аккрецирует среду на свою поверхность, тем самым обогащая атмосферу тяжелыми элементами. Но дальнейшие наблюдения показали, что такая теория несостоятельна. Как уточнили специалисты, если бы изменение атмосферы происходило именно таким путем, преимущественно карлик извне получал бы водород, так как среда между звездами сформирована в своей основной массе именно водородными и гелиевыми молекулами. Лишь малый процент среды приходится на долю тяжелых соединений.

Если бы сформированная из первичных наблюдений за белыми карликами, нейтронными звездами, черными дырами теория оправдала бы себя, карлики состояли бы из водорода как самого легкого элемента. Это не допускало бы существования даже гелиевых небесных тел, ведь гелий тяжелее, а значит, водородная аккреция полностью скрыла бы его от глаза внешнего наблюдателя. Исходя из наличия гелиевых карликов, ученые пришли к выводу, что межзвездная среда не может служить единственным и даже основным источником металлов в атмосфере звездных тел.

Как объяснить?

Ученые, занимавшиеся в 70-х годах прошлого столетия черными дырами, белыми карликами, предположили, что металлические включения могут объясняться падением комет на поверхность небесного тела. Правда, в свое время такие идеи были признаны слишком экзотичными и поддержки не получили. Во многом это объяснялось тем, что люди еще не знали о наличии иных планетных систем - известна была только наша «домашняя» Солнечная.

Существенный шаг вперед в исследовании черных дыр, белых карликов был сделан в конце следующего, восьмого десятилетия прошлого века. Ученые получили в свое распоряжение особенно мощные инфракрасные приборы для наблюдения за глубинами космоса, что позволило вокруг одного из известных астрономам белого карлика обнаружить инфракрасное излучение. Таковое было выявлено именно вокруг карлика, атмосфера которого содержала металлические включения.

Инфракрасное излучение, позволившее оценить температуру белого карлика, также сообщило ученым, что звездное тело окружено некоторым веществом, способным поглощать звездное излучение. Это вещество нагрето до конкретного температурного уровня, меньшего присущего звезде. Это позволяет постепенно перенаправлять поглощенную энергию. Излучение происходит в инфракрасном диапазоне.

Наука движется вперед

Спектры белого карлика стали объектом изучения передовых умов мира астрономов. Как оказалось, из них можно получить довольно объемную информацию об особенностях небесных тел. Особенно интересными были наблюдения за звездными телами с избыточным инфракрасным излучением. В настоящее время удалось выявить около трех десятков систем такого типа. Основной их процент изучался посредством мощнейшего телескопа «Спитцер».

Ученые, наблюдая за небесными телами, установили, что плотность белых карликов существенно меньше этого параметра, свойственного гигантам. Также было выявлено, что избыточное инфракрасное излучение объясняется наличием дисков, сформированных специфическим веществом, способным поглощать энергетическое излучение. Именно оно затем излучает энергию, но уже в ином диапазоне волн.

Диски расположены исключительно близко и в некоторой степени влияют на массу белых карликов (которая не может превышать предела Чандрасекара). Внешний радиус получил название обломочного диска. Было высказано предположение, что таковой сформировался при разрушении некоторого тела. В среднем радиус по размеру сравним с Солнцем.

Если обратить внимание на нашу планетарную систему, станет ясно, что относительно недалеко от «дома» мы может наблюдать сходный пример - это окружающие Сатурн кольца, размер которых также сравним с радиусом нашего светила. Со временем ученые установили, что эта особенность - не единственная из тех, что роднит карлики и Сатурн. К примеру, и планета, и звезды обладают очень тонкими дисками, которым несвойственна прозрачность при попытке просвечивания светом.

Выводы и развитие теории

Поскольку кольца белых карликов сравнимы с теми, что окружают Сатурн, стало возможным сформулировать новые теории, объясняющие наличие металлов в атмосфере этих звезд. Астрономам известно, что вокруг Сатурна кольца сформированы приливным разрушением некоторых тел, оказавшихся достаточно близко от планеты, чтобы на них повлияло ее гравитационное поле. В такой ситуации внешнее тело не может сохранять собственную гравитацию, что приводит к нарушению целостности.

Около пятнадцати лет назад была представлена новая теория, объяснившая образование колец белых карликов сходным образом. Предположили, что первоначально карлик представлял собой звезду в центре системы планет. Небесное тело с течением времени эволюционирует, на что уходят миллиарды лет, разбухает, теряет оболочку, и это становится причиной формирования карлика, постепенно остывающего. Кстати говоря, цвет белых карликов объясняется именно их температурой. У некоторых она оценивается в 200 000 К.

Система планет в ходе такой эволюции может выжить, что приводит к расширению внешней части системы одновременно с уменьшением массы звезды. В результате формируется крупная система астероиды и многие другие элементы выживают при эволюции.

Что дальше?

Прогресс системы может привести к ее нестабильности. Это приводит к бомбардировке камнями окружающего планеты пространства, и астероиды частично вылетают из системы. Некоторые из них, однако, перемещаются на орбиты, рано или поздно оказываясь в пределах солнечного радиуса карлика. Столкновения не происходит, но приливные силы приводят к нарушению целостности тела. Скопление таких астероидов приобретает форму, сходную с окружающими Сатурн кольцами. Тем самым вокруг звезды формируется диск обломков. Существенно отличается плотность белого карлика (порядка 10^7 г/см3) и его обломочного диска.

Описанная теория стала достаточно полным и логичным объяснением ряда астрономических явлений. Посредством нее можно понять, почему диски компактны, ведь звезда не может все время своего существования окружаться диском, радиус которого сравним с солнечным, иначе первое время такие диски были бы внутри ее тела.

Объяснив формирование дисков и их размер, можно понять, откуда берется своеобразный запас металлов. Он может оказаться на звездной поверхности, загрязнив карлик металлическими молекулами. Описанная теория, не противореча выявленным показателям средней плотности белых карликов (порядка 10^7 г/см3), доказывает, по какой причине металлы наблюдаются в атмосфере звезд, почему измерение химического состава возможно доступными человеку средствами и по какой причине распределение элементов сходно с тем, что свойственно нашей планете и другим изученным объектам.

Теории: а есть ли польза?

Описанная идея получила широкое распространение как база для объяснения, по какой причине оболочки звезд загрязнены металлами, почему появились обломочные диски. Кроме того, из нее вытекает, что вокруг карлика существует планетная система. Удивительного в таком выводе мало, ведь человечество установило, что большая часть звезд имеет собственные системы планет. Это свойственно как тем, что сходны с Солнцем, так и тем, что значительно больше его габаритами - а именно из них и формируются белые карлики.

Темы не исчерпаны

Даже если считать описанную выше теорию общепринятой и доказанной, некоторые вопросы для астрономов и по сей день остаются открытыми. Особенный интерес вызывает специфика переноса вещества между дисками и поверхностью небесного тела. Как предполагают некоторые, это объясняется радиационным излучением. Теории, призывающие таким образом описать перенос вещества, основаны на эффекте Пойнтинга-Робертсона. Это явление, под влиянием которого частицы медленно перемещаются по орбите вокруг молодой звезды, постепенно спирально смещаясь к центру и пропадая в небесном теле. Предположительно, этот эффект должен проявляться на обломочных дисках, окружающих звезды, то есть молекулы, которые присутствуют в дисках, рано или поздно оказываются в исключительной близости от карлика. Твердые вещества подвержены испарению, формируется газ - таковой в виде дисков был зафиксирован вокруг нескольких наблюдаемых карликов. Рано или поздно газ доходит до поверхности карлика, перенося сюда металлы.

Выявленные факты оцениваются астрономами как существенный вклад в науку, поскольку позволяют предположить, как сформированы планеты. Это важно, так как объекты для исследований, привлекающие специалистов, зачастую недоступны. К примеру, планеты, вращающиеся вокруг превышающих Солнце габаритами звезд, крайне редко можно изучить - это слишком сложно на том техническом уровне, который доступен нашей цивилизацией. Вместо этого, люди получили возможность изучения систем планет после превращения звезд в карлики. Если удастся развиваться в этом направлении, наверняка можно будет выявить новые данные о наличии систем планет и их отличительных характеристиках.

Белые карлики, в атмосфере которых выявлены металлы, позволяют составить представление о химическом составе комет и иных космических тел. Фактически иного способа для оценки состава у ученых просто нет. К примеру, изучая планеты-гиганты, можно составить представление только о внешнем слое, но нет никакой достоверной информации о внутреннем содержании. Это касается и нашей «домашней» системы, поскольку химический состав можно изучить лишь у того небесного тела, которое упало на поверхность Земли либо того, куда удалось приземлить аппарат для исследований.

Как все происходит?

Рано или поздно наша планетарная система также станет «домом» белого карлика. Как говорят ученые, звездное ядро располагает ограниченным объемом вещества для получения энергии, и рано или поздно термоядерные реакции исчерпываются. Газ уменьшается в объемах, плотность повышается до тонны на кубический сантиметр, в то время как во внешних слоях реакция по-прежнему протекает. Звезда расширяется, становится красным гигантом, радиус которого сравним с сотнями звезд, равных Солнцу. Когда внешняя оболочка прекращает «горение», в течение 100 000 лет происходит рассеивание вещества в пространстве, что сопровождается формированием туманности.

Ядро звезды, освободившись от оболочки, понижает температуру, что и приводит к формированию белого карлика. Фактически такая звезда - это высокоплотный газ. В науке карлики нередко именуют вырожденными небесными телами. Если бы наше светило сжалось и его радиус насчитывал бы лишь несколько тысяч километров, но вес бы полностью сохранился, то здесь также имел бы место белый карлик.

Особенности и технические моменты

Рассматриваемый тип космического тела способен светиться, но этот процесс объясняется иными механизмами, отличными от термоядерных реакций. Свечение называют остаточным, оно объясняется понижением температуры. Карлик сформирован веществом, ионы которого иногда холоднее 15000 К. Элементам характерны колебательные движения. Постепенно небесное тело становится кристаллическим, его свечение ослабевает, и карлик эволюционирует в коричневый.

Ученые выявили предел массы для такого небесного тела - до 1,4 веса Солнца, но не больше этой границы. Если масса превышает этот предел, звезда существовать не может. Это объясняется давлением вещества, находящегося в сжатом состоянии - оно меньше гравитационного притяжения, сжимающего вещество. Происходит очень сильное сжатие, которое приводит к появлению нейтронов, вещество нейтронизируется.

Процесс сжатия может привести к вырождению. В этом случае формируется нейтронная звезда. Второй вариант - продолжение сжатия, рано или поздно приводящее к взрыву.

Общие параметры и особенности

Болометрическая светимость рассматриваемой категории небесных тел относительно свойственной Солнцу меньше приблизительно в десять тысяч раз. Радиус карлика меньше солнечного в сто раз, в то время как вес сравним со свойственным основной звезде нашей системы планет. Для определения границы массы для карлика был рассчитан предел Чандрасекара. При его превышении карлик эволюционирует в другую форму небесного тела. Фотосфера звезды в среднем состоит из плотного вещества, оцененного в 105-109 г/см3. В сравнении с главной звездной последовательностью это плотнее приблизительно в миллион раз.

Некоторые астрономы считают, что лишь 3% всех звезд в галактике - это белые карлики, а некоторые убеждены, что к такому классу принадлежит каждая десятая. Оценки столь сильно разнятся о причине сложности наблюдения за небесными телами - они удалены от нашей планеты и слишком слабо светятся.

Истории и имена

В 1785 в списке двойных звезд появилось тело, наблюдениями за которым занимался Гершель. Звезду назвали 40 Эридана B. Именно она считается первой увиденной человеком из категории белых карликов. В 1910 Расселл заметил, что этому небесному телу свойственен крайне низкий уровень свечения, хотя цветовая температура довольно высокая. Со временем было решено, что небесные тела такого класса необходимо выделять в отдельную категорию.

В 1844 Бессель, исследуя информацию, полученную при слежении за Проционом В, Сириусом В, решил, что обе они время от времени смещаются с прямой линии, а значит, там есть близкие спутники. Такое предположение научному сообществу показалось маловероятным, так как не удалось увидеть никакого спутника, в то время как отклонения могли бы объясниться только небесным телом, масса которого исключительно велика (аналогична Сириусу, Проциону).

В 1962 Кларк, работая с наиболее крупным телескопом из существовавших в тот момент, выявил вблизи Сириуса очень тусклое небесное тело. Именно его и назвали Сириусом В, тем самым спутником, который задолго до этого предположил Бессель. В 1896 исследования показали, что Процион также имеет спутника - он получил название Процион В. Следовательно, идеи Бесселя полностью подтвердились.

У каждой звезды своя судьба и своя продолжительность жизни. Наступает момент, когда она начинает угасать.

Белые карлики – это необычные звезды. Они состоят из вещества, плотность которого чрезвычайно высока. В теории звездной эволюции они рассматриваются как заключительный этап эволюции звезд малой и средней массы, сравнимыми с массой Солнца. По разным оценкам в нашей Галактике насчитывается 3-4 % таких звезд.

Как же образуются белые карлики?


После того как в стареющей звезде выгорит весь водород, ее ядро сжимается и разогревается, - это способствует расширению ее внешних слоев. Эффективная температура звезды падает, и она превращается в красного гиганта. Разреженная оболочка звезды, очень слабо связанная с ядром, со временем рассеивается в пространстве, перетекая на соседние планеты, а на месте красного гиганта остается очень компактная звезда, называемая белым карликом.


Долгое время оставалось загадкой, почему белые карлики, имеющие температуру, превосходящую температуру Солнца, по сравнению с размерами Солнца невелики, пока не выяснилось, что плотность вещества внутри них предельно высока (в пределах 10 5 – 10 9 г/см 3). Стандартной зависимости - масса-светимость - для белых карликов не существует, что отличает их от других звезд. В чрезвычайно малом объеме «упаковано» огромное количество вещества, из-за чего плотность белого карлика почти в 100 раз больше плотности воды.

(На картинке сравнение размеров двух белых карликов с планетой Земля )

Температура белых карликов остается практически постоянной, несмотря на отсутствие внутри них термоядерных реакций. Чем же это объясняется? По причине сильного сжатия электронные оболочки атомов начинают проникать друг в друга. Это продолжается до тех пор, пока между ядрами расстояние не становится минимальным, равным радиусу наименьшей электронной оболочки. В результате ионизации электроны начинают свободно двигаться относительно ядер, а вещество внутри белого карлика приобретает физические свойства, которые характерны для металлов. В подобном веществе энергия к поверхности звезды переносится электронами, скорость которых по мере сжатия все больше увеличивается: некоторые из них двигаются со скоростью, соответствующей температуре в миллион градусов. Температура на поверхности и внутри белого карлика может резко отличаться, что не приводит к изменению диаметра звезды. Здесь можно привести сравнение с пушечным ядром – остывая, оно не уменьшается в объеме.


(На картинке звезда ван Маанена - тусклый белый карлик, находящийся в созвездии Рыб )

Угасает белый карлик крайне медленно: за сотни миллионов лет интенсивность излучения падает всего на 1%. Но в итоге он должен будет исчезнуть, превратившись в черного карлика, для чего могут потребоваться триллионы лет. Белые карлики вполне можно назвать уникальными объектами Вселенной. Воспроизвести в земных лабораториях условия, в которых они существуют, еще никому не удалось.