Биогафии

Математические модели в экономике примеры. Межотраслевой баланс производства и распределения продукции. Особенности применения метода математического моделирования в экономике

Существует значительное разнообразие видов, типов экономико-математических моделей, необходимых для использования в управлении экономическими объектами и процессами. Экономико-математические модели подразделяются на: макроэкономические и микроэкономические в зависимости от уровня моделируемого объекта управления, динамические, которые характеризуют изменения объекта управления во времени, и статические, которые описывают взаимосвязи между разными параметрами, показателями объекта именно в то время. Дискретные модели отображают состояние объекта управления в отдельные, фиксированные моменты времени. Имитационными называют экономико-математические модели, используемые с целью имитации управляемых экономических объектов и процессов с применением средств информационной и вычислительной техники. По типу математического аппарата, применяемого в моделях, выделяются экономико-статистические, модели линейного и нелинейного программирования, матричные модели, сетевые модели.

Факторные модели. В группу экономико-математических факторных моделей входят модели, которые с одной стороны включают экономические факторы, от которых зависит состояние управляемого экономического объекта, а с другой - зависимые от этих факторов параметры состояния объекта. Если факторы известны, то модель позволяет определить искомые параметры. Факторные модели чаще всего предоставлены простыми в математическом отношении линейными или статическими функциями, которые характеризуют связь между факторами и зависимыми от них параметрами экономического объекта.

Балансовые модели. Балансовые модели как статистические, так и динамические широко применяются в экономико-математическом моделировании. В основе создания этих моделей лежит балансовый метод - метод взаимного сопоставления материальных, трудовых и финансовых ресурсов и потребностей в них. Описывая экономическую систему в целом, под её балансовой моделью понимают систему уравнений, каждое из которых выражает потребность баланса между изготовленными отдельными экономическими объектами количества продукции и совокупной потребностью в этой продукции. При таком подходе экономическая система состоит из экономических объектов, каждый из которых выпускает некоторый продукт. Если вместо понятия «продукт» ввести понятие «ресурс», то под балансовой моделью необходимо понимать систему уравнений, которые удовлетворяют требования между определенным ресурсом и его использованием.

Наиболее важные виды балансовых моделей:

  • · Материальные, трудовые и финансовые балансы для экономики в целом и отдельных ее отраслей;
  • · Межотраслевые балансы;
  • · Матричные балансы предприятий и фирм.

Оптимизационные модели. Большой класс экономико-математических моделей образуют оптимизационные модели, которые позволяют выбрать из всех решений наилучший оптимальный вариант. В математическом содержании оптимальность понимается как достижение экстремума критерия оптимальности, называемой также целевой функцией. Оптимизационные модели чаще всего используются в задачах нахождения лучшего способа использования экономических ресурсов, что позволяет достичь максимального целевого эффекта. Математическое программирование образовалось на основе решения задачи про оптимальный раскрой листов фанеры, что обеспечивает наиболее полное использование материала. Поставив такую задачу, известный российский математик и экономист академик Л.В. Канторович был признан достойным Нобелевской премии в экономике.

МПС Российской федерации

Уральский Государственный Университет Путей Сообщения

Челябинский Институт Путей Сообщения

КУРСОВАЯ РАБОТА

по курсу: “Экономико-математическое моделирование"

Тема: “Математические модели в экономике"

Выполнил:

Шифр:

Адрес:

Проверил:

Челябинск 200_ г.

Введение

Составление математической модели

Создание и сохранение отчетов

Анализ найденного решения. Ответы на вопросы

Часть № 2 "Расчет экономико-математической модели межотраслевого баланса

Решение задачи на компьютере

Межотраслевой баланс производства и распределения продукции

Литература

Введение

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Процесс решения экономических задач осуществляется в несколько этапов:

Содержательная (экономическая) постановка задачи. Вначале нужно осознать задачу, четко сформулировать ее. При этом определяются также объекты, которые относятся к решаемой задаче, а также ситуация, которую нужно реализовать в результате ее решения. Это - этап содержательной постановки задачи. Для того, чтобы задачу можно было описать количественно и использовать при ее решении вычислительную технику, нужно произвести качественный и количественный анализ объектов и ситуаций, имеющих к ней отношение. При этом сложные объекты, разбиваются на части (элементы), определяются связи этих элементов, их свойства, количественные и качественные значения свойств, количественные и логические соотношения между ними, выражаемые в виде уравнений, неравенств и т.п. Это - этап системного анализа задачи, в результате которого объект оказывается представленным в виде системы.

Следующим этапом является математическая постановка задачи, в процессе которой осуществляется построение математической модели объекта и определение методов (алгоритмов) получения решения задачи. Это - этап системного синтеза (математической постановки) задачи. Следует заметить, что на этом этапе может оказаться, что ранее проведенный системный анализ привел к такому набору элементов, свойств и соотношений, для которого нет приемлемого метода решения задачи, в результате приходится возвращаться к этапу системного анализа. Как правило, решаемые в экономической практике задачи, стандартизованы, системный анализ производится в расчете на известную математическую модель и алгоритм ее решения, проблема состоит лишь в выборе подходящего метода.

Следующим этапом является разработка программы решения задачи на ЭВМ. Для сложных объектов, состоящих из большого числа элементов, обладающих большим числом свойств, может потребоваться составление базы данных и средств работы с ней, методов извлечения данных, нужных для расчетов. Для стандартных задач осуществляется не разработка, а выбор подходящего пакета прикладных программ и системы управления базами данных.

На заключительном этапе производится эксплуатация модели и получение результатов.

Таким образом, решение задачи включает следующие этапы:

2. Системный анализ.

3. Системный синтез (математическая постановка задачи)

4. Разработка или выбор программного обеспечения.

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

Сложность процессов в экономике требует от человека, принимающего решения, высокой квалификации и большого опыта. Это, однако, не гарантирует ошибок, дать быстрый ответ на поставленный вопрос, провести экспериментальные исследования, невозможные или требующие больших затрат и времени на реальном объекте, позволяет математическое моделирование.

Математическое моделирование позволяет принять оптимальное, то есть наилучшее решение. Оно может незначительно отличаться от грамотно принятого решения без применения математического моделирования (около 3%). Однако при больших объемах производства такая "незначительная" ошибка может привести к огромным потерям.

Математические методы, применяемые для анализа математической модели и принятия оптимального решения, весьма сложны и их реализация без применения ЭВМ затруднительна. В составе программ Excel и Mathcad имеются средства, позволяющие провести математический анализ и найти оптимальное решение.

Часть № 1 "Исследование математической модели"

Постановка задачи.

На предприятии имеется возможность выпуска продукции 4-х видов. Для выпуска единицы продукции каждого вида необходимо затратить определенное количество трудовых, финансовых, сырьевых ресурсов. В наличии имеется ограниченное количество каждого ресурса. Реализация единицы продукции приносит прибыль. Значения параметров приведены в таблице 1. Дополнительное условие: финансовые затраты на производство продукций №2 и №4 не должны превышать 50р. (каждого вида).

На основе математического моделирования средствами Excel определить, какую продукцию и в каких количествах целесообразно произвести с точки зрения получения наибольшей прибыли, проанализировать результаты, ответить на вопросы, сделать выводы.

Математические методы в экономике являются важным инструментом проведения анализа. Их используют в построении теоретических моделей, которые позволяют отобразить имеющиеся связи в повседневной жизни. Также с помощью данных методов достаточно точно прогнозируется поведение субъектов хозяйствования и динамика экономических показателей в стране.

Более подробно хотелось бы остановиться на прогнозировании показателей экономических объектов, которое является инструментом теории принятия решений. Прогнозы социально-экономического развития любой страны основываются на определенных показателей (динамика инфляции, валовый внутренний продукт и т.д.). Формирование ожидаемых показателей осуществляется с применением таких методов прикладной статистики и эконометрики, как регрессионный и корреляционный анализ.

Отрасль исследования «Экономика и математические методы» всегда являлась достаточно интересной для ученых этой сферы. Так, академиком Немчиновым было выделено пять математических при планировании и прогнозировании:

Метод математического моделирования;

Векторно-матричный метод;

Метод последовательного приближения;

Метод оптимальных общественных оценок.

Другой же академик, Канторович, математические методы распределил на четыре группы:

Модели взаимодействия экономических подразделений;

Макроэкономические модели, включающие модели спроса и балансовый метод;

Модели оптимизации;

Линейное моделирование.

Систем применяется с целью принятия эффективного и правильного решения в экономической сфере. При этом в основном используется современная вычислительная техника.

Сам процесс моделирования должен осуществляться в таком порядке:

1. Постановка задачи. Необходимо четко сформулировать задачу, определить объекты, относящиеся к решаемой задаче, и ситуацию, реализуемую в результате ее решения. Именно на этом этапе производится количественный и субъектов, объектов и имеющих отношение к ним ситуаций.

2. Системный анализ задачи. Все объекты необходимо разбить на элементы с определением связи между ними. Именно на этом этапе лучше всего использовать математические методы в экономике, с помощью которых проводится количественный и качественный анализ свойств вновь образованных элементов и в результате которых выводятся определенные неравенства и уравнения. Другими словами, получается система показателей.

3. Системный синтез представляет собой математическую постановку задачи, во время организации которой формируется математическая модель объекта и определяются алгоритмы решения задачи. На этом этапе существует вероятность того, что принятые модели предыдущих этапов могут оказаться неверными, и для получения верного результата придется вернуться на один, а то и два шага назад.

Как только математическая модель сформирована, можно переходить к разработке программы для решения поставленной задачи на ЭВМ. При наличии достаточно сложного объекта, который состоит из большого количества элементов, потребуется создание базы данных и подручных средств для работы с ней.

Если же задача принимает стандартный вид, то используются любые подходящие математические методы в экономике и готовый программный продукт.

Заключительным этапом является непосредственная эксплуатация сформированной модели и получение правильных результатов.

Математические методы в экономике должны использоваться именно в определенной последовательности и с применением современных информационно-вычислительных технологий. Только в таком порядке появляется возможность исключить субъективные волевые решения, основанные на личной заинтересованности и эмоциях.

МПС Российской федерации

Уральский Государственный Университет Путей Сообщения

Челябинский Институт Путей Сообщения

КУРСОВАЯ РАБОТА

по курсу: “Экономико-математическое моделирование"

Тема: “Математические модели в экономике"

Выполнил:

Шифр:

Адрес:

Проверил:

Челябинск 200_ г.

Введение

Создание и сохранение отчетов

Решение задачи на компьютере

Литература

Введение

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.

Процесс решения экономических задач осуществляется в несколько этапов:

Содержательная (экономическая) постановка задачи. Вначале нужно осознать задачу, четко сформулировать ее. При этом определяются также объекты, которые относятся к решаемой задаче, а также ситуация, которую нужно реализовать в результате ее решения. Это - этап содержательной постановки задачи. Для того, чтобы задачу можно было описать количественно и использовать при ее решении вычислительную технику, нужно произвести качественный и количественный анализ объектов и ситуаций, имеющих к ней отношение. При этом сложные объекты, разбиваются на части (элементы), определяются связи этих элементов, их свойства, количественные и качественные значения свойств, количественные и логические соотношения между ними, выражаемые в виде уравнений, неравенств и т.п. Это - этап системного анализа задачи, в результате которого объект оказывается представленным в виде системы.

Следующим этапом является математическая постановка задачи, в процессе которой осуществляется построение математической модели объекта и определение методов (алгоритмов) получения решения задачи. Это - этап системного синтеза (математической постановки) задачи. Следует заметить, что на этом этапе может оказаться, что ранее проведенный системный анализ привел к такому набору элементов, свойств и соотношений, для которого нет приемлемого метода решения задачи, в результате приходится возвращаться к этапу системного анализа. Как правило, решаемые в экономической практике задачи, стандартизованы, системный анализ производится в расчете на известную математическую модель и алгоритм ее решения, проблема состоит лишь в выборе подходящего метода.

Следующим этапом является разработка программы решения задачи на ЭВМ. Для сложных объектов, состоящих из большого числа элементов, обладающих большим числом свойств, может потребоваться составление базы данных и средств работы с ней, методов извлечения данных, нужных для расчетов. Для стандартных задач осуществляется не разработка, а выбор подходящего пакета прикладных программ и системы управления базами данных.

На заключительном этапе производится эксплуатация модели и получение результатов.

Таким образом, решение задачи включает следующие этапы:

2. Системный анализ.

3. Системный синтез (математическая постановка задачи)

4. Разработка или выбор программного обеспечения.

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

Сложность процессов в экономике требует от человека, принимающего решения, высокой квалификации и большого опыта. Это, однако, не гарантирует ошибок, дать быстрый ответ на поставленный вопрос, провести экспериментальные исследования, невозможные или требующие больших затрат и времени на реальном объекте, позволяет математическое моделирование.

Математическое моделирование позволяет принять оптимальное, то есть наилучшее решение. Оно может незначительно отличаться от грамотно принятого решения без применения математического моделирования (около 3%). Однако при больших объемах производства такая "незначительная" ошибка может привести к огромным потерям.

Математические методы, применяемые для анализа математической модели и принятия оптимального решения, весьма сложны и их реализация без применения ЭВМ затруднительна. В составе программ Excel и Mathcad имеются средства, позволяющие провести математический анализ и найти оптимальное решение.

Часть № 1 "Исследование математической модели"

Постановка задачи.

На предприятии имеется возможность выпуска продукции 4-х видов. Для выпуска единицы продукции каждого вида необходимо затратить определенное количество трудовых, финансовых, сырьевых ресурсов. В наличии имеется ограниченное количество каждого ресурса. Реализация единицы продукции приносит прибыль. Значения параметров приведены в таблице 1. Дополнительное условие: финансовые затраты на производство продукций №2 и №4 не должны превышать 50р. (каждого вида).

На основе математического моделирования средствами Excel определить, какую продукцию и в каких количествах целесообразно произвести с точки зрения получения наибольшей прибыли, проанализировать результаты, ответить на вопросы, сделать выводы.

Таблица 1.

Составление математической модели

Целевая функция (ЦФ).

Целевая функция показывает, в каком смысле решение задачи должно быть наилучшим (оптимальным). В нашей задаче ЦФ:


Прибыль → max.

Значение прибыли можно определить по формуле:

Прибыль = кол 1 ∙ пр 1 + кол 2 ∙ пр 2 + кол 3 ∙ пр 3 + кол 4 ∙ пр 4, где кол 1 ,…, кол 4 –

количества выпущенной продукции каждого вида;

пр 1 ,…, пр 4 - прибыли, получаемые от реализации единицы каждого вида продукции. Подставив значения пр 1 ,…, пр 4 ( из табл.1) получим:

ЦФ: 1,7 ∙ кол 1 + 2,3 ∙ кол 2 + 2 ∙ кол 3 + 5 ∙ кол 4 → max (1)

Ограничения (ОГР).

Ограничения устанавливают зависимости между переменными. В нашей задаче ограничения накладываются на использование ресурсов, количества которых ограничены. Количество сырья, которое необходимо для производства всей продукции, можно подсчитать по формуле:

Сырьё = с 1 ∙ кол 1 + с 2 ∙ кол 2 + с 3 ∙ кол 3 + с 4 ∙ кол 4, где с 1 ,…, с 4

количества сырья, необходимые для выпуска единицы каждого вида продукции. Общее количество использованного сырья не может превышать имеющего в наличии ресурса. Подставив значения из табл.1, получим первое ограничение - по сырью:

1,8 ∙ кол 1 + 1,4 ∙ кол 2 + 1 ∙ кол 3 + 0,15 ∙ кол 4 ≤ 800 (2)

Аналогично запишем ограничения по финансам и трудозатратам:


0,63 ∙ кол 1 + 0,1 ∙ кол 2 + 1 ∙ кол 3 + 1,7 ∙ кол 4 ≤ 400 (3)

1,1 ∙ кол 1 + 2,3 ∙ кол 2 + 1,6 ∙ кол 3 + 1,8 ∙ кол 4 ≤ 1000 (4)

Граничные условия (ГРУ).

Граничные условия показывают, в каких пределах могут изменяться искомые переменные. В нашей задаче это финансовые затраты на производство продукций №2 и №4 согласно условию:

0,1 ∙ кол 2 ≤ 50 р.; 1,7 ∙ кол 4 ≤ 50 р. ( 5)

С другой стороны мы должны ввести, что количество продукции должно быть больше или равно нулю. Это очевидное для нас, но необходимое компьютеру условие:

кол 1 ≥ 0; кол 2 ≥ 0; кол 3 ≥ 0; кол 4 ≥ 0. ( 6)

Поскольку все искомые переменные (кол 1 ,…, кол 4 ) входят в соотношение 1-7 в первой степени и над ними производятся только действия суммирования и умножения на постоянные коэффициенты, то модель является линейной.

Решение задачи на компьютере.

Включаем компьютер. Перед входом в сеть задаем имя пользователя ZA, с паролем А. Загружаем программу Excel . Сохраняем файл под именем Лидовицкий Кулик. х ls . в папке Эк/к 31 (2). Создаем верхний колонтитул: слева - дата, в центре имя файла, справа имя листа.

Создаем и форматируем заголовок и таблицу исходных данных (таблица 1). Заносим в таблицу данные согласно варианту задачи.

Создаем и форматируем таблицу для расчета. В ячейки "Количество" заносим начальные значения. Их выбираем близкими к ожидаемому результату. Мы не имеем предварительной информации и поэтому выберем их равными 1. Это позволит легко проконтролировать вводимые формулы.

В строку "Трудозатраты" вносим слагаемые формулы (4) - произведения количества продукции на количество трудозатрат, необходимые для производства единицы продукции:

для продукции №1 (=С15*С8);

продукции №2 (=D15*D8);

продукции №3 (=E15*E8);

продукции №4 (=F15*F8).

В графе “ИТОГО” находим сумму содержимого этих ячеек при помощи кнопки автосуммирования Σ. В графе “Остаток” находим разницу между содержимым ячеек “Ресурс-Трудозатраты” таблицы 1 и “ИТОГО-Трудозатраты" (=G8-G17). Аналогично заполняем графы "Финансы" (=G9-G18) и "Сырье" (=G10-G19).

В ячейке “Прибыль” вычисляем прибыль по левой части формулы (1). При этом воспользуемся функцией =СУММПРОИЗВЕД (С15: F15; C11: F11).

Присваиваем ячейкам, содержащим итоговые прибыль, финансовые, трудовые и сырьевые затраты, а также количества продукции, имена, соответственно: "Прибыль", "Финансы", "Трудозатраты", "Сырье", "Пр1", "Пр2", "Пр3", "Пр4". Excel включит эти имена в отчеты.

Вызываем диалоговое окно Поиск решения командами Сервис-Поиск решения…

Назначение целевой функции.

Устанавливаем курсор в окно Установить целевую ячейку и щелчком мыши по ячейке "Прибыль" заносим в него ее адрес. Вводим направление целевой функции: Максимальному значению.

Вводим адреса искомых переменных, содержащих количества продукций 1-4, в окно Изменяя ячейки .

Ввод ограничений.

Щелкаем по кнопке Добавить . Появляется диалоговое окно Добавление ограничений . Ставим курсор в окошко Ссылка на ячейку и заносим туда адрес ячейки "Трудозатраты". Открываем список условий и выбираем <=, в поле Ограничение вводим адрес ячейки "Ресурс-Трудозатраты". Щелкаем по кнопке Добавить . В новое окно Добавление ограничений аналогично вводим ограничение по финансам. Щелкаем по кнопке Добавить , вводим ограничение по сырью. Щелкаем по ОК . ввод ограничений закончен. На экране снова появляется окно Поиск решения , в поле Ограничения виден список введенных ограничений.

Ввод граничных условий.

Ввод ГРУ не отличается от ввода ограничений. В окне Добавление ограничений в поле Ссылка на ячейку при помощи мыши вводим адрес ячейки "Фин2". Выбираем знак <=. В поле Ограничение записываем 50. Щелкаем по Добавить . Вводим при помощи мыши адрес ячейки "Фин4". Выбираем знак <=. В поле Ограничение записываем 50. Щелкаем по ОК . возвращаемся в окно Поиск решения . В поле Ограничения виден полный список введенных ОГР и ГРУ (рис.1).

Рисунок 1.

Ввод параметров.

Щелкаем по кнопке Параметры. Появляется окно Параметры поиска решения . В поле Линейная модель ставим флажок. Остальные параметры оставляем без изменения. Щелкаем по ОК (рис.2).

Рисунок 2.

Решение.

В окне Поиск решения щелкаем по кнопке Выполнить . На экране появляется окно Результаты поиска решения . В нем сообщается "Решение найдено. Все ограничения и условия оптимальности выполнены".

Создание и сохранение отчетов

Для ответа на вопросы задачи нам понадобятся отчеты. В поле Тип отчета мышью выделяем все типы: "Результаты", "Устойчивость" и "Пределы".

Ставим точку в поле Сохранить найденное решение и щелкаем по ОК . (рис. 3). Excel формирует затребованные отчеты и размещает их на отдельных листах. Открывается исходный лист с расчетом. В графе "Количество" - найденные значения для каждого вида продукции.

Рисунок 3.

Формируем сводный отчет. Копируем и располагаем на одном листе полученные отчеты. Редактируем их, так чтобы все разместить на одной странице.

Оформляем результаты решения графически. Строим диаграммы "Количество продукции" и "Распределение ресурсов".

Для построения диаграммы "Количество продукции" открываем мастер диаграмм и первым шагом выбираем объемный вариант обычной гистограммы. Вторым шагом в окне исходные данные выбираем диапазон данных =Лидовицкий! $C$14: $F$15. Третьим шагом в параметрах диаграммы задаем название диаграммы "Количество продукции". Четвертым шагом размещаем диаграмму на имеющимся листе. Нажатием на кнопку Готово заканчиваем построение диаграммы.

Для построения диаграммы "Распределение ресурсов" открываем мастер диаграмм и первым шагом выбираем трехмерную гистограмму. Вторым шагом в окне исходные данные выбираем диапазон: Лидовицкий! $A$17: $F$19; Лидовицкий! $C$14: $F$14. Третьим шагом в параметрах диаграммы задаем название диаграммы "Распределение ресурсов". Четвертым шагом размещаем диаграмму на имеющимся листе. Нажатием на кнопку Готово заканчиваем построение диаграммы (рис 4).

Рисунок 4.

Данные диаграммы иллюстрируют наилучший, с точки зрения получения наибольшей прибыли, ассортимент продукции и соответствующее распределение ресурсов.

Печатаем лист с таблицами исходных данных, с диаграммами и результатами расчета и лист со сводным отчетом на бумаге.

Анализ найденного решения. Ответы на вопросы

Согласно отчету по результатам.

Максимальная прибыль, которую можно получить при соблюдении всех условий задачи, составляет 1292,95 р.

Для этого необходимо выпускать максимально возможное количество продукции № 2 - 172,75 и № 4 - 29,41 единиц с финансовыми затратами не превышающими 50 р. на каждый вид, и продукции № 1 - 188,9 и № 3 - 213,72. При этом ресурсы по трудозатратам, финансам и сырью израсходуются полностью.

Согласно отчету по устойчивости.

Изменение одного из исходных данных не приведет к другой структуре найденного решения, т.е. к другому ассортименту продукции, необходимому для получения максимальной прибыли, если: прибыль от реализации единицы продукции №1 не увеличится более чем на 1,45 и уменьшится не более чем на 0,35. Таким образом:

(1,7 - 0,35) = 1,35 < Прибыль 1 < 3,15 = (1,7 + 1,45)

прибыль от реализации единицы продукции №2 не увеличится более чем на 0,56 и уменьшится не более чем на 1,61. Таким образом:

(2,3 - 1,61) = 0,69 < Прибыль 2 < 2,86 = (2,3 + 0,56)

прибыль от реализации единицы продукции №3 не увеличится более чем на 0,56 и уменьшится не более чем на 0,39. Таким образом:

(2 - 0,39) = 1,61 < Прибыль 3 < 2,56 = (2 + 0,56)

прибыль от реализации единицы продукции №4 может уменьшиться не более чем на 2,81, т.е. на 56,2% и увеличиваться неограниченно. Таким образом: прибыль 4 > 2,19 = (5 - 2,81) ресурс по сырью может быть увеличен на 380,54, т.е. на 47,57% и уменьшен на 210,46, т.е. на 26,31%. Таким образом: 589,54 < С < 1180,54 ресурс по финансам может быть увеличен на 231,38, т.е. на 57,84% и уменьшен на 195,98, т.е. на 48,99%. Таким образом: 204,02 < Ф < 631,38 ресурс по трудозатратам может быть увеличен на 346,45, т.е. на 34,64% и уменьшен на 352,02, т.е. на 35, 20%. Таким образом: 647,98 < ТЗ < 1346,45

Согласно отчету по пределам:

Количество выпускаемой продукции одного из видов может изменяться в пределах от 0 до найденного оптимального значения, это не приведет к изменению ассортимента продукции, необходимого для получения максимальной прибыли. При этом, если на выпускать продукцию №1, то прибыль составит 971,81 р., продукцию №2 - 895,63 р., продукцию №3 - 865,51 р., продукцию №4 - 1145,89 р.

Выводы

Проведенное исследование математической модели и ее последующий анализ позволяет сделать следующие выводы:

Максимально возможную прибыль, составляющую 1292,95 р., при выполнении всех заданных условий и ограничений можно получить, если выпустить продукции №1 - 188,9 единиц, продукции №2 - 172,75 единиц, продукции №3 - 213,72 единиц, продукции №4 - 29,41 единицы.

После выпуска продукции все ресурсы будут истрачены полностью.

Структура найденного решения наиболее сильно зависит от реализации единицы продукции №1 и №3, а также от уменьшения или увеличения всех имеющихся ресурсов.

Часть № 2 "Расчет экономико-математической модели межотраслевого баланса

Теоретические положения.

Балансовый метод - метод взаимного сопоставления финансовых, материальных и трудовых ресурсов и потребностям в них. Балансовая модель экономической системы - это система уравнений, удовлетворяющих требованиям соответствия наличия ресурса и его использования.

Межотраслевой баланс отражает производство и распределение продукта в отраслевом разрезе, в межотраслевые производственные связи, использование материальных и трудовых ресурсов, создание и распределение национального дохода.

Схема межотраслевого баланса.

Каждая отрасль в балансе является и потребляющей и производящей. Выделяют 4 области баланса (квадранты) имеющих экономическое содержание:

таблица межотраслевых материальных связей, здесь X ij - величины межотраслевых потоков продукции, т.е. стоимость средств производства произведенных в i отрасли и потребных в качестве материальных затрат в j отрасли.

Конечная продукция - это продукция выходящая из сферы производства в область потребления, накопления, на экспорт и т.д.

Условно чистая продукция Zj - это сумма амортизации Cj и чистой продукции (Uj + mj).

Отражает конечное распределение и использование национального дохода. Столбец и строка валовой продукции используется для проверки баланса и составления экономико-математической модели.

Итог материальных затрат любой потребляющей отрасли и ее условно чистой продукции равен валовой продукции этой отрасли:

(1)

Валовая продукция каждой отрасли равна сумме материальных затрат потребляющих ее продукцию отраслей и конечной продукции этой отрасли.

(2)

Просуммируем по всем отраслям уравнения 1:


Аналогично для уравнения 2:

Левая часть это валовый продукт, тогда и правые части приравниваем:

(3)

Постановка задачи.

Имеется четырехотраслевая экономическая система. Определить коэффициенты полных материальных затрат на основе данных: матрица коэффициентов прямых материальных затрат и вектор валовой продукции (табл.2).

Таблица 2.

Составление балансовой модели.

Основой экономико-математической модели межотраслевого баланса являются матрицы коэффициентов прямых материальных затрат:

Коэффициент прямых материальных затрат показывает какое количество продукции i отрасли необходимо, если учитывать только прямые затраты для производства единицы продукции j отрасли.

Учитывая выражение 4, выражение 2 можно переписать:

(5)

Вектор валовой продукции.

Вектор конечной продукции.

Матрицу коэффициентов прямых материальных затрат обозначим:


Тогда система уравнений 5 в матричной форме:

(6)

Последнее выражение это модель межотраслевого баланса или модель Леонтьева. При помощи модели можно:

Задав величины валовой продукции Х определить объемы конечной продукции Y:

(7)

где Е - единичная матрица.

Задав величины конечной продукции Y определить значение валовой продукции Х:

(8)

обозначим через В величину (Е-А) - 1 , т.е.

,

то элементы матрицы В будут .

Для каждой i отрасли:

Это коэффициенты полных материальных затрат, показывают какое количество продукции i отрасли нужно произвести, чтобы с учетом прямых и косвенных затрат этой продукции получить единицу конечной продукции j отрасли.

Для расчета экономико-математической модели межотраслевого баланса с учетом заданных величин:

Матрицы коэффициентов прямых материальных затрат:

Вектора валовой продукции:

Единичную матрицу, соответствующую матрице А примем:

Для расчета коэффициентов полных материальных затрат воспользуемся формулой:

Для определения валовой продукции по всем отраслям, формулой:

Для определения величины межотраслевых потоков продукции (матрица х) определим элементы матрицы х по формуле:

,

где i = 1…n; j = 1…n;

n - количество строк и столбцов квадратной матрицы А.

Для определения вектора условно чистой продукции Z элементы вектора вычисляются по формуле:

Решение задачи на компьютере

Загружаем программу Mathcad .

Создаем файл под именем Lidovitskiy- Kulik . mcd. в папке Эк/к 31 (2).

На основании предварительных установок (шаблона) создаем и форматируем заголовок.

Вводим с соответствующими комментариями (ORIGIN=1 ) заданные матрицу коэффициентов прямых материальных затрат А и вектор валовой Х продукции (все надписи и обозначения вводим латинским шрифтом, заданные формулы и комментарии должны располагаться либо на уровне, либо выше рассчитываемых значений).

Рассчитываем матрицу коэффициентов полных материальных затрат В. Для этого вычисляем единичную матрицу, соответствующую матрице А. Для этого используем функцию identiti ( cols ( A)).

Рассчитываем матрицу В по формуле:

Определяем объемы валовой продукции по всем отраслям Y по формуле:

Определяем матрицу х величин межотраслевых потоков продукции. Для этого определяем элементы матрицы, задавая комментарии:

i=1. rows (A) j=1. cols (A) x i,j =A i,j ·X j

После этого находим матрицу х .

Рассчитываем вектор условно чистой продукции Z, задав для этого формулу:

Поскольку в балансе Z - это вектор-строка, найдем транспонированный вектор Z T .

Найдем итоговые суммы:

9.11.1 Условно чистой продукции:

9.11.2 Конечной продукции:

9.11.3 Валовой продукции:

Печатаем результаты решения на бумаге.

Межотраслевой баланс производства и распределения продукции

На основании полученных данных составим межотраслевой баланс производства и распределения ресурсов.

Выводы

На основе матрица коэффициентов прямых материальных затрат и вектора валовой продукции определили коэффициенты полных материальных затрат и составили межотраслевой баланс производства и распределения ресурсов.

Определили материальные связи или величины межотраслевых потоков продукции (матрица х ), т.е. стоимость средств производства произведенных в производящей отрасли и потребных в качестве материальных затрат в потребляющей отрасли.

Определили конечную продукцию (Y), т.е. продукцию выходящую из производящей отрасли в потребляющую отрасль.

Определили величину условно чистой продукции по отраслям (Zj; Z T).

Определили конечное распределение валовой продукции (Х). По столбцу и строке валовой продукции проверили баланс (138+697+282+218) =1335.

На основании составленного баланса можно сделать выводы:

итог материальных затрат любой потребляющей отрасли и ее условно чистой продукции равен валовой продукции этой отрасли.

валовая продукция каждой отрасли равна сумме материальных затрат потребляющих ее продукцию отраслей и конечной продукции этой отрасли.

Литература

1. " Математические модели в экономике". Методические указания по выполнению лабораторных и контрольных работ для студентов экономических специальностей заочной формы обучения. Жуковский А.А. ЧИПС УрГУПС. Челябинск. 2001.

2. Гатаулин А.М., Гаврилов Г.В., Сорокина Т. M. и др. Математическое моделирование экономических процессов. - М., Агропромиздат, 1990.

3. Экономико-математические методы и прикладные модели: Учебное пособие для вузов/ Под ред.В. В. Федосеева. - М.: ЮНИТИ, 2001.

4. Поиск оптимальных решений средствами Excel 7.0. Курицкий Б.Я. СПб: " ВНV - Санкт-Петербург", 1997.

5. Плис А.И., Сливина Н.А. MathCAD 2000. Математический практикум для экономистов и инженеров. Москва. Финансы и статистика. 2000.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

  • Содержание
  • Введение
  • 1. Математические модели
    • 1.1 Классификация экономико-математических моделей
  • 2. Оптимизационное моделирование
    • 2.1 Линейное программирование
      • 2.1.1 Линейное программирование как инструмент математического моделирования экономики
      • 2.1.2 Примеры моделей линейного программирования
      • 2.2.3 Оптимальное распределение ресурсов
  • Заключение

Введение

Современная математика характеризуется интенсивным проникновением в другие науки, во многом этот процесс происходит благодаря разделению математики на ряд самостоятельных областей. Математика стала для многих отраслей знаний не только орудием количественного расчёта, но также методом точного исследования и средством предельно чёткой формулировки понятий и проблем. Без современной математики с её развитым логическим и вычислительным аппаратом был бы не возможен прогресс в различных областях человеческой деятельности. экономический математический линейный моделирование

Экономика как наука об объективных причинах функционирования и развития общества пользуется разнообразными количественными характеристиками, а поэтому вобрала в себя большое число математических методов.

Актуальность данной темы состоит в том, что в современной экономике используются оптимизационные методы, которые составляют основу математического программирования, теории игр, сетевого планирования, теории массового обслуживания и других прикладных наук.

Изучение экономических приложений математических дисциплин, составляющих основу актуальной экономической математики, позволяет приобрести некоторые навыки решения экономических задач и расширить знания в этой области.

Целью данной работы является изучение некоторых оптимизационных методов, применяемых при решении экономической задач.

1. Математические модели

Математические модели в экономике. Широкое использование математических моделей является важным направлением совершенствования экономического анализа. Конкретизация данных или представление их в виде математической модели помогает выбрать наименее трудоёмкий путь решения, повышает эффективность анализа.

Все экономические задачи, решаемые с применением линейного программирования отличаются альтернативностью решения и определенными ограничивающими условиями. Решить такую задачу - значит выбрать из всех допустимо возможных (альтернативных) вариантов лучший, оптимальный. Важность и ценность использования в экономике метода линейного программирования состоят в том, что оптимальный вариант выбирается из достаточно значительного количества альтернативных вариантов.

Самыми существенными моментами при постановке и решении экономических задачах в виде математической модели являются:

· адекватность экономико-математической модели действительности;

· анализ закономерностей, соответствующих данному процессу;

· определение методов, с помощью которых можно решить задачу;

· анализ полученных результатов или подведение итога.

Под экономическим анализом понимается, прежде всего, факторный анализ.

Пусть y=f(x i) - некоторая функция, характеризующая изменение показателя или процесса; x 1 ,x 2 ,…,x n - факторы, от которых зависит функция y=f(x i). Задана функциональная детерминированная связь показателя y с набором факторов. Пусть показатель y изменился за анализируемый период. Требуется определить, какой частью численное приращение функции y=f(x 1 ,x 2 ,…,x n) обязано приращению каждого фактора.

Можно выделить в экономическом анализе - анализ влияния производительности труда и численности, работающих на объем произведенной продукции; анализ влияния величины прибыли основных производственных фондов и нормируемых оборотных средств на уровень рентабельности; анализ влияния заемных средств на маневренность и независимость предприятия и т. п..

В экономическом анализе, кроме задач, сводящихся к разбиению его на составляющие части, существует группа задач, где требуется функционально увязать ряд экономических характеристик, т.е. построить функцию, содержащую в себе основное качество всех рассматриваемых экономических показателей.

В этом случае ставится обратная задача- так называемая задача обратного факторного анализа.

Пусть имеется набор показателей x 1 ,x 2 ,…,x n , характеризующих некоторый экономический процесс F. Каждый из показателей характеризует этот процесс. Требуется построить функцию f(x i) изменения процесса F, содержащую основные характеристики всех показателей x 1 ,x 2 ,…,x n

Главный момент в экономическом анализе - определение критерия, по которому будут сравниваться различные варианты решения.

Математические модели в менеджменте. Во всех сферах человеческой деятельности большую роль играет принятие решений. Для постановки задачи принятия решения необходимо выполнить два условия:

· наличие выбора;

· выбор варианта по определенному принципу.

Известны два принципа выбора решения: волевой и критериальный.

Волевой выбор, наиболее часто используемый, применяют при отсутствии формализованных моделей как единственно возможный.

Критериальный выбор заключается в принятии некоторого критерия и сравнении возможных вариантов по этому критерию, Вариант, для которого принятый критерий принимает наилучшее решение, называют оптимальным, а задачу принятия наилучшего решения - задачей оптимизации.

Критерий оптимизации называют целевой функцией.

Любую задачу, решение которой сводится к нахождению максимума или минимума целевой функции, называют экстремальной задачей.

Задачи менеджмента связаны с нахождением условного экстремума целевой функции при известных ограничениях, накладываемых на ее переменные.

В качестве целевой функции при решении различных оптимизационных задач принимают количество или стоимость выпускаемой продукции, затрат на производство, сумму прибыли и т.п. Ограничения обычно касаются людских материальных, денежных ресурсов.

Оптимизационные задачи менеджмента, различные по своему содержанию и реализуемые с использованием стандартных программных продуктов, соответствуют тому или иному классу экономико-математических моделей.

Рассмотрим классификацию некоторых основных задач оптимизации, реализуемых менеджментом на производстве.

Классификация задач оптимизации по функции управления:

Функция управления

Задачи оптимизации

Класс экономико-математических моделей

Техническая и организационная подготовка производства

Моделирование состава изделий;

Оптимизация состава марок, шихты, смесей;

Оптимизация раскроя листового материала, проката;

Оптимизация распределения ресурсов в сетевых моделях комплексов работ;

Оптимизация планировок предприятий, производств и оборудования;

Оптимизация маршрута изготовления изделий;

Оптимизация технологий и технологических режимов.

Теория графов

Дискретное программирование

Линейное программирование

Сетевое планирование и управление

Имитационное моделирование

Динамическое программирование

Нелинейное программирование

Технико-экономическое планирование

Построение сводного плана и прогнозирование показателей развития предприятия;

Оптимизация портфеля заказов и производственной программы;

Оптимизация распределения производственной программы по плановым периодам.

Матричные балансовые модели “Затраты-выпуск”

Корреляционно-

регрессионный анализ

Экстраполяция тенденций

Линейное программирование

Оперативное управление основным производством

Оптимизация календарно-плановых нормативов;

Календарные задачи;

Оптимизация стандарт-планов;

Оптимизация краткосрочных планов производств.

Нелинейное программирование

Имитационное моделирование

Линейное программирование

Целочисленное программирование

Таблица 1.

Сочетание различных элементов модели приводит к различным классам задач оптимизации:

Таблица 2.

1.1 Классификация экономико-математических моделей

Существует значительное разнообразие видов, типов экономико-математических моделей, необходимых для использования в управлении экономическими объектами и процессами. Экономико-математические модели подразделяются на: макроэкономические и микроэкономические в зависимости от уровня моделируемого объекта управления, динамические, которые характеризуют изменения объекта управления во времени, и статические, которые описывают взаимосвязи между разными параметрами, показателями объекта именно в то время. Дискретные модели отображают состояние объекта управления в отдельные, фиксированные моменты времени. Имитационными называют экономико-математические модели, используемые с целью имитации управляемых экономических объектов и процессов с применением средств информационной и вычислительной техники. По типу математического аппарата, применяемого в моделях, выделяются экономико-статистические, модели линейного и нелинейного программирования, матричные модели, сетевые модели.

Факторные модели. В группу экономико-математических факторных моделей входят модели, которые с одной стороны включают экономические факторы, от которых зависит состояние управляемого экономического объекта, а с другой - зависимые от этих факторов параметры состояния объекта. Если факторы известны, то модель позволяет определить искомые параметры. Факторные модели чаще всего предоставлены простыми в математическом отношении линейными или статическими функциями, которые характеризуют связь между факторами и зависимыми от них параметрами экономического объекта.

Балансовые модели. Балансовые модели как статистические, так и динамические широко применяются в экономико-математическом моделировании. В основе создания этих моделей лежит балансовый метод - метод взаимного сопоставления материальных, трудовых и финансовых ресурсов и потребностей в них. Описывая экономическую систему в целом, под её балансовой моделью понимают систему уравнений, каждое из которых выражает потребность баланса между изготовленными отдельными экономическими объектами количества продукции и совокупной потребностью в этой продукции. При таком подходе экономическая система состоит из экономических объектов, каждый из которых выпускает некоторый продукт. Если вместо понятия «продукт» ввести понятие «ресурс», то под балансовой моделью необходимо понимать систему уравнений, которые удовлетворяют требования между определенным ресурсом и его использованием.

Наиболее важные виды балансовых моделей:

· Материальные, трудовые и финансовые балансы для экономики в целом и отдельных ее отраслей;

· Межотраслевые балансы;

· Матричные балансы предприятий и фирм.

Оптимизационные модели. Большой класс экономико-математических моделей образуют оптимизационные модели, которые позволяют выбрать из всех решений наилучший оптимальный вариант. В математическом содержании оптимальность понимается как достижение экстремума критерия оптимальности, называемой также целевой функцией. Оптимизационные модели чаще всего используются в задачах нахождения лучшего способа использования экономических ресурсов, что позволяет достичь максимального целевого эффекта. Математическое программирование образовалось на основе решения задачи про оптимальный раскрой листов фанеры, что обеспечивает наиболее полное использование материала. Поставив такую задачу, известный российский математик и экономист академик Л.В. Канторович был признан достойным Нобелевской премии в экономике.

2. Оптимизационное моделирование

2.1 Линейное программирование

2.1.1 Линейное программирование как инструмент математического моделирования экономики

Исследование свойств общей системы линейных неравенств ведется с XIX в., а первая оптимизационная задача с линейной целевой функцией и линейными ограничениями была сформулирована в З0-е годы XX в. Одним из первых зарубежных ученых, заложивших основы линейного программирования, является Джон фон Нейман, широко известный математик и физик, доказавший основную теорему о матричных играх. Среди отечественных ученых большой вклад в теорию линейной оптимизации внесли лауреат Нобелевской премии Л.В. Канторович, Н.Н. Моисеев, Е.Г. Гольштейн, Д.Б. Юдин и многие другие.

Линейное программирование традиционно считается одним из разделов исследования операций, который изучает методы нахождения условного экстремума функций многих переменных.

В классическом математическом анализе исследуется общая постановка задачи определения условного экстремума, однако в связи с развитием промышленного производства, транспорта, агропромышленного комплекса, банковского сектора традиционных результатов математического анализа оказалось недостаточно. Потребности практики и развитие вычислительной техники привели к необходимости определения оптимальных решений при анализе сложных экономических систем. Главным инструментом для решения таких задач является математическое моделирование, т.е. формализованное описание изучаемого процесса и исследование его с помощью математического аппарата.

Искусство математического моделирования состоит в том, чтобы учесть как можно более широкий спектр факторов, влияющих на поведение объекта, используя при этом по возможности несложные соотношения. Именно в связи с этим процесс моделирования часто носит многоэтапный характер. Сначала строится относительно простая модель, затем проводится ее исследование, позволяющее понять, какие из интегрирующих свойств объекта не улавливаются данной формальной схемой, после чего за счет усложнения модели обеспечивается большая ее адекватность реальности. При этом во многих случаях первым приближением к действительности является модель, в которой все зависимости между переменными, характеризующими состояние объекта, являются линейными. Практика показывает, что значительное количество экономических процессов достаточно полно описывается линейными моделями, а следовательно, линейное программирование как аппарат, позволяющий отыскивать условный экстремум на множестве, заданном линейными уравнениями и неравенствами, играет важную роль при анализе этих процессов.

2.1.2 Примеры моделей линейного программирования

Ниже будут рассмотрены несколько ситуаций, исследование которых возможно с применением средств линейного программирования. Так как основным показателем в этих ситуациях является экономический -- стоимость, то соответствующие модели являются экономико-математическими.

Задача о раскрое материалов. На обработку поступает материал одного образца в количестве d единиц. Требуется изготовить из него к разных комплектующих изделий в количествах, пропорциональных числам а 1 ,..., а к. Каждая единица материала может быть раскроена n различными способами, при этом использование i-го способа (i=1,…,n) дает b ij , единиц j-го изделия (j = 1,...,k).

Требуется найти план раскроя, обеспечивающий максимальное число комплектов.

Экономико-математическая модель этой задачи может быть сформулирована следующим образом. Обозначим x i -- число единиц материалов, раскраиваемых i-м способом, и x -- число изготавливаемых комплектов изделий.

Учитывая, что общее количество материала равно сумме его единиц, раскраиваемых различными способами, получим:

Условие комплектности выразится уравнениями:

Очевидно, что

x i 0 (i=1,…,n)(3)

Целью является определить такое решение Х= (x 1 ,…,x n), удовлетворяющее ограничениям (1)-(3), при котором функция F = x принимает максимальное значение. Проиллюстрируем рассмотренную задачу следующим примером Для изготовления брусьев длиной 1,5 м, 3 м и 5 м в соотношении 2:1:3 на распил поступают 200 бревен длиной 6 м. Определить план распила, обеспечивающий максимальное число комплектов. Чтобы сформулировать соответствующую оптимизационную задачу линейного программирования, определим все возможные способы распила бревен, указав соответствующее число получаемых при этом брусьев (табл. 1).

Таблица 1

Обозначим через x i -- число бревен, распиленных i-м способом (i = 1.2, 3, 4); х --число комплектов брусьев.

С учетом того, что все бревна должны быть распилены, а число брусьев каждого размера должно удовлетворять условию комплектности, оптимизационная экономико-математическая модель примет следующий вид х > max при ограничениях:

x 1 +x 2 +x 3 +x 4 =200

x i 0 (i=1,2,3,4)

Задача выбора оптимальной производственной программы предприятия. Пусть предприятие может выпускать n различных видов продукции. Для выпуска этих видов продукции предприятие использует М видов материально-сырьевых ресурсов и N видов оборудования. Необходимо определить объемы производства предприятия (т.е. его производственную программу) на заданном интервале планирования , чтобы максимизировать валовую прибыль предприятия.

где a i -- цена реализации продукции вида i;

b i -- переменные затраты на выпуск одной единицы продукции вида i;

Zp -- условно постоянные затраты, которые будем предполагать независимыми от вектора х = (x 1 ,..., x n).

При этом должны быть выполнены ограничения на объемы используемых материально-сырьевых ресурсов и время использования оборудования на интервале .

Обозначим через Lj(j = l,...,M) объем запасов материально-сырьевых ресурсов вида j, а через ф k (k = 1,..., N) -- время, в течение которого может быть использовано оборудование вида k. Известно потребление материально-сырьевых ресурсов вида j на выпуск одной единицы продукции вида i, которое обозначим через l ij (i = 1,..., n; j = 1,...,М). Известно также t ik -- время загрузки одной единицы оборудования вида k изготовления одной единицы продукции вида i (i = 1,..., n; k = 1,..., N). Через m k обозначим количество единиц оборудования вида k (k=l,...,N).

При введенных обозначениях ограничения на объем потребляемых материально-сырьевых ресурсов могут быть заданы таким образом:

Ограничения на производственные мощности задаются следующими неравенствами

Кроме того, переменные

x i ?0 i=1,…,n (7)

Таким образом, задача выбора производственной программы, максимизирующей прибыль, заключается в выборе такого плана выпуск х = (х 1 ...,х n), который удовлетворял бы ограничениям (5)-(7) и максимизировал бы функцию (4).

В некоторых случаях предприятие должно поставить заранее оговоренные объемы продукции Vt другим хозяйствующим субъектам и тогда в рассматриваемой модели вместо ограничения (1.7) может быть включено ограничение вида:

x t > Vt i= 1, ...,n.

Задача о диете. Рассмотрим задачу составления душевого рациона питания минимальной стоимости, которое бы содержало определенные питательные вещества в необходимых объемах. Будем предполагать, что имеется известный перечень продуктов из n наименований (хлеб, сахар, масло, молоко, мясо и т.д.), которые мы будем обозначать буквами F 1 ,...,F n . Кроме того, рассматриваются такие характеристики продуктов (питательные вещества), как белки, жиры, витамины, минеральные вещества и другие. Обозначим эти компоненты буквами N 1 ,...,N m . Предположим, что для каждого продукта F i известно (i = 1,...,n) количественное содержание в одной единице продукта указанных выше компонент. В этом случае можно составить таблицу, содержащую характеристику продуктов:

F 1 ,F 2 ,…F j …F n

N 1 a 11 a 12 …a 1j …a 1N

N 2 a 21 a 22 …a 2j …a 2N

N i a i1 a i2 …a ij …a iN

N m a m1 a m2 …a mj …a mN

Элементы этой таблицы образуют матрицу, имеющую m строк и n столбцов. Обозначим ее через A и назовем матрицей питательности. Предположим, что мы составили рацион х = (х 1 ,x 2 ,...,х n) на некоторый период (например, месяц). Иными словами, мы планируем каждому человеку на месяц х, единиц (килограммов) продукта F 1 ,x 2 единиц продукта F 2 и т.д. Нетрудно вычислить, какое количество витаминов, жиров, белков и прочих питательных веществ получит человек за этот период. Например, компонента N 1 присутствует в этом рационе в количестве

a 11 x 1 + a 12 x 2+…+ a 1n x n

поскольку согласно условию в x 1 единицах продукта F 1 согласно матрице питательности содержится a 11 x 1 единиц компоненты N 1 ; к этому количеству добавляется порция а 12 x 2 вещества N 1 из х 2 единиц продукта F 2 и т.д. Аналогично можно определить и количество всех остальных веществ N i в составляемом рационе (х 1 ,..., х n).

Допустим, что имеются определенные физиологические требования, касающиеся необходимого количества питательных веществ в N i (i/ = 1,..., N) в планируемый срок. Пусть эти требования заданы вектором b = (b 1 ...,b n), i-я компонента которого b i указывает минимально необходимое содержание компонента N i в рационе. Это означает, что коэффициенты x i вектора х должны удовлетворять следующей системе ограничений:

a 11 x 1 + a 12 x 2+…+ a 1n x n ?b 1

a 21 x 1 + a 22 x 2+…+ a 2n x n ?b 2 (8)

a m1 x 1 + a m2 x 2+…+ a mn x n ?b m

Кроме того, из содержательного смысла задачи очевидно, что все переменные х 1 ,...,х n неотрицательны и поэтому к ограничениям (8) добавляются еще неравенства

x 1 ?0; x 2 ?0;… x n ?0; (9)

Учитывая, что в большинстве случаев ограничениям (8) и (9) удовлетворяет бесконечно много рационов, выберем тот из них, стоимость которого минимальна.

Пусть цены на продукты F 1 ,...,F n равны соответственно с 1 ,…,c n

Следовательно, стоимость всего рациона х = (х 1 ..., х n) может быть записана в виде

c 1 x 1 + c 2 x 2 +…+ c n x n >min (10)

Окончательно формулировка задачи о диете заключается в том, чтобы среди всех векторов х = (x 1 ,...,х n) удовлетворяющих ограничениям (8) и (9) выбрать такой, для которого целевая функция (10) принимает минимальное значение.

Транспортная задача. Имеется m пунктов S 1 ,..., S m производства однородного продукта (угля, цемента, нефти и т.п.), при этом объем производства в пункте S i равен a i единиц. Произведенный продукт потребляется в пунктах Q 1 ...Q n и потребность в нем в пункте Q j составляет k j единиц (j = 1,...,n). Требуется составить план перевозок из пунктов S i (i = 1,...,m) в пункты Q j (j = 1,..., n), чтобы удовлетворить потребности в продукте b j , минимизировав транспортные расходы.

Пусть стоимость перевозок одной единицы продукта из пункта S i в пункт Q i равна c ij . Будем далее предполагать, что при перевозке х ij единиц продукта из S i в Q j транспортные расходы равны c ij x ij.

Назовем планом перевозок набор чисел х ij c i = 1,..., m; j = 1,..., n, удовлетворяющий ограничениям:

x ij ?0, i=1,2,…,m; j=1,…,n (11)

При плане перевозок (х ij) транспортные расходы составят величину

Окончательное формирование транспортной задачи таково: среди всех наборов чисел (х ij), удовлетворяющих ограничениям (11), найти набор, минимизирующий (12).

2.1.3 Оптимальное распределение ресурсов

Класс задач, рассматриваемый в данной главе, имеет многочисленные практические приложения.

В общем виде эти задачи могут быть описаны следующим образом. Имеется некоторое количество ресурсов, под которыми можно понимать денежные средства, материальные ресурсы (например, сырье, полуфабрикаты, трудовые ресурсы, различные виды оборудования и т. п.). Эти ресурсы необходимо распределить между различными объектами их использования по отдельным промежуткам планового периода или по различным промежутками по различным объектам так, чтобы получить максимальную суммарную эффективность от выбранного способа распределения. Показателем эффективности может служить, например, прибыль, товарная продукция, фондоотдача (задачи максимизации) или суммарные затраты, себестоимость, время выполнения данного объема работ и т. п. (задачи минимизации).

Вообще говоря, подавляющее число задач математического программирования вписывается в общую постановку задачи оптимального распределения ресурсов. Естественно, что при рассмотрении моделей и вычислительных схем решения подобных задач методом ДП необходимо конкретизировать общую форму задачи распределения ресурсов.

В дальнейшем будем предполагать, что условия, необходимые для построения модели ДП, в задаче выполняются. Опишем типичную задачу распределения ресурсов в общем виде.

Задача 1. Имеется начальное количество средств, которое необходимо распределить в течение п лет между s предприятиями. Средства (k=1, 2,…,n; i=1,…, s), выделенные в k-м году i-му предприятию, приносят доход в размере и к концу года возвращаются в количестве. В последующем распреелении доход может либо участвовать (частично или полностью), либо не участвовать.

Требуется определить такой способ распределения ресурсов (количество средств, выделяемых каждому предприятию в каждом плановом году), чтобы суммарный доход от s предприятий за п лет был максимальным.

Следовательно, в качестве показателя эффективности процесса распределения ресурсов за п лет принимается суммарный доход, полученный от s предприятий:

Количество ресурсов в начале k-го года будем характеризовать величиной (параметр состояния). Управление на k-м шаге состоит в выборе переменных обозначающих ресурсы, выделяемые в k-м году i-му предприятию.

Если предположить, что доход в дальнейшем распределении не участвует, то уравнение состояния процесса имеет вид

Если же некоторая часть дохода участвует в дальнейшем распределении в каком-нибудь году, то к правой части равенства (4.2) прибавляется соответствующая величина.

Требуется определить ns неотрицательных переменных, удовлетворяющих условиям (4.2) и максимизирующих функцию (4.1).

Вычислительная процедура ДП начинается с введения функции, обозначающей доход, полученный за п--k+1 лет, начиная с k-го года до конца рассматриваемого периода, при оптимальном распределении средств между s предприятиями, если в k-м году распределялось средств. Функции для k=1, 2, ...n-1 удовлетворяют функциональным уравнениям (2.2), которые запишутся в виде:

При k=n согласно (2.2) получаем

Далее необходимо последовательно решить уравнения (4.4) и (4.3) для всех возможных (k = n--1, п--2, 1). Каждое из этих уравнений представляет собой задачу на оптимизацию функции, зависящей от s переменных. Таким образом, задача с ns переменными сведена к последовательности п задач, каждая из которых содержит s переменных. В этой общей постановке задача по-прежнему сложна (из-за многомерности) и упростить ее, рассматривая как ns-шаговую задачу, в данном случае нельзя. В самом деле, попробуем это сделать. Пронумеруем шаги по номерам предприятий сначала в 1-м году, затем во 2-м и т. д.:

и будем пользоваться одним параметром для характристики остатка средств.

В течение k-го года состояние " к началу любого шага s(k-1)_+i (i=1,2,…,s) определится по предыдущему состоянию с помощью простого уравнения. Однако по истечении года, т.е. к началу следующего года, к наличным средствам необходимо будет добавить средств и, следовательно, состояние в начале (ks+1)-гo шага будет зависеть не только от предшествующего ks-гo состояния, но и от всех s состояний и управлений за прошлый год. В результате мы получим процесс с последействием. Чтобы исключить последействие, приходится вводить несколько параметров состояний; задача на каждом шаге остается по-прежнему сложной из-за многомерности.

Задача 2. Планируется деятельность двух предприятий (s=2) в течение п лет. Начальные средства составляют. Средства х, вложенные в предприятие I, приносят к концу года доход f 1 (x) и возвращаются в размере аналогично, средства х, вложенные в предприятие II, дают доход f 2 (x) и возвращаются в размере. По истечении года все оставшиеся средства заново перераспределяются между предприятиями I и II, новых средств не поступает и доход в производство не вкладывается.

Требуется найти оптимальный способ распределения имеющихся средств.

Будем рассматривать процесс распределения средств как n-шаговый, в котором номер шага соответствует номеру года. Управляемая система -- два предприятия с вложенными в них средствами. Система характеризуется одним параметром состояния --количеством средств, которые следует перераспределить в начале k-гo года. Переменных управления на каждом шаге две: -- количество средств, выделенных соответственно предприятию I и II. Так как средства ежегодно перераспределяются полностью, то). Для каждого шага задача становится одномерной. Обозначим через, тогда

Показатель эффективности k-гo шага равен. Это -- доход, полученный от двух предприятий в течение k-гo года.

Показатель эффективности задачи -- доход, полученный от двух предприятий в течение п лет -- составляет

Уравнение состояния выражает остаток средств после k-гo шага и имеет вид

Пусть --условный оптимальный доход, полученный от распределения средств между двумя предприятиями за n--k+1 лет, начиная с k-гo года до конца рассматриваемого периода. Запишем рекуррентные соотношения для этих функций:

где - определяется из уравнения состояния (4.6).

При дискретном вложении ресурсов может возникнуть вопрос о выборе шага Дх в изменении переменных управления. Этот шаг может быть задан или определяется исходя из требуемой точности вычислений и точности исходных данных. В общем случае эта задача сложна, требует интерполирования по таблицам на предыдущих шагах вычисления. Иногда предварительный анализ уравнения состояния позволяет выбрать подходящий шаг Дх, а также установить предельные значения, для которых на каждом шаге нужно выполнить табулирование.

Рассмотрим двумерную задачу, аналогичную предыдущей, в которой строится дискретная модель ДП процесса распределения ресурсов.

Задача 3. Составить оптимальный план ежегодного распределения средств между двумя предприятиями в течение трехлетнего планового периода при следующихусловиях:

1) начальная сумма составляет 400;

2) вложенные средства в размере х приносят на предприятии I доход f 1 (x) и возвращаются в размере 60% от х, а на предприятии II -- соответственно f2(x) и 20%;

3) ежегодно распределяются все наличные средства, получаемые из возвращенных средств:

4) функции f 1 (x) и f2(x)заданы в табл. 1:

Модель динамического программирования данной задачи аналогична модели, составленной в задаче 1.

Процесс управления является трехшаговым. Параметр -- средства, подлежащие распределению в k-м году (k=l, 2, 3). Переменная управления -- средства, вложенные в предприятие I в k-м году. Средства, вложенные в предприятие II в k-м году, составляют Следовательно, процесс управления на k-м шаге зависит от одного параметра (модель одномерная). Уравнение состояния запишется в виде

А функциональные уравнения в виде

Попытаемся определить максимально возможные значения, для которых необходимо проводить табулирование на k-м шаге (k=l, 2, 3). При =400 из уравнения (4.8) определяем максимально возможное значение имеем = 0,6*400=2400 (все средства вкладываются в предприятие I). Аналогично, для получаем предельное значение 0,6*240 = 144. Пусть интервал изменения совпадает с табличным, т. е. Дх =50. Составим таблицу суммарной прибыли на данном шаге:

Это облегчит дальнейшие расчеты. Так как то клетки, расположенные по диагонали таблицы, отвечают одному и тому же значению, указанному в 1-й строке (в 1-м столбце) табл. 2. Во 2-й строке таблицы записаны значения f 1 (x), а во 2-м столбце -- значения f 2 (у)взятые из табл. 1.Значения в остальных клетках таблицы получены сложением чисел f 1 (x) и f 2 (у),стоящих во 2-й строке и во 2-м столбце и соответствующих столбцу и строке, на пересечении которых находится данная клетка. Например, для =150 получаем ряд чисел: 20 --для х = 0, у=150; 18 --для х=50, у=100; 18-- для х--100, у=50; 15 -- для х= 150, у=0.

Проведем условную оптимизацию по обычной схеме. 3-й шаг. Основное уравнение (4.9)

Как указывалось выше, . Просмотрим числа на диагоналях, соответствующих =0; 50; 100; 150 и на каждой диагонали выберем наибольшее. Это и есть В 1-й строке находим соответствующее условное оптимальное управление. Данные оптимизации на 3-м шаге поместим в основную таблицу (табл. 4). В ней введен столбец Дх, который в дальнейшем используется при интерполяции.

Оптимизация 2-го шага проведена в табл. 5 согласно уравнению вида (4.10):

При этом может быть получен максимальный доход, равный Zmax=99,l. Прямой подсчет дохода по табл. 2 для найденного оптимального управления дает 97,2. Расхождение в результатах на 1,9 (около 2%) объясняется ошибкой линейной интерполяции.

Мы рассмотрели несколько вариантов задачи оптимального распределения ресурсов. Существуют другие варианты этой задачи, особенности которых учитываются соответствующей динамической моделью.

Заключение

В данной курсовой работе рассмотрены виды математических моделей, используемых в экономике и менеджменте, а также их классификация.

Особое внимание в курсовой работе уделено оптимизационному моделированию.

Изучен принцип построения моделей линейного программирования, также приведены модели следующих задач:

· Задача о раскрое материалов;

· Задача выбора оптимальной производственной программы предприятия;

· Задача о диете;

· Транспортная задача.

В работе представлены общие характеристики задач дискретного программирования, описан принцип оптимальности и уравнение Беллмана, приведено общее описание процесса моделирования.

Для построения моделей выбраны три задачи:

· Задача оптимального распределения ресурсов;

· Задача об оптимальном управлении запасами;

· Задача о замене.

В свою очередь для каждой из задач построены различные модели динамического программирования. Для отдельных задач приведены числовые расчеты, в соответствии с построенными моделями.

Список литературы :

1. Вавилов В.А., Змеев О.А., Змеева Е.Е. Электронное пособие “Исследование операций”

2. Калихман И.Л., Войтенко М.А. “Динамическое программирование в примерах и задачах”, 1979

3. Косоруков О.А., Мищенко А.В. “Исследование операций”, 2003

4. Материалы из сети Internet.

Размещено на Allbest.ru

Подобные документы

    Изучение экономических приложений математических дисциплин для решения экономических задач: использование математических моделей в экономике и менеджменте. Примеры моделей линейного и динамического программирования как инструмента моделирования экономики.

    курсовая работа , добавлен 21.12.2010

    Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.

    реферат , добавлен 16.05.2012

    Графическое решение задач линейного программирования. Решение задач линейного программирования симплекс-методом. Возможности практического использования математического программирования и экономико-математических методов при решении экономических задач.

    курсовая работа , добавлен 02.10.2014

    Моделирование экономических систем: основные понятия и определения. Математические модели и методы их расчета. Некоторые сведения из математики. Примеры задач линейного программирования. Методы решения задач линейного программирования.

    лекция , добавлен 15.06.2004

    Теоретические основы экономико-математических задач о смесях. Принципы построения и структура интегрированной системы экономико-математических моделей. Организационно-экономическая характеристика и технико-экономические показатели работы СПК "Родина".

    курсовая работа , добавлен 01.04.2011

    Теоретические основы экономико-математических методов. Этапы принятия решений. Классификация задач оптимизации. Задачи линейного, нелинейного, выпуклого, квадратичного, целочисленного, параметрического, динамического и стохастического программирования.

    курсовая работа , добавлен 07.05.2013

    Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.

    реферат , добавлен 11.02.2011

    Типовые модели менеджмента: примеры экономико-математических моделей и их практического использования. Процесс интеграции моделей разных типов в более сложные модельные конструкции. Определение оптимального плана производства продуктов каждого вида.

    контрольная работа , добавлен 14.01.2015

    Основы составления, решения и анализа экономико-математических задач. Состояние, решение, анализ экономико-математических задач по моделированию структуры посевов кормовых культур при заданных объемах животноводческой продукции. Методические рекомендации.

    методичка , добавлен 12.01.2009

    Основные понятия моделирования. Общие понятия и определение модели. Постановка задач оптимизации. Методы линейного программирования. Общая и типовая задача в линейном программировании. Симплекс-метод решения задач линейного программирования.