Биогафии

Критические точки функции. Стационарные и критические точки

Приращения функции к приращению аргумента, который стремится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Например, производная функции y = x3 будет равна y’ = x2.

Приравняйте данную производную к нулю (в данном случае x2=0).

Найдите значение переменной данного . Это будут те значения, при данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры вместо x, при которых все выражение станет нулевым. Например:

2-2x2= 0
(1-x)(1+x) = 0
x1= 1, x2 = -1

Полученные значения нанесите на координатную прямую и высчитайте знак производной для каждого из полученных . На координатной прямой отмечаются точки, которые принимаются за начало отсчета. Чтобы высчитать значение на промежутках подставьте произвольные значения, подходящие по критериям. Например, для предыдущей функции до промежутка -1 можно выбрать значение -2. На от -1 до 1 можно выбрать 0, а для значений больше 1 выберите 2. Подставьте данные цифры в производную и выясните знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. отрицательно и на данном промежутке будет знак минус. Если x=0, то значение будет равно 2, а на данном промежутке ставится знак. Если x=1, то производная также будет равна -0,24 и ставится минус.

Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Видео по теме

Полезный совет

Для нахождения производной существуют онлайн-сервисы, которые подсчитывают нужные значения и выводят результат. На таких сайтах можно найти производную до 5 порядка.

Источники:

  • Один из сервисов вычисления производных
  • точку максимума функции

Точки максимума функции наряду с точками минимума называются точками экстремума. В этих точках функция меняет характер поведения. Экстремумы определяются на ограниченных числовых интервалах и всегда являются локальными.

Инструкция

Процесс нахождения локальных экстремумов называется функции и выполняется путем анализа первой и второй производной функции. Перед началом исследования убедитесь, что заданный интервал значений аргумента принадлежит к допустимым значениям. Например, для функции F=1/x значение аргумента х=0 недопустимо. Или для функции Y=tg(x) аргумент не может иметь значение х=90°.

Убедитесь, что функция Y дифференцируема на всем заданном отрезке. Найдите первую производную Y". Очевидно, что до достижения точки локального максимума функция возрастает, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость изменения функции. Пока функция возрастает, скорость этого процесса является величиной положительной. При переходе через локальный максимум функция начинает убывать, и скорость процесса изменения функции становится отрицательной. Переход скорости изменения функции через ноль происходит в точке локального максимума.

Например, функция Y=-x²+x+1 на отрезке от -1 до 1 имеет непрерывную производную Y"=-2x+1. При х=1/2 производная равна нулю, причем при переходе через эту точку производная меняет знак с «+» на «-». Вторая производная функции Y"=-2. Постройте по точкам график функции Y=-x²+x+1 и проверьте, является ли точка с абсциссой х=1/2 локальным максимумом на заданном отрезке числовой оси.

Это довольно-таки занятный раздел математики, с которым сталкиваются абсолютно все ученики выпускных классов и студенты. Тем не менее далеко не каждому нравится матан. Некоторые не могут понять даже элементарных вещей наподобие, казалось бы, стандартного исследования функции. Данная статья призвана исправить подобную оплошность. Хотите поподробнее узнать об анализе функции? Желаете узнать, что такое точки экстремума и как их найти? Тогда данная статья для вас.

Исследование графика функции

Для начала стоит понять, зачем вообще необходимо анализировать график. Существуют простые функции, начертить которые не составит труда. Ярким примером подобной функции может служить парабола. Начертить ее график не составит труда. Все что необходимо, так это с помощью простого преобразования найти числа, при которых функция принимает значение 0. И в принципе это все что знать для того, чтобы начертить график параболы.

Но что делать, если функция, график которой нам нужно начертить, намного сложнее? Поскольку свойства сложных функций довольно-таки неочевидны, необходимо проводить целый анализ. Только после этого можно изобразить функцию графически. Как же это сделать? Ответ на этот вопрос вы сможете найти в данной статье.

План анализа функции

Первое, что необходимо сделать, так это провести поверхностное исследование функции, в ходе которого мы найдем область определения. Итак, начнем по порядку. Область определения - это совокупность тех значений, которыми функция задается. Проще говоря, это те числа, которые можно использовать в функции вместо х. Для того чтобы определить область определения, необходимо просто взглянуть на запись. К примеру, очевидно, что у функции у (х) = х 3 + х 2 - х + 43 область определения - множество действительных чисел. Ну а с функцией наподобие (х 2 - 2х)/х все немного иначе. Поскольку число в знаменателе не должно равняться 0, то областью определения данной функции будут все действительные числа, помимо нуля.

Далее необходимо найти так называемые нули функции. Это те значения аргумента, при которых вся функция принимает значения ноль. Для этого необходимо приравнять функцию к нулю, подробно ее рассмотреть и совершить некоторые преобразования. Возьмём уже знакомую нам функцию у(х) = (х 2 - 2х)/х. Из школьного курса мы знаем, что дробь равна 0 тогда, когда числитель равен нулю. Поэтому знаменатель мы отбрасываем и начинаем работать с числителем, приравнивая его к нулю. Получаем х 2 - 2х = 0 и выносим х за скобочки. Отсюда х (х - 2) = 0. В итоге получаем, что наша функция равна нулю тогда, когда х равняется 0 или же 2.

Во время исследования графика функции многие сталкиваются с проблемой в виде точек экстремума. И это странно. Ведь экстремумы - это довольно-таки простая тема. Не верите? Убедитесь сами, прочитав данную часть статьи, в которой мы поговорим о точках минимума и максимума.

Для начала стоит разобраться в том, что собой представляет экстремум. Экстремум - это предельное значений, которое достигает функция на графике. Отсюда получается, что существует два крайних значения - максимум и минимум. Для наглядности можно посмотреть на картинку, что расположена выше. На исследованной области точка -1 является максимумом функции у (х) = х 5 - 5х, а точка 1, соответственно, минимумом.

Также не стоит путать между собой понятия. Точки экстремума функции - это те аргументы, при которых заданная функция приобретает крайние значения. В свою очередь, экстремумом называют значение минимумов и максимумов функции. К примеру, вновь рассмотрим рисунок выше. -1 и 1 - это точки экстремума функции, а 4 и -4 - это сами экстремумы.

Нахождение точек экстремума

Но как все-таки найти точки экстремума функции? Все довольно-таки просто. Первое, что необходимо сделать - найти производную уравнения. Допустим, мы получили задание: "Найдите точки экстремума функции y (x), x - аргумент. Для наглядности возьмем функцию у (х) = х 3 + 2х 2 + х + 54. Проведем дифференцирование и получим следующее уравнение: 3х 2 + 4х + 1. В итоге мы получили стандартное квадратное уравнение. Все, что необходимо сделать дальше - приравнять его к нулю и найти корни. Поскольку дискриминант больше нуля (D = 16 - 12 = 4), данное уравнение определяется двумя корнями. Находим их и получаем два значения: 1/3 и -1. Это и будут точки экстремума функции. Однако как все-таки определить, кто есть кто? Какая точка является максимумом, а какая минимумом? Для этого нужно взять соседнюю точку и узнать ее значение. К примеру, возьмем число -2, которое находится слева по координатной прямой от -1. Подставляем это значение в наше уравнение у(-2) = 12 - 8 + 1 = 5. В итоге мы получили положительное число. Это значит, что на промежутке от 1/3 до -1 функция возрастает. Это, в свою очередь, обозначает, что на промежутках от минус бесконечности до 1/3 и от -1 до плюс бесконечности функция убывает. Таким образом, можно сделать вывод, что число 1/3 - точка минимума функции на исследованном промежутке, а -1 - точка максимума.

Также стоит отметить, что на ЕГЭ требуют не просто найти точки экстремума, Но и провести с ними какую-то операцию (прибавить, умножить и т.д.). Именно по этой причине стоит обратить особое внимание на условия задачи. Ведь из-за невнимательности можно потерять баллы.

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х , а на оси ординат - значения функции у = f (х) .

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Другими словами, график функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x) .



На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 - 2х .

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x) , то для нахождения числа f(а) (т. е. значения функции в точке х = а ) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).



Например, для функции f(х) = х 2 - 2x с помощью графика (рис. 46) находим f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 и т. д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 46 ясно, что функция у = х 2 - 2х принимает положительные значения при х < 0 и при х > 2 , отрицательные - при 0 < x < 2; наименьшее значение функция у = х 2 - 2х принимает при х = 1 .

Для построения графика функции f(x) нужно найти все точки плоскости, координаты х , у которых удовлетворяют уравнению y = f(x) . В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, х 1 , х 2 , x 3 ,..., х k и составляют таблицу, в которую входят выбранные значения функции.

Таблица выглядит следующим образом:



Составив такую таблицу, мы можем наметить несколько точек графика функции y = f(x) . Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y = f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 1 . Для построения графика функции y = f(x) некто составил таблицу значений аргумента и функции:




Соответствующие пять точек показаны на рис. 48.



На основании расположения этих точек он сделал вывод, что график функции представляет собой прямую (показанную на рис. 48 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. надежным.

Для обоснования своего утверждения рассмотрим функцию

.

Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 49). Другим примером может служить функция y = x + l + sinπx; ее значения тоже описываются приведенной выше таблицей.

Эти примеры показывают, что в «чистом» виде метод построения графика по нескольким точкам ненадежен. Поэтому для построения графика заданной функции,как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.

Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим позже, а сейчас разберем некоторые часто применяемые способы построения графиков.


График функции у = |f(x)|.

Нередко приходится строить график функции y = |f(x) |, где f(х) - заданная функция. Напомним, как это делается. По определению абсолютной величины числа можно написать

Это значит, что график функции y =|f(x)| можно получить из графика, функции y = f(x) следующим образом: все точки графика функции у = f(х) , у которых ординаты неотрицательны, следует оставить без изменения; далее, вместо точек графика функции y = f(x) , имеющих отрицательные координаты, следует построить соответствующие точки графика функции у = -f(x) (т. е. часть графика функции
y = f(x) , которая лежит ниже оси х, следует симметрично отразить относительно оси х ).



Пример 2. Построить график функции у = |х|.

Берем график функции у = х (рис. 50, а) и часть этого графика при х < 0 (лежащую под осью х ) симметрично отражаем относительно оси х . В результате мы и получаем график функции у = |х| (рис. 50, б).

Пример 3 . Построить график функции y = |x 2 - 2x|.


Сначала построим график функции y = x 2 - 2x. График этой функции - парабола, ветви которой направлены вверх, вершина параболы имеет координаты (1; -1), ее график пересекает ось абсцисс в точках 0 и 2. На промежутке (0; 2) фукция принимает отрицательные значения, поэтому именно эту часть графика симметрично отразим относительно оси абсцисс. На рисунке 51 построен график функции у = |х 2 -2х| , исходя из графика функции у = х 2 - 2x

График функции y = f(x) + g(x)

Рассмотрим задачу построения графика функции y = f(x) + g(x). если заданы графики функций y = f(x) и y = g(x) .

Заметим, что областью определения функции y = |f(x) + g(х)| является множество всех тех значений х, для которых определены обе функции y = f{x) и у = g(х), т. е. эта область определения представляет собой пересечение областей определения, функций f{x) и g{x).

Пусть точки (х 0 , y 1 ) и (х 0 , у 2 ) соответственно принадлежат графикам функций y = f{x) и y = g(х) , т. е. y 1 = f(x 0), y 2 = g(х 0). Тогда точка (x0;. y1 + y2) принадлежит графику функции у = f(х) + g(х) (ибо f(х 0) + g(x 0 ) = y1 +y2 ),. причем любая точка графика функции y = f(x) + g(x) может быть получена таким образом. Следовательно, график функции у = f(х) + g(x) можно получить из графиков функций y = f(x) . и y = g(х) заменой каждой точки (х n , у 1) графика функции y = f(x) точкой (х n , y 1 + y 2), где у 2 = g(x n ), т. е. сдвигом каждой точки (х n , у 1 ) графика функции y = f(x) вдоль оси у на величину y 1 = g(х n ). При этом рассматриваются только такие точки х n для которых определены обе функции y = f(x) и y = g(x) .

Такой метод построения графика функции y = f(x) + g(х ) называется сложением графиков функций y = f(x) и y = g(x)

Пример 4 . На рисунке методом сложения графиков построен график функции
y = x + sinx .

При построении графика функции y = x + sinx мы полагали, что f(x) = x, а g(x) = sinx. Для построения графика функции выберем точки с aбциссами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значения f(x) = x, g(x) = sinx, y = x + sinx вычислим в выбранных точках и результаты поместим в таблице.


Определение 1. Точки экстремума функции – точки минимума и максимума функции.

Определение 2. Точка х = х 0 называется точкой максимума (max ) функции f (х х f (x ) < f (х 0) для всех точек х х 0 из этой окрестности.

Определение 3. Точка х = х 0 называется точкойминимума (min ) функции f (x ), если существует δ-окрестность этой точки х 0 , в которой выполняется неравенство f (х ) > f (х 0) для всех точек х х 0 из этой окрестности.

На рис. 7 х 1 – точка min, х 2 – точка max.

Определение 4. Значение функции в точке max (min) называется максимумом (минимумом ) функции. Максимум или минимум функции называется экстремумом (extr ) функции.

Понятие экстремума связано с определенной окрестностью точки из области определения функции. Поэтому функция может иметь экстремум только во внутренних точках области определения .

Рассмотрим условия существования extr функции.

Теорема 1 . (теорема Ферма) (необходимое условие точки extr ). Если дифференцируемая функция f (х ) имеет экстремум в точке х 0 , то ее производная в этой точке равна нулю : f’ (х 0) = 0.

Доказательство . Пусть, для определенности, х 0 – точка max. Значит, в окрестности точки х 0 выполняется равенство f (х 0) >f (х 0 +Δx ) или f (х 0 +Δx ) – f (х 0) < 0. Тогда, если Δx > 0, то ,

если Δx < 0, то . По условию теоремы существует производная . Переходя к пределу при Δx → 0, в случае Δx > 0 получим f’ (х 0) ≤ 0, а при Δx < 0 получим f’ (х 0) ≥ 0.

Поэтому f’ (х 0) = 0.

Аналогично доказывается утверждение теоремы, если х 0 – точка min.

Геометрический смысл теоремы Ферма : в точке экстремума дифференцируемой функции касательная к ее графику параллельна оси Ox .

Замечание 1 . Обратное утверждение теоремы Ферма неверно, т.е. если f’ (х 0) = 0, то это не значит, что х 0 – точка экстремума.

Например, для функции y = x 3 ее производная y" = 3x 2 равна нулю при x = 0 (в этой точке касательная к графику горизонтальна), но x = 0 не является точкой extr (рис. 5).

Замечание 2 . Существуют функции, которые в точках экстремума не имеют производной.

Например, непрерывная функция y = |x | в точке x = 0 производной не имеет, хотя это точка min (рис. 8).

Определение 5 . Точки, в которых производная непрерывной функции равна нулю или не существует, называются критическими .

С использованием этого термина можно обобщить теорему Ферма : всякая точка экстремума функции является ее критической точкой (в ней производная равна нулю или не существует).

Обратное утверждение ложно , т.е. не всякая критическая точка является точкой extr.

Например, для функций y = x 3 (рис. 3) и у = 2x + |х | (рис. 2) точка х = 0 является критической, но не является точкой extr.

На рис. 9 на отрезке [a , b ] представлены семь критических точек: x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 . Из них только две (x 3 и x 6) не являются точками extr.

Точки x 1 , x 4 , x 7 – точки max; точки x 2 , x 5 – точки min.

В точках extr х 2 и х 4 касательные к графику параллельны оси Ох (производные равны нулю). В точках экстремума x 1 , x 5 , x 7 график имеет изломы (производные в этих точках не существуют).

Так как точки extr лежат внутри области определения функции, то их еще называют локальный максимум и локальный минимум .

Определение 6 . Точки, в которых производная равна нулю, называются стационарными .

На рис. 9 три стационарных точки: x 2 , x 3 , x 4 .

Например, для функции y = x 3 (рис. 3) точка х = 0 является стационарной, а для функций у = 2x + |х | (рис. 2) или у = |х | (рис. 8) – нет.

Согласно 2-й теоремы Вейерштрасса, непрерывная на замкнутом интервале функция достигает своего наибольшего и наименьшего значения.

На рис. 9 точки x = x 4 и х = b являются глобальным максимумом и глобальным минимумом (наибольшим и наименьшим значением ) f (x ) на замкнутом интервале [а , b ]. Глобальный максимум совпадает с локальным в точке х =х 4 , а глобальный минимум – с концом интервала x = b .


Конец работы -

Эта тема принадлежит разделу:

Исследование функций

На сайте сайт читайте: лекция 7. исследование функций.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Точка х 0 называется точкой максимума функции f(x), если в некоторой окрестности точки х 0 выполняется неравенство)()(0 xfxf

Точка х 1 называется точкой минимума функции f(x), если в некоторой окрестности точки х 1 выполняется неравенство)()(1 xfxf Значения функции в точках х 0 и х 1 называются соответственно максимумом и минимумом функции. Максимум и минимум функции называется экстремумом функции.

На одном промежутке функция может иметь несколько экстремумов, причем может быть, что минимум в одной точке больше максимума в другой. Максимум или минимум функции на некотором промежутке не являются в общем случае наибольшим и наименьшим значением функции. Если в некоторой точке хх 00 дифференцируемая функция f(xf(x)) имеет экстремум, то в некоторой окрестности этой точки выполняется теорема Ферма и производная функции в этой точке равна нулю: 0)(0 xf

Однако, функция может иметь экстремум в точке, в которой она не дифференцируема. Например, функцияxy имеет минимум в точке 0 x но она в этой точке не дифференцируема.

Для того, чтобы функция y=f(x) имела экстремум в точке х 0 , необходимо, чтобы ее производная в этой точке равнялась нулю или не существовала.

Точки, в которых выполняется необходимое условие экстремума, называются критическими или стационарными. Т. об. , если в какой-либо точке имеется экстремум, то эта точка является критической. Но критическая точка не обязательно является точкой экстремума.

Применим необходимое условие экстремума: xxy 2)(2 002 xприxy 0 0 y x — критическая точка

Применим необходимое условие экстремума: 23 3)1(xxy 003 2 xприxy 1 0 y x — критическая точка

Если при переходе через точку х 0 производная дифференцируемой функции y=f(x) меняет знак с плюса на минус, то х 0 есть точка максимума, а если с минуса на плюс, то х 0 есть точка минимума.

Пусть производная меняет знак с плюса на минус, т. е. на некотором интервале 0 ; xa 0)(xf а на некотором интервале bx; 0 0)(xf Тогда функция y=f(x) будет возрастать на 0 ; xa

и будет убывать на bx; 0 По определению возрастающей функции 00 ;)()(xaxвсехдляxfxf Для убывающей функции bxxвсехдляxfxf;)()(00 0 x -точка максимума. Аналогично доказывается для минимума.

1 Найти производную функции)(xfy 2 Найти критические точки функции, в которых производная равна нулю или не существует.

3 Исследовать знак производной слева и справа от каждой критической точки. 4 Найти экстремум функции.

Применим схему исследования функции на экстремум: 1 Находим производную функции: 233)1(3)1())1((xxxxxy)14()1()31()1(22 xxxxx

3 Исследуем знак производной слева и справа от каждой критической точки: x 4 1 1 y y В точке х=1 х=1 экстремума нет.

Если первая производная дифференцируемой функции y=f(x) в точке х 0 равна нулю, а вторая производная в этой точке положительна, то х 0 есть точка минимума, а если вторая производная отрицательна, то х 0 есть точка максимума.

Пусть 0)(0 xf следовательно 0)(0 xf и в некоторой окрестности точки х 00 , т. е. 0)()(xfxf

функцияba; будет возрастать на)(xf содержащем точку х 00. . Но Но 0)(0 xf на интервале 0 ; xa 0)(xf а на интервале bx; 0 0)(xf

Таким образом, функция при переходе через точку х 00 меняет знак с минуса на плюс, следовательно эта точка является точкой минимума.)(xf Аналогично доказывается случай для максимума функции.

Схема исследования функции на экстремум в этом случае аналогична предыдущей, но третий пункт следует заменить на: 3 Найти вторую производную и определить ее знак в каждой критической точке.

Из второго достаточного условия следует, что если в критической точке вторая производная функции не равна нулю, то эта точка является точкой экстремума. Обратное утверждение не верно: если в критической точке вторая производная функции равна нулю, то эта точка также может являться точкой экстремума. В этом случае для исследования функции необходимо использовать первое достаточное условие экстремума.