Биогафии

Колебания системы с 2 степенями свободы. Малые свободные колебания механических систем с двумя степенями свободы. Главные колебания. Колебания систем с бесконечным числом степеней свободы

Колебания системы с несколькими степенями свободы, имеющие важные практические приложения, отличаются от колебаний системы с одной степенью свободы рядом существенных особенностей. Чтобы дать представление об этих особенностях, рассмотрим случай свободных колебаний системы с двумя степенями свободы.

Пусть положение системы определяется обобщенными координатами и при система находится в устойчивом равновесии. Тогда кинетическую и потенциальную энергии системы с точностью до квадратов малых величин можно найти так же, как были найдены равенства (132), (133), и представить в виде:

где инерционные коэффициенты и квазиупругие коэффициенты - величины постоянные. Если воспользоваться двумя уравнениями Лагранжа вида (131) и подставить в них эти значения Т и П, то получим следующие дифференциальные уравнения малых колебаний системы с двумя степенями свободы

Будем искать решение уравнений (145) в виде:

где A, B, k, a - постоянные величины. Подставив эти значения в уравнения (145) и сократив на получим

Чтобы уравнения (147) давали для А и В решения, отличные от иуля, определитель этой системы должен быть равен нулю или, иначе, коэффициенты при A и В в уравнениях должны быть пропорциональны, т. е.

Отсюда для определения получаем следующее уравнение, называемое уравнением частот.

Корни этого уравнения вещественны и положительны; это доказывается математически, но может быть обосновано и тем, что иначе не будут вещественны уравнения (145) не будут иметь решений вида (146), чего для системы, находящейся в устойчивом равновесии, быть не может (после возмущений она должна двигаться вблизи положения

Определив нз (149) , найдем две совокупности частных решений вида (146). Если учесть, что согласно эти решения будут:

где и - значения, которые я получает из (148) при и соответственно.

Колебания, определяемые уравнениями (150) и (151), называются главными колебаниями, а их частоты и кг - собственными частотами системы. При этом, колебание с частотой (всегда меныией) называют первым главным колебанием, а с частотой - вторым главным колебанием. Числа определяющие отношения амплитуд (или самих координат, т. е. ) в каждом из этих колебаний, называют коэффициентами формы.

Так как уравнения (145) являются линейными, то суммы частных решений (150) и (151) тоже будут решениями этих уравнений:

Равенства (152), содержащие четыре произвольных постоянных определяемых по начальным условиям, дают общее решение уравнений (145) и определяют закон малых колебаний системы. колебания слагаются из двух главных колебаний с частотами и не являются гармоническими. В частных случаях, при соответствующих начальных условиях, система может совершать одно из главных колебаний (например, первое, если ) и колебание будет гармоническим.

Собственные частоты и коэффициенты формы не зависят от начальных условий и являются основными характеристиками малых колебаний системы; решение конкретных задач обычно сводится к определению этих характеристик.

Сопоставляя результаты этого и предыдущего параграфов, можно получить представление о том, к чему сведется исследование затухающих и вынужденных колебаний системы с двумя степенями свободы. Мы этого рассматривать не будем, отметим лишь, что при вынужденных колебаниях резонанс у такой системы может возникать дважды: при и при ( - частота возмущающей силы). Наконец, отметим, что колебания системы с s степенями свободы будут слагаться из s колебаний с частотами которые должны определяться из уравнения степени s относительно Это связано со значительными математическими трудностями, преодолеть которые можно с помощью электронных вычислительных (или аналоговых) машин.

Задача 185. Определить собственные частоты и коэффициенты формы малых колебаний двойного физического маятника, образованного стержнями и 2 одинаковой массы и длины l (рис. 374, а).

Решение. Выберем в качестве обобщенных координат малые углы . Тогда , где и, при требуемой точности подсчетов, . В итоге

Рассмотрим малые колебания системы с двумя степенями свободы, на которую действуют силы потенциального поля и силы, периодически меняющиеся по времени. Возникающие при этом движения системы носят название вынужденных колебаний.

Пусть возмущающие обобщенные силы меняются по гармоническому закону от времени, имея равные периоды и начальную фазу. Тогда уравнения движения рассматриваемой системы будут вида:

Уравнения движения в рассматриваемом случае представляют собой систему линейных дифференциальных уравнений второго порядка с постоянными коэффициентами и правой частью.

Переход к главным координатам

Для удобства исследования уравнений движения перейдем в них к главным координатам системы Связь между координатами определяется формулами предыдущего параграфа вида:

Обозначим через соответственно обобщенные силы, соответствующие нормальным координатам Так как обобщенные силы представляют собой коэффициенты при соответствующих вариациях обобщенных координат в выражении элементарной работы действующих на систему сил, то

Следовательно:

Таким образом, уравнения движения в главных координатах приобретают вид:

Уравнения вынужденных колебаний системы с двумя степенями свободы в нормальных координатах независимы друг от друга и могут интегрироваться отдельно.

Критические частоты возмущающей силы

Уравнение для или определяет колебательный характер изменения нормальных координат, подробно изученный при рассмотрении вынужденного колебания точки по прямой, так как дифференциальные уравнения движения в обоих случаях одинаковы. В частности, если частота возмущающей силы равна частоте одного из собственных колебаний системы или то в решение в качестве множителя войдет время t. Следовательно, одна из нормальных обобщенных координат при достаточно большом t будет сколь угодно велика, или мы имеем явление резонанса.

В частном случае системы с двумя степенями свободы квадратичные формы Т, П, Ф будут соответственно равны

а дифференциальные уравнения малых колебаний примут вид

Рассмотрим свободные колебания консервативной системы. В этом случае

и дифференциальные уравнения принимают вид:

Начальные условия для имеют вид:

В силу положительной определенности квадратичной формы кинетической энергии обобщенные инерционные коэффициенты удовлетворяют соотношениям

а аналогичные соотношения для квазиупругих коэффициентов

являются достаточными условиями устойчивости положения равновесия системы.

Коэффициенты и , связывающие в уравнениях (4.5) обобщенные координаты и , называют соответственно коэффициентами инерционной и упругой связи. Если в колебательной системе коэффициент , ее называют системой с упругой связью, а если – системой с инерционной связью.

Парциальной системой, соответствующей обобщенной координате , называют условную колебательную систему с одной степенью свободы, получаемую из исходной системы, если наложить запрет на изменение всех обобщенных координат, кроме . Парциальными частотами называют собственные частоты парциальных систем:

Поскольку уравнения (4.5) содержат только обобщенные координаты и их вторые производные по времени, ищем их решение в виде

где – пока неопределенные величины.

Подставив (4.8) в (4.5) и приравняв коэффициенты при синусах, получим однородную алгебраическую систему относительно и :

Для того, чтобы однородная алгебраическая система (4.9) имела ненулевое решение, она должна быть вырожденной, т.е. ее определитель должен равняться нулю:

Следовательно, решение (4.7) будет иметь смысл только при тех значениях , которые удовлетворяют условию (4.9). Раскрывая (4.10), получаем

Уравнение, представленное в форме (4.10), (4.11) или (4.12) называют частотным. Как видно из (4.12) частотное уравнение – биквадратное уравнение. Найденные из (4.10)–(4.12) значения называют собственными частотами колебаний системы.

Исследование корней частотного уравнения позволяет сделать следующие выводы:

1) если положение равновесия устойчивое, то оба корня частотного уравнения положительны;

2) первая собственная частота системы всегда меньше меньшей парциальной частоты, а вторая – больше большей парциальной частоты.

Для колебательных систем с упругой связью ( = 0) справедливо равенство

Запишем два частных независимых решения, соответствующих частотам и , в виде


где вторая цифра в индексе соответствует номеру частоты, или номеру тона колебаний.

Константы не являются независимыми, так как система (4.9) вырожденная. Коэффициенты связаны между собой соотношениями

Где . (4.15)

Где . (4.16)

С учетом (4.15) и (4.16) частные решения (4.14) будут иметь вид

Колебания, уравнения которых имеют вид (4.17) называют главными колебаниями. Они представляют собой гармонические колебания с частотами и соответственно. Коэффициенты называют коэффициентами распределения амплитуд. Они характеризуют отношение амплитуд в главных колебаниях или форму главных колебаний.

Коэффициенты распределения амплитуд и, следовательно, формы главных колебаний, как и собственные частоты, определяются параметрами самой колебательной системы и не зависят от начальных условий. Поэтому формы колебаний называют, так же как и частоты, собственными формами колебаний при колебаниях по соответствующему тону.

Общее решение системы уравнений (4.5) может быть представлено как сумма найденных частных решений (4.17)

Общее решение содержит четыре неопределенные постоянные , которые должны определяться из начальных условий (4.6).

При произвольных начальных условиях обе константы и отличны от нуля. Это означает, что изменение во времени каждой обобщенной координаты будет представлять собой сумму гармонических колебаний с частотами и . А такие колебания являются не только не гармоническими, но в общем случае и не периодическими.

Рассмотрим случай свободных колебаний системы, когда собственные частоты колебаний системы и мало отличаются друг от друга:

Обозначим разность аргументов синусов в общем решении (4.18) уравнений свободных колебаний

При величина , а с возрастанием времени эта зависимость из-за малости увеличивается очень медленно. Тогда

С учетом последнего равенства, общее решение уравнений свободных колебаний (4.18) может быть записано в виде:

В этих уравнениях

Так как выражения (4.21) зависят от и , а угол медленно изменяется с изменением времени, то рассматриваемые колебания (4.20) будут колебаниями с периодически изменяющейся амплитудой. Период изменения амплитуды в этом случае значительно больше периода колебаний (рис. 4.1). Если коэффициенты распределения амплитуд и имеют разные знаки, то максимуму соответствует минимум и наоборот. При усилении первого главного колебания интенсивность второго главного колебания уменьшается и наоборот, то есть энергия движения системы периодически оказывается как бы сосредоточенной то в одном, то в другом звене этой вибрирующей системы. Такое явление называют биением.

Возможен другой подход к решению задачи о свободных колебаниях системы – найти какие-то новые обобщенные координаты и называемые нормальными или главными , для которых при любых начальных условиях движение будет одночастотным и гармоническим.

Зависимость между обобщенными координатами и , выбранными произвольно, и главными координатами и можно выразить так:

где и – коэффициенты распределения амплитуд (коэффициенты формы). Можно показать, что переход от исходных координат к главным приводит квадратичные формы кинетической и потенциальной энергии к каноническому виду:

Подставив полученные для и выражения (4.23) в уравнения Лагранжа второго рода, получим уравнения малых колебаний системы в главных координатах: . Выражения кинетической и потенциальной энергии будут иметь канонический вид: и

Как известно, тело, ничем не ограниченное в движениях, называется свободным, так как может двигаться в любом направлении. Отсюда, каждое свободное твердое тело имеет шесть степеней свободы движения. Оно обладает возможностью производить следующие перемещения: три перемещения поступательного характера, соответственно трем основным системам координат, и три вращательных движения вокруг этих трех координатных осей.

Наложение связей (закрепление) уменьшает количество степеней свободы. Так, если тело в одной своей точке закреплено, оно не может производить перемещение вдоль координатных осей, его движения ограничиваются лишь вращением вокруг этих осей, т.е. тело имеет три степени свободы. В том случае, когда закрепленными являются две точки, тело обладает только одной степенью свободы, оно может лишь вращаться вокруг линии (оси), проходящей через обе эти точки. И наконец, при трех закрепленных точках, не лежащих на одной линии, количество степеней свободы равно нулю, и никаких движений тела быть не может. У человека пассивный аппарат движения составляют части его тела, называемые звеньями. Все они соединены между собой, поэтому теряют возможность к трем видам движений вдоль координатных осей. У них остаются только возможности вращения вокруг этих осей. Таким образом, максимальное количество степеней свободы, которым может обладать одно звено тела по отношению к другому звену, смежному с ним, равняется трем.

Это относится к наиболее подвижным суставам человеческого тела, имеющим шаровидную форму.

Последовательно или разветвленные соединения частей тела (звеньев) образуют кинематические цепи.

У человека различают:

  • - открытые кинематические цепи , имеющие свободный подвижный конец, закрепленный лишь на одном своем конце (например, рука по отношению к туловищу);
  • - замкнутые кинематические цепи , закрепленные на обоих концах (например, позвонок - ребро - грудина - ребро - позвонок).

Следует отметить, что это касается потенциально возможных размахов движений в суставах. В действительности же у живого человека эти показатели всегда меньше, что доказано многочисленными работами отечественных исследователей - П. Ф. Лесгафтом, М. Ф. Иваницким, М. Г. Привесом, Н. Г. Озолиным и др. На величину подвижности в соединениях костей у живого человека влияет ряд факторов, связанных с возрастом, полом, индивидуальными особенностями, функциональным состоянием нервной системы, степенью растяжения мышц, температурой окружающей среды, временем дня и, наконец, что важно для спортсменов, степенью тренированности. Так, во всех соединениях костей (прерывных и непрерывных) степень подвижности у лиц молодого возраста больше, чем у старшего возраста; у женщин в среднем больше, чем у мужчин. На величину подвижности оказывает влияние степень растяжения тех мышц, которые находятся на стороне, противоположной движению, а также сила мышц, производящих данное движение. Чем эластичнее первые из названных мышц и сильнее вторые, тем размах движений в данном соединении костей больше, и наоборот. Известно, что в холодном помещении движения имеют меньший размах, чем в теплом, утром они меньше, чем вечером. Применение различных упражнений по-разному влияет на подвижность соединений. Так, систематические тренировки упражнениями «на гибкость» увеличивают амплитуду движений в соединениях, тогда как «силовые» упражнения, наоборот, уменьшают ее, приводя, к «закрепощению» суставов. Однако уменьшение амплитуды движений в суставах при применении силовых упражнений не является абсолютно неизбежным. Его можно предотвратить правильным сочетанием силовых упражнений с упражнениями на растяжение тех же самых мышечных групп.

В открытых кинематических цепях человеческого тела подвижность исчисляется десятками степеней свободы. Например, подвижность запястья относительно лопатки и подвижность предплюсны относительно таза насчитывает по семь степеней свободы, а кончики пальцев кисти относительно грудной клетки - 16 степеней свободы. Если суммировать все степени свободы конечностей и головы относительно туловища, то это выразится числом 105, слагающимся из следующих позиций:

  • - голова - 3 степени свободы;
  • - руки - 14 степеней свободы;
  • - ноги - 12 степеней свободы;
  • - кисти и стопы - 76 степеней свободы.

Для сравнения укажем, что преобладающее большинство машин обладает всего одной степенью свободы движений.

В шаровидных суставах возможны вращения около трех взаимно перпендикулярных осей. Общее же количество осей, около которых возможны в этих суставах вращения, до бесконечности велико. Следовательно, относительно шаровидных суставов можно сказать, что сочленяющиеся в них звенья из возможных шести степеней свободы движений имеют три степени свободы и три степени связанности.

Меньшей подвижностью обладают суставы с двумя степенями свободы движений и четырьмя степенями связанности. К ним относятся суставы яйцевидной или эллипсовидной и седловиной форм, т.е. двухосные. В них возможны движения вокруг этих двух осей.

Одну степень свободы подвижности и вместе с этим пять степеней связанности имеют звенья тела в тех суставах, которые обладают одной осью вращения, т.е. имеют две закрепленные точки.

В преобладающей части суставов тела человека две или три степени свободы. При нескольких степенях свободы движений (двух или более) возможно бесчисленное множество траекторий. Соединения костей черепа имеют шесть степеней связанности и являются неподвижными. Соединение костей при помощи хрящей и связок (синхондрозы и синдесмозы) могут иметь в некоторых случаях значительную подвижность, которая зависит от эластичности и от размеров хрящевых или соединительнотканных образований, находящихся между данными костями.

Пусть дана система с двумя степенями свободы и - обобщенные координаты. Кинетическая и потенциальная энергия системы дается формулами (10.2):

Функции Т и П определенно положительны, а потому:

Подставив (10.2) в (10.12), получим дифференциальные уравнения малых колебаний системы с двумя степенями свободы:

Система имеет нулевое решение A=B=0, соответствующее устойчивому положению равновесия. Для ненулевых решений составим из (10.15) отношение:

Квадратное (относительно ) уравнение (10.18) в силу неравенств устойчивости имеет два вещественных положительных корня. Расположим их в порядке возрастания:

Для второго главного колебания:

(10.21)

Главные колебания являются колебаниями гармоническими.

Подставив поочередно и в (10.16), найдем связи между амплитудами A и B в главных колебаниях: . Множители и называют коэффициентами собственных форм (коэффициентами распределения амплитуд). Они могут быть как положительными, так и отрицательными. При обе координаты в главном колебании находятся в одной фазе; при - в противофазе.

Результирующее движение по каждой координате будет суммой двух главных колебаний:

(10.22)

где - зависят от начальных условий, - от начальных условий не зависят и определяются параметрами самой колебательной системы. В общем случае частоты и несоизмеримы, а потому результирующее движение не будет периодическим.

1. Определить собственные частоты и собственные формы колебаний (малых) двойного математического маятника, образованного двумя материальными точками равной массы m и двумя стержнями длиной каждый.

Подобная система в общем виде была рассмотрена в примере 2 (§34). Воспользуемся полученными там формулами (2) и (3).



При , получим:

Так как колебания малые, то с точностью до малых второго порядка включительно:

(3)

С учетом (3) из (1), замечаем:

(4)

Сравнивая (4) и (2), замечаем:

Раскрывая уравнение (7.52) частот, получим:

Из (9.50) находим коэффициенты распределения: .

Первое главное колебание:

Движение в фазе - в каждое мгновение стержни вращаются в одном направлении.

Второе главное колебание:

Движение в противофазе – в каждое мгновение стержни вращаются в прямо противоположных направлениях.

Формы колебаний показаны на рис. 50. Во втором главном колебании имеется особенная точка F, которая остается неподвижной. Такие точки называют узлами. Концевая точка O к узлам не относится.

2. Два твердых тела с массами и и две пружины, жесткостью и , объединены в систему, которая располагается на гладкой горизонтальной плоскости и может совершать малые прямолинейные колебания.

Первое главное колебание:

Тела движутся в фазе, либо вправо либо влево. Амплитуда колебаний второго тела в 1,62 раза больше.

Второе главное колебание:

Тела движутся в противофазе: либо навстречу друг другу, к узлу, либо расходятся от узла. Амплитуда колебаний второго тела составляет 0,62 амплитуды первого.