Биогафии

Центробежная сила и центростремительное ускорение. Центробежная сила – враг или союзник. Теория и расчет


В буквальном смысле эти силы выглядят как определённым способом ориентированные по отношению к центру - некой точке, равноудалённой от всех точек траектории движущегося тела. В двумерном пространстве (на плоскости) такой траекторией является окружность , а в трехмерном - тоже окружность, образованная пересечением сферической поверхности плоскостью, в общем случае не проходящей через её центр.
Все остальные траектории любого вида центром в этом смысле не обладают, и потому применительно к движущемуся по не круговым траекториям телу использование представления о центростремительной и центробежной силах не оправдано и ведёт к многочисленным недомолвкам и недоразумениям .

Центростремительная и центробежная силы

Всякое тело сопротивляется изменению своего состояния покоя или равномерного прямолинейного движения под действием внешней силы

Всякое тело стремится сохранять состояние покоя или равномерного прямолинейного движения до тех пор, пока не подействует внешняя сила.

Отголоском этой традиции и является представление о некоей силе , как о материальном факторе, реализующем это сопротивление или стремление. О существовании такой силы уместно было бы говорить, если бы, например, вопреки действующим силам, движущееся тело сохраняло бы свою скорость, но это не так.

Использование термина Центробежная сила правомочно тогда, когда точкой её приложения является не испытывающее поворот тело, а ограничивающее его движение связи. В этом смысле Центробежная сила представляет собой один из членов в формулировке Третьего закона Ньютона, антагониста Центростремительной силе, вызывающей поворот рассматриваемого тела и к нему приложенной. Обе эти силы равны по величине и противоположны по направлению, но приложены к разным телам и потому не компенсируют друг друга, а вызывают реально ощутимый эффект - изменение направление движения тела (материальной точки).

Оставаясь в инерциальной системе отсчёта , рассмотрим два небесных тела, например, компонента двойной звезды с массами одного порядка величины M 1 и M 2 , находящихся на расстоянии R друг от друга. В принятой модели эти звёзды рассматриваются как материальные точки и R есть расстояние между их центрами масс. В роли связи между этими телами выступает сила Всемирного тяготения F G :G M 1 M 2 / R 2 , где G - гравитационная постоянная. Это - единственная здесь действующая сила, она вызывает ускоренное движение тел навстречу друг другу.

Однако, в том случае, если каждое из этих тел совершает вращение вокруг общего центра масс с линейными скоростями v 1 = ω 1 R 1 и v 2 = ω 2 R 2 , то подобная динамическая система будет неограниченное время сохранять свою конфигурацию, если угловые скорости вращения этих тел будут равны: ω 1 = ω 2 = ω , а расстояния от центра вращения (центра масс) будут соотноситься, как: M 1 / M 2 = R 2 / R 1 , причём R 2 + R 1 = R , что непоcредственно следует из равенства действующих сил: F 1 = M 1 a 1 и F 2 = M 2 a 2 , где ускорения равняются соответственно: a 1 = ω 2 R 1 и a 2 = ω 2 R 2

Центростремительные силы, вызывающие движение тел по круговым траекториям равны (по модулю): F 1 =F 2 = F G . При этом первая из них является центростремительной, а вторая - центробежной и наоборот: каждая из сил в соответствие с Третьим законом является и той, и другой.

Поэтому, строго говоря, использование каждого из обсуждаемых терминов излишне, поскольку они не обозначают никаких новых сил, являясь синонимами единственной силы - силы Всемирного тяготения. То же самое справедливо и отношении действия любой из упомянутых выше связей.

Однако, по мере изменения соотношения между рассматриваемыми массами, то есть всё более значительного расхождения в движении обладающих этими массами тел, разница в результатах действия каждой из рассматриваемых тел для наблюдателя становится всё более значительной.

В ряде случаев наблюдатель отождествляет себя с одним из принимающих участие тел и потому оно становится для него неподвижным. В этом случае при столь большом нарушении симметрии в отношении к наблюдаемой картине, одна из этих сил оказывается неинтересной, поскольку практически не вызывает движения.

Переписывая Второй закон в виде F m a = 0 и заменяя второй член слева на некую силу F i = − m a , получаем новую запись Второго закона: F + F i = 0 .Здесь обе силы действуют на одно и то же тело, причём их сумма равна нулю, из чего следует, что данное тело в системе отсчёта, связанной с этим телом, покоится, хотя сама система вместе с ним движется ускоренно. Эта сила F i , ничем не отличается по своему происхождению от силы F (о чём говорит знак равенства в канонической записи закона). Существует предложение называть её Ньютоновской силой инерции . Никакого отношения к центробежной силе эта сила не имеет.

Литература

  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989
  • С. Э. Хайкин. Силы инерции и невесомость. М.: «Наука», 1967 г.
  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов, Том I. М.: ГИТТЛ, 1957
Рассмотрим вращение камня массой m на веревке (рис. 4.8).

Рис. 4.8

В каждый момент времени камень должен был бы двигаться прямолинейно по касательной к окружности. Однако он связан с осью вращения веревкой. Веревка растягивается, появляется упругая сила, действующая на камень, направленная вдоль веревки к центру вращения. Это и есть центростремительная сила (при вращении Земли вокруг оси в качестве центростремительной силы выступает сила гравитации).

Но так как то

(4.5.2)
(4.5.3)

Центростремительная сила возникла в результате действия камня на веревку, т.е. это сила, приложенная к телу, – сила инерции второго рода . Она фиктивна – ее нет.

Сила же, приложенная к связи и направленная по радиусу от центра, называется центробежной .

Помните, что центростремительная сила приложена к вращающемуся телу, а центробежная сила – к связи.


Сила гравитационного притяжения направлена к центру Земли.
Сила реакции опоры (нормального давления) направлена перпендикулярно к поверхности движения.

Центробежная сила – сила инерции первого рода. Центробежной силы, приложенной к вращающемуся телу, не существует.

С точки зрения наблюдателя, связанного с неинерциальной системой отсчета, он не приближается к центру, хотя видит, что F цс действует (об этом можно судить по показанию пружинного динамометра). Следовательно, с точки зрения наблюдателя в неинерциальной системе есть сила, уравновешивающая F цс, равная ей по величине и противоположная по направлению:

Т.к. a n = ω 2 R (здесь ω – угловая скорость вращения камня, а υ – линейная), то

F цб = m ω 2 R . (4.5.4)

Все мы (и физические приборы тоже) находимся на Земле, вращающейся вокруг оси, следовательно, в неинерциальной системе (рис 4.9).


Рис. 4.9

Лабораторная работа № 1.9

Темы для изучения

Центробежная сила, вращательное движение, угловая скорость, сила инерции.

Принцип

Тело с переменной массой движется по окружности с переменным радиусом и переменной угловой скоростью. Устанавливается зависимость центробежной силы тела от вышеуказанных параметров.

Оборудование

Аппарат для изучения центробежной силы 11008.00 1

Тележка 11060.00 1

Крепежный болт 03949.00 1

Лабораторный двигатель, ~220 В 11030.93 1

Приводной механизм, 30/1

для лабораторного двигателя 11029.00 1

Подшипниковый блок 02845.00 1

Приводной ремень 03981.00 1

Штатив с отверстием, l=100 мм 02036.01 1

Цилиндрическая опора 02006.55 1

Источник питания, 5В/2,4 А 11076.99 1

Держатель для пружинных весов 03065.20 1

Штатив -PASS-, прямоугольный, l=250 мм 02025.55 1

Зажим-насадка

для круглых или прямоугольных стержней 02043.00 2

Настольный зажим -PASS- 02010.00 2

Леса, = 100 м 02090.00 1

Динамометр, 2 Н 03065.03 1

Гиря с прорезью, 10 г, черная 02205.01 4

Гиря с прорезью, 50 г, черная 02206.01 2

Световой барьер со счетчиком 11207.30 1

Дополнительно:

Лабораторный двигатель, ~115 В 11030.90 1

Цель

Определить зависимость центробежной силы от:

угловой скорости;

расстояния от оси вращения до центра тяжести тележки.

Рис. 1: Экспериментальная установка для измерения центробежной силы.

Установка и ход работы

Соберите установку как показано на Рис. 1. Прикрепите красный указатель на стержень, установленный в центре тележки. С его помощью можно определить расстояние от оси вращения до центра тяжести тележки. На конце дорожки для изучения центробежной силы между направляющими стержнями приклейте отметку для светового барьера. При измерении времени полного оборота переключитесь в режим .

Убедитесь, что тележка не соприкасается со световым барьером при движении по максимальному радиусу.

С увеличением угловой скорости увеличивается радиус благодаря изменению центробежной силы, которая компенсируется действием динамометра.

Определение зависимости центробежной силы от массы.

Добавьте к тележке дополнительные гири. Аппарат для изучения центробежной силы вращается с постоянной скоростью и данной массой. Определите возникающую при этом силу при помощи динамометра. С помощью блока тележка подсоединяется нитью к динамометру (длина нити примерно 26 см) и крючку. Отведите динамометр в крайнее нижнее положение. Постоянная угловая скорость во время всего эксперимента определяется частотой вращения мотора. Определите силу для тележки без дополнительной нагрузки. Положение красного указателя отметьте кусочком липкой ленты. Для этого остановите мотор, выключив источник питания. Положите на тележку дополнительные гири и растяните динамометр так, чтобы тележка остановилась перед блоком. Включите источник питания. Зафиксируйте динамометр в крайнем верхнем положении и оттяните его вниз (с интервалом в 1 см). При этом указатель на тележке должен приблизиться к отмеченному положению «». Определите соответствующую силу , когда указатель совпадет с положением «».

Замечание

Если тележка движется за отметкой, выключите мотор. Подтяните динамометр вверх и перезапустите мотор.

Определение зависимости центробежной силы от угловой скорости.

В этой части эксперимента масса тележки остается постоянной. Отметьте заранее определенный радиус (например, =20 см) кусочком липкой ленты. При различных угловых скоростях тележка достигает положения (регулируйте динамометр, как в предыдущей части опыта). Определите соответствующую силу . Зная период вращения , рассчитайте угловую скорость .

Определение зависимости центробежной силы от массы тележки и расстояния до оси вращения.

Масса тележки остается постоянной. Постоянная угловая скорость в течении всего цикла задается частотой вращения мотора. Увеличьте радиус окружности , передвинув динамометр. Определите соответствующую силу и радиус .

Рис. 2: Масса тела в подвижной системе координат.

Теория и расчет

Для системы координат, которая вращается с угловой скоростью уравнение движения материальной точки (с массой и радиус-вектором ) имеет вид:

(1)

Сила тяжести уравновешивается реакцией дорожки. Тележка находится в состоянии покоя в подвижной системе координат, которая вращается с постоянной угловой скоростью (= 0; = const = 0; = const.).

Рис. 3: Зависимость центробежной силы от массы .

Как известно, любому физическому телу свойственно сохранять свое состояние покоя либо равномерного до тех пор, пока на него не будет произведено какое-либо воздействие извне. Сила центробежная - это не что иное, как проявление этого универсального В нашей жизни она обнаруживается так часто, что мы ее практически не замечаем и реагируем на нее на уровне подсознания.

Понятие

Сила центробежная - это своеобразное воздействие, которое оказывает физическая точка на силы, сковывающие свободу ее перемещения и заставляющие двигаться криволинейно относительно связующего ее тела. Поскольку вектор перемещения такого тела постоянно изменяется, то даже в том случае, когда его абсолютная скорость остается неизменной, величина ускорения не будет равна нулю. Поэтому вследствие второго закона Ньютона, который устанавливает зависимость силы от массы и ускорения тела, и возникает сила центробежная. Теперь вспомним о третьем правиле знаменитого английского физика. Согласно ему существуют парами, а значит, сила центробежная должна чем-то уравновешиваться. В самом деле, должно же быть что-то, что удерживает тело на его криволинейной траектории! Так и есть, в паре с центробежной на крутящийся объект также действует сила центростремительная. Отличие между ними в том, что первая приложена к телу, а вторая - к его связи с точкой, вокруг которой происходит вращение.

Где проявляется действие центробежной силы

Стоит раскрутить рукой небольшой груз, который привязан к бечевке, как сразу начинает ощущаться натяжение бечевки. Если бы не существовало влияние центробежной силы привело бы к разрыву веревки. Каждый раз, когда мы движемся по круговому пути (на велосипеде, машине, трамвае и т.д.), нас прижимает в противоположную от поворота сторону. Поэтому на скоростных треках, на участках с крутыми поворотами трасса имеет специальный наклон для придания большей устойчивости соревнующимся гонщикам. Рассмотрим еще один любопытный пример. Поскольку наша планета вращается вокруг оси, то центробежная сила воздействует на любые объекты, которые находятся на ее поверхности. Вследствие этого все вещи становятся немного легче. Если взять гирю весом в 1кг и перенести ее с полюса на экватор, то ее вес уменьшится на 5 грамм. При таких мизерных величинах это обстоятельство кажется несущественным. Однако с увеличением веса такая разница возрастает. К примеру, паровоз, прибывший в Одессу из Архангельска, станет легче на 60 кг, а массой в 20000 тонн, проделавший путь из Белого моря в Черное, станет легче на целых 80 тонн! Почему это происходит?

Потому что центробежная сила, возникающая от вращения нашей планеты, стремится разбросать с поверхности Земли все, что на ней находится. От чего зависит величина центробежной силы? Опять вспоминаем второе правило Ньютона. Первым параметром, влияющим на величину центробежной силы, конечно же, является масса вращающегося тела. А второй параметр - это ускорение, которое в криволинейном движении зависит от скорости вращения и радиуса, описываемого телом. Эта зависимость может быть отображена в виде формулы: а = v 2 /R. Получается: F =m*v 2 /R. Ученые вычислили, что если бы наша Земля вращалась раз в 17 быстрее, то на экваторе была бы невесомость, а если бы полный оборот совершался всего за один час, то потерю веса ощутили бы не только на экваторе, но и во всех морях и странах, которые с ним соседствуют.

Раскройте зонтик, уприте его концом в пол, закружите и одновременно бросьте внутрь мячик, скомканную бумагу, носовой платок - вообще какой-нибудь легкий и неломкий предмет. Произойдет нечто для вас неожиданное. Зонтик словно не пожелает принять подарка: мяч или бумажный ком сами выползут вверх до краев зонтика, а оттуда полетят по прямой линии.


Силу, которая в этом опыте выбросила мяч, принято называть «центробежная сила», хотя правильнее называть ее «инерция». Она обнаруживается всякий раз, когда тело движется по круговому пути. Это не что иное, как один из случаев проявления инерции - стремления движущегося предмета сохранять направление и скорость своего движения.

С центробежной силой мы встречаемся гораздо чаще, чем сами подозреваем. Вы кружите вокруг руки камень, привязанный к бечевке. Вы чувствуете, как бечевка при этом натягивается и грозит разорваться под действием центробежной силы. Старинное оружие для метания камней - праща - работает той же силой.Центробежная сила разрывает жёрнов, если он заверчен слишком быстро и если он недостаточно прочен. Если вы ловки, та же сила поможет вам выполнить фокус

со стаканом, из которого вода не выливается, хотя он опрокинут вверх дном: для этого нужно только быстро взмахнуть стаканом над головой, описав круг. Центробежная сила помогает велосипедисту в цирке описывать головокружительную «чертову петлю». Она же отделяет сливки от молока в так называемых центробежных сепараторах; она извлекает мед из сотов в центробежке; она сушит белье, освобождая его от воды в особых центробежных сушилках, и т. д.

Когда трамвайный вагон описывает кривую часть пути, например при повороте из одной улицы в другую, то пассажиры непосредственно на себе ощущают центробежную силу, которая прижимает их по направлению к внешней стенке вагона. При достаточной скорости движения весь вагон мог бы быть опрокинут этой силой, если бы наружный рельс закругления не был предусмотрительно уложен выше внутреннего: благодаря

этому вагон на повороте слегка наклоняется внутрь. Это звучит довольно странно: вагон, покосившийся набок, устойчивее, чем стоящий прямо!


А между тем это так и есть. И маленький опыт поможет вам уяснить себе, как это происходит. Сверните картонный лист в виде широкого раструба, а еще лучше, возьмите, если в доме найдется, миску со стенками конической формы. Особенно пригодится для нашей цели конический колпак- стеклянный или жестяной - от электрической лампы. Вооружившись одним из этих предметов, пустите по нему монету, небольшой металлический кружочек или колечко. Они будут описывать круги по дну посуды, заметно наклоняясь при этом внутрь. По мере того как монета или колечко будут замедлять свое движение, они станут описывать всё меньшие круги, приближаясь к центру посуды. Но ничего не стоит легким поворотом посуды заставить монету снова катиться быстрее - и тогда она удаляется от центра, описывая всё большие круги. Если она разгонится очень сильно, то может и совсем выкатиться из посуды.


Для велосипедных состязаний на так называемом велодроме устраиваются особые круговые дорожки,- и вы можете видеть, что дорожки эти, особенно там, где они круто заворачивают, устроены с заметным уклоном к центру. Велосипед кружится по ним в сильно наклоненном положении - как монета в вашей чашке - и не только не опрокидывается, но, напротив, именно в таком положении приобретает особенную устойчивость. В цирках велосипедисты изумляют публику тем, что описывают круги по круто наклоненному настилу. Вы понимаете теперь, что в этом нет ничего необычного. Напротив, было бы трудным искусством для велосипедиста так кружиться по ровной, горизонтальной дорожке. По той же причине наклоняется внутрь на крутом повороте и всадник с лошадью.


От этих мелких явлений перейдем к более крупному. Земной шар, на котором мы живем, есть вращающаяся вещь, и на ней должна проявляться центробежная сила. В чем же она сказывается? В том, что вследствие вращения Земли все вещи на ее поверхности становятся легче. Чем ближе к экватору, тем больший круг успевают сделать вещи за 24 часа,-тем, значит, они быстрее вращаются и оттого больше теряют в весе. Если килограммовую гирю перенести с полюса на экватор и здесь вновь взвесить на пружинных весах, то обнаружится нехватка в весе на 5 г. Разница, конечно, невелика, но чем тяжелее вещь, тем эта нехватка крупнее. Паровоз, приехавший из Архангельска в Одессу, становится здесь легче на 60 кг - вес взрослого человека. А линейный корабль в 20 тысяч г, прибывший из Белого моря в Черное, теряет здесь в весе--ни мало ни много - 80 т. Это вес хорошего паровоза!


Отчего это происходит? Оттого, что земной шар, вращаясь, стремится разбросать с его поверхности все вещи, как зонтик в нашем опыте выкидывает брошенный в него мяч. Он бы и скинул их, но этому мешает то, что Земля притягивает все вещи к себе. Мы называем это притяжение «тяжестью». Скинуть вещи с Земли вращение не может, а уменьшить их вес - может. Вот почему вещи становятся немного легче вследствие вращения земного шара.


Чем быстрее вращение, тем уменьшение веса должно становиться заметнее. Ученые вычислили, что если бы Земля вращалась не так, как теперь, а в 17 раз быстрее, то на экваторе вещи потеряли бы свой вес целиком: они стали бы невесомы. А если бы Земля вращалась еще быстрее - например, делала бы полный оборот всего в 1 час,- то вещи потеряли бы целиком свой вес не только на самом экваторе, но и во всех странах и морях, близких к экватору.


Подумайте только, что это значит вещи потеряли свой вес! Ведь это значит, что не будет такой вещи, которой вы не могли бы поднять: паровозы, каменные глыбы, исполинские пушки, целые военные корабли со всеми машинами и орудиями вы поднимали бы как перышко. А если бы вы их уронили - неопасно: они никого не раздавят. Не раздавят потому, что вовсе и не упали бы: ведь они ничего не весят! Они парили бы в воздухе там, где выпустили их из рук. Если бы, сидя в корзине воздушного шара, вы вздумали ронять свои вещи за борт, они никуда не упали., бы, а так и остались бы в воздухе. Удивительный это был бы мир! Прыгать вы могли бы так высоко, как никогда и во сне не прыгали: выше самых высоких сооружений и гор. Но только не забывайте: подпрыгнуть очень легко, а назад спрыгнуть невозможно. Лишенные веса, вы сами на землю не упадете.


Будут и другие неудобства в этом мире. Вы сами сообразите какие: все вещи - и малые и большие, если они не прикреплены,- будут подниматься от малейшего, едва заметного ветерка и носиться в воздухе. Люди, животные, автомобили, телеги, корабли - все беспорядочно металось бы в воздухе, ломая, коверкая и калеча друг друга…


Вот что произошло бы, если бы Земля вращалась значительно быстрее.

Случалось ли вам наблюдать издали за человеком, рубящим дерево? Или, быть может, вы следили за тем, как вдали от вас работает плотник, вколачивая гвозди? Вы могли заметить при этом очень странную вещь: удар раздается не тогда, когда топор врезается в дерево или когда молот ударяет по гвоздю, а позже, когда топор или молот уже…

В числе материалов, хорошо передающих звуки, я упомянул в предыдущей статье про кости. Хотите убедиться, что кости вашего собственного черепа обладают этим свойством? Захватите зубами колечко карманных часов и зажмите руками уши; вы услышите вполне отчетливо мерные удары балансира, заметно более громкие, нежели тиканье, воспринимаемое ухом через воздух. Эти звуки доходят до вашего уха через…

Хочешь увидеть нечто необычное?..- обратился ко мне старший брат как-то вечером.- Пойдем со мной в соседнюю комнату. Комната была темная. Брат взял свечу, и мы пошли. Отважно шагал я впереди, смело открыл дверь и храбро вступил первым в комнату. Но вдруг я обомлел: со стены глядело на меня какое-то нелепое чудовище. Плоское, как…

«Христофор Колумб был великий человек,- писал один школьник в своем классном сочинении,- он открыл Америку и поставил яйцо». Оба подвига казались юному школьнику одинаково достойными изумления. Напротив, американский юморист Марк Твен не видел ничего удивительного в том, что Колумб открыл Америку. «Было бы удивительно, если бы он не нашел ее на месте». А я…

Свеча на двойном расстоянии светит, разумеется, слабее. Но во сколько раз? В два раза? Нет, если вы поставите на двойном расстоянии две свечи, они не дадут прежнего освещения. Чтобы получить освещение, одинаковое с прежним, надо на двойном расстоянии поставить не две, а дважды две - четыре свечи. На тройном расстоянии придется поставить не три, трижды…

Сталкиваются ли между собой две лодки, два трамвайных вагона или два крокетных шара, несчастный ли это случай или только очередной ход в игре, физик обозначает такое происшествие одним коротким словом: «удар». Удар длится краткий миг; но если ударяющиеся предметы, как обычно и бывает, упруги, то в это мгновение успевает совершиться весьма многое. В каждом упругом…

Если в вашей квартире или в квартире ваших знакомых имеется комната с окнами на солнечную сторону, то вы легко можете превратить ее в физический прибор, который носит старинное латинское название «камера-обскура» (по-русски это означает «темная комната»). Для этого понадобится закрыть окно щитом, например, из фанеры или картона, оклеенным темной бумагой, и в нем сделать…

Клоуны в цирках изумляют иногда публику тем, что сдергивают скатерть с накрытого стола, но вся столовая посуда - тарелки, стаканы, бутылки - невредимо остается на своих местах. Здесь нет ни чуда, ни обмана - это дело ловкости, которая изощряется продолжительным упражнением. Такого проворства рук вам, конечно, не достичь. Но проделать подобный же опыт в…

Сейчас мы беседовали о камере-обскуре, объясняли, как ее сделать, но не сообщили одной интересной вещи: каждый человек всегда носит в себе пару маленьких камер-обскур. Это наши глаза. Представьте, глаз устроен наподобие того ящика, который я предлагал вам изготовить. То, что называют «зрачком» глаза, есть не черный кружок на глазу, а отверстие, ведущее в темную внутренность…

На эстраде фокусники выполняют нередко красивый опыт, который кажется удивительным и необычным, хотя довольно просто объясняется. На двух бумажных кольцах подвешивается довольно длинная палка; она опирается на них своими концами, сами же кольца перекинуты: одно - через лезвие бритвы, другое - через хрупкую курительную трубку. Фокусник берет другую палку и со всего размаха ударяет…