Биогафии

От произвольной точки отложить вектор равный данному. Векторы для чайников. Действия с векторами. Координаты вектора. Простейшие задачи с векторами

Вектор – одно из основных геометрических понятий. Вектор характеризуется числом (длиной) и направлением. Наглядно его можно представить себе в виде направленного отрезка, хотя, говоря о векторе, правильнее иметь в виду целый класс направленных отрезков, которые все параллельны между собой, имеют одинаковую длину и одинаковое направление (рис. 1). Примерами физических величин, которые имеют векторный характер, могут служить скорость (поступательно движущегося тела), ускорение, сила и др.

Понятие вектора появилось в работах немецкого математика XIX в. Г. Грассмана и ирландского математика У. Гамильтона; затем оно было охотно воспринято многими математиками и физиками. В современной математике и ее приложениях это понятие играет важнейшую роль. Векторы применяются в классической механике Галилея-Ньютона (в ее современном изложении), в теории относительности, квантовой физике, в математической экономике и многих других разделах естествознания, не говоря уже о применении векторов в различных областях математики.

Каждый из направленных отрезков, составляющих вектор (рис. 1), можно назвать представителем этого вектора. Вектор, представителем которого является направленный отрезок, идущий от точки к точке , обозначается через . На рис. 1 имеем , т.е. и - это один и тот же вектор (представителями которого являются оба направленных отрезка, выделенных на рис. 1). Иногда вектор обозначают малой буквой со стрелкой: , .

Вектор, изображаемый направленным «отрезком», у которого начало и конец совпадают, называется нулевым; он обозначается через , т.е. . Два параллельных вектора, имеющих одинаковые длины, но противоположные направления, называются противоположными. Если вектор обозначен через , то противоположный ему вектор обозначается через .

Назовем основные операции, связанные с векторами.

I. Откладывание вектора от точки. Пусть - некоторый вектор и - точка. Среди направленных отрезков, являющихся представителями вектора , имеется направленный отрезок, начинающийся в точке . Конец этого направленного отрезка называется точкой, получающейся в результате откладывания вектора от точки (рис. 2). Эта операция обладает следующим свойством:

I1. Для любой точки и любого вектора существует, и притом только одна, точка , для которой .

Сложение векторов. Пусть и - два вектора. Возьмем произвольную точку и отложим вектор от точки , т.е. найдем такую точку , что (рис. 3). Затем от точки отложим вектор , т. е. найдем такую точку , что . Вектор называется суммой векторов и и обозначается через . Можно доказать, что сумма не зависит от выбора точки , т.е. если заменить другой точкой , то получится вектор , равный (рис. 3). Из определения суммы векторов вытекает, что для любых трех точек справедливо равенство

I2:

(«правило трех точек»). Если ненулевые векторы и не параллельны, то их сумму удобно находить с помощью правила параллелограмма (рис. 4).

II. Основные свойства суммы векторов выражают следующие 4 равенства (справедливые для любых векторов , , ):

II2. .

Заметим еще, что сумма нескольких векторов находится последовательным нахождением суммы двух из них. Например: .

При этом, в каком бы порядке мы ни складывали заданные векторы, результат (как это вытекает из свойств, названных в пунктах II1, и II2) всегда будет одним и тем же. Например:

Далее, геометрически сумма нескольких векторов может быть получена следующим образом: надо направленные отрезки, являющиеся представителями этих векторов, последовательно отложить друг за другом (т.е. так, чтобы начало второго направленного отрезка совпадало с концом первого, начало третьего – с концом второго и т.д.); тогда вектор будет иметь своим представителем «замыкающий» направленный отрезок, идущий от начала первого к концу последнего (рис. 5). (Заметим, что если при таком последовательном откладывании получается «замкнутая векторная ломаная», то .)

III. Умножение вектора на число. Пусть - ненулевой вектор и - отличное от нуля число. Через обозначается вектор, определяемый следующими двумя условиями: а) длина вектора равна ; б) вектор параллелен вектору , причем его направление совпадает с направлением вектора при и противоположно ему при (рис. 6). Если справедливо хотя бы одно из равенств , , то произведение считается равным . Таким образом, произведение определено для любого вектора и любого числа .

Следующие 4 равенства (справедливые для любых векторов , и любых чисел ) выражают основные свойства операции умножения вектора на число:

III2. .

III3. .

Из этих свойств вытекает ряд дальнейших фактов, связанных с рассмотренными операциями над векторами. Отметим некоторые из них, часто применяемые при решении задач.

а) Если - такая точка отрезка , что , то для любой точки справедливо равенство , в частности если - середина отрезка , то .

б) Если - точка пересечения медиан треугольника , то ; кроме того, для любой точки справедливо равенство (обратные теоремы также справедливы).

в) Пусть - точка прямой и - ненулевой вектор, параллельный этой прямой. Точка в том и только в том случае принадлежит прямой , если (где - некоторое число).

г) Пусть - точка плоскости и , - ненулевые и непараллельные между собой векторы, параллельные этой плоскости. Точка в том и только в том случае принадлежит плоскости , если вектор выражается через и , т.е. .

Наконец, отметим еще свойство размерности, выражающее тот факт, что пространство трехмерно.

IV. В пространстве существуют такие три вектора , , , что ни один из них не выражается через два других; любой четвертый вектор выражается через эти три вектора: . определяется равенством: обозначено скалярное произведение вектора (и тогда угол между ними не определяется).

Перечисленные выше свойства векторных операций во многом похожи на свойства сложения и умножения чисел. В то же время вектор – геометрический объект, и в определении векторных операций используются такие геометрические понятия, как длина и угол; этим и объясняется польза векторов для геометрии (и ее приложений к физике и другим областям знания). Однако для решения геометрических задач с помощью векторов необходимо прежде всего научиться «переводить» условие геометрической задачи на векторный «язык». После такого «перевода» осуществляются алгебраические вычисления с векторами, а затем полученное векторное решение снова «переводится» на геометрический «язык». В этом и состоит векторное решение геометрических задач.

При изложении курса геометрии в школе вектор дается как определяемое понятие (см. Определение), и потому принятая в школьном учебнике аксиоматика (см. Аксиоматика и аксиоматический метод) геометрии ничего не говорит о свойствах векторов, т.е. все эти свойства должны доказываться как теоремы.

Существует, однако, и другой путь изложения геометрии, при котором первоначальными (неопределяемыми) понятиями считаются вектор и точка, а отмеченные выше свойства I1, I2, II1-II4, III1-III4, IV, V1-V4 принимаются за аксиомы. Такой путь построения геометрии был предложен в 1917 г. немецким математиком Г. Вейлем. Здесь прямые и плоскости являются определяемыми понятиями. Преимущество такого построения в его краткости и в органической связи с современным пониманием геометрии как в самой математике, так и в других областях знания. В частности, аксиомы II1-II4, III1-III4 вводят так называемое векторное пространство, используемое в современной математике, в физике, математической экономике и т.д.

Страница 1 из 2

Вопрос 1. Что такое вектор? Как обозначаются векторы?
Ответ. Вектором мы будем называть направленный отрезок (рис. 211). Направление вектора определяется указанием его начала и конца. На чертеже направление вектора отмечается стрелкой. Для обозначения векторов будем пользоваться строчными латинскими буквами a, b, c, ... . Можно также обозначить вектор указанием его начала и конца. При этом начало вектора ставится на первом месте. Вместо слова "вектор" над буквенным обозначением вектора иногда ставится стрелка или черта. Вектор на рисунке 211 можно обозначить так:

\(\overline{a}\), \(\overrightarrow{a}\) или \(\overline{AB}\), \(\overrightarrow{AB}\).

Вопрос 2. Какие векторы называются одинаково направленными (противоположно направленными)?
Ответ. Векторы \(\overline{AB}\) и \(\overline{CD}\) называются одинаково направленными, если полупрямые AB и CD одинаково направлены.
Векторы \(\overline{AB}\) и \(\overline{CD}\) называются противоположно направленными, если полупрямые AB и CD противоположно направлены.
На рисунке 212 векторы \(\overline{a}\) и \(\overline{b}\) одинаково направлены, а векторы \(\overline{a}\) и \(\overline{c}\) противоположно направлены.

Вопрос 3. Что такое абсолютная величина вектора?
Ответ. Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Абсолютная величина вектора \(\overline{a}\) обозначается |\(\overline{a}\)|.

Вопрос 4. Что такое нулевой вектор?
Ответ. Начало вектора может совпадать с его концом. Такой вектор будем называть нулевым вектором. Нулевой вектор обозначается нулём с чёрточкой (\(\overline{0}\)). О направлении нулевого вектора не говорят. Абсолютная величина нулевого вектора считается равной нулю.

Вопрос 5. Какие векторы называются равными?
Ответ. Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.

Вопрос 6. Докажите, что равные векторы одинаково направлены и равны по абсолютной величине. И обратно: одинаково направленные векторы, равные по абсолютной величине, равны.
Ответ. При параллельном переносе вектор сохраняет своё направление, а также свою абсолютную величину. Значит, равные векторы направлены одинаково и равны по абсолютной величине.
Пусть \(\overline{AB}\) и \(\overline{CD}\) – одинаково направленные векторы, равные по абсолютной величине (рис. 213). Параллельный перенос, переводящий точку C в точку A, совмещает полупрямую CD с полупрямой AB, так как они одинаково направлены. А так как отрезки AB и CD равны, то при этом точка D совмещается с точкой B, т.е. параллельный перенос переводит вектор \(\overline{CD}\) в вектор \(\overline{AB}\). Значит, векторы \(\overline{AB}\) и \(\overline{CD}\) равны, что и требовалось доказать.

Вопрос 7. Докажите, что от любой точки можно отложить вектор, равный данному вектору, и только один.
Ответ. Пусть CD – прямая, а вектор \(\overline{CD}\) – часть прямой CD. Пусть AB – прямая, в которую переходит прямая CD при параллельном переносе, \(\overline{AB}\) – вектор, в который при параллельном переносе переходит вектор \(\overline{CD}\), а значит, векторы \(\overline{AB}\) и \(\overline{CD}\) равны, а прямые AB и CD параллельны (см. рис. 213). Как мы знаем, через точку не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной (аксиома параллельных прямых). Значит, через точку A можно провести одну прямую, параллельную прямой CD. Так как вектор \(\overline{AB}\) – часть прямой AB, то через точку A можно провести один вектор \(\overline{AB}\), равный вектору \(\overline{CD}\).

Вопрос 8. Что такое координаты вектора? Чему равна абсолютная величина вектора с координатами a 1 , a 2 ?
Ответ. Пусть вектор \(\overline{a}\) имеет началом точку A 1 (x 1 ; y 1), а концом точку A 2 (x 2 ; y 2). Координатами вектора \(\overline{a}\) будем называть числа a 1 = x 2 - x 1 , a 2 = y 2 - y 1 . Координаты вектора будем ставить рядом с буквенным обозначением вектора, в данном случае \(\overline{a}\) (a 1 ; a 2) или просто \((\overline{a 1 ; a 2 })\). Координаты нулевого вектора равны нулю.
Из формулы, выражающей расстояние между двумя точками через их координаты, следует, что абсолютная величина вектора с координатами a 1 , a 2 равна \(\sqrt{a^2 1 + a^2 2 }\).

Вопрос 9. Докажите, что равные векторы имеют соответственно равные координаты, а векторы с соответственно равными координатами равны.
Ответ. Пусть A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2) – начало и конец вектора \(\overline{a}\). Так как равный ему вектор \(\overline{a"}\) получается из вектора \(\overline{a}\) параллельным переносом, то его началом и концом будут соответственно A" 1 (x 1 + c; y 1 + d), A" 2 (x 2 + c; y 2 + d). Отсюда видно, что оба вектора \(\overline{a}\) и \(\overline{a"}\) имеют одни и те же координаты: x 2 - x 1 , y 2 - y 1 .
Докажем теперь обратное утверждение. Пусть соответствующие координаты векторов \(\overline{A 1 A 2 }\) и \(\overline{A" 1 A" 2 }\) равны. Докажем, что векторы равны.
Пусть x" 1 и y" 1 - координаты точки A" 1 , а x" 2 , y" 2 - координаты точки A" 2 . По условию теоремы x 2 - x 1 = x" 2 - x" 1 , y 2 - y 1 = y" 2 - y" 1 . Отсюда x" 2 = x 2 + x" 1 - x 1 , y" 2 = y 2 + y" 1 - y 1 . Параллельный перенос, заданный формулами

x" = x + x" 1 - x 1 , y" = y + y" 1 - y 1 ,

переводит точку A 1 в точку A" 1 , а точку A 2 в точку A" 2 , т.е. векторы \(\overline{A 1 A 2 }\) и \(\overline{A" 1 A" 2 }\) равны, что и требовалось доказать.

Вопрос 10. Дайте определение суммы векторов.
Ответ. Суммой векторов \(\overline{a}\) и \(\overline{b}\) с координатами a 1 , a 2 и b 1 , b 2 называется вектор \(\overline{c}\) с координатами a 1 + b 1 , a 2 + b a 2 , т.е.

\(\overline{a} (a 1 ; a 2) + \overline{b}(b 1 ; b 2) = \overline{c} (a 1 + b 1 ; a 2 + b 2)\).

1. Общие положения

1.1. С целью поддержания деловой репутации и обеспечения выполнения норм федерального законодательства ФГАУ ГНИИ ИТТ «Информика» (далее – Компания) считает важнейшей задачей обеспечение легитимности обработки и безопасности персональных данных субъектов в бизнес-процессах Компании.

1.2. Для решения данной задачи в Компании введена, функционирует и проходит периодический пересмотр (контроль) система защиты персональных данных.

1.3. Обработка персональных данных в Компании основана на следующих принципах:

Законности целей и способов обработки персональных данных и добросовестности;

Соответствия целей обработки персональных данных целям, заранее определенным и заявленным при сборе персональных данных, а также полномочиям Компании;

Соответствия объема и характера обрабатываемых персональных данных, способов обработки персональных данных целям обработки персональных данных;

Достоверности персональных данных, их актуальности и достаточности для целей обработки, недопустимости обработки избыточных по отношению к целям сбора персональных данных;

Легитимности организационных и технических мер по обеспечению безопасности персональных данных;

Непрерывности повышения уровня знаний работников Компании в сфере обеспечения безопасности персональных данных при их обработке;

Стремления к постоянному совершенствованию системы защиты персональных данных.

2. Цели обработки персональных данных

2.1. В соответствии с принципами обработки персональных данных, в Компании определены состав и цели обработки.

Цели обработки персональных данных:

Заключение, сопровождение, изменение, расторжение трудовых договоров, которые являются основанием для возникновения или прекращения трудовых отношений между Компанией и ее работниками;

Предоставление портала, сервисов личного кабинета для учеников, родителей и учителей;

Хранение результатов обучения;

Исполнение обязательств, предусмотренных федеральным законодательством и иными нормативными правовыми актами;

3. Правила обработки персональных данных

3.1. В Компании осуществляется обработка только тех персональных данных, которые представлены в утвержденном Перечне персональных данных, обрабатываемых в ФГАУ ГНИИ ИТТ «Информика»

3.2. В Компании не допускается обработка следующих категорий персональных данных:

Расовая принадлежность;

Политические взгляды;

Философские убеждения;

О состоянии здоровья;

Состояние интимной жизни;

Национальная принадлежность;

Религиозные убеждения.

3.3. В Компании не обрабатываются биометрические персональные данные (сведения, которые характеризуют физиологические и биологические особенности человека, на основании которых можно установить его личность).

3.4. В Компании не осуществляется трансграничная передача персональных данных (передача персональных данных на территорию иностранного государства органу власти иностранного государства, иностранному физическому лицу или иностранному юридическому лицу).

3.5. В Компании запрещено принятие решений относительно субъектов персональных данных на основании исключительно автоматизированной обработки их персональных данных.

3.6. В Компании не осуществляется обработка данных о судимости субъектов.

3.7. Компания не размещает персональные данные субъекта в общедоступных источниках без его предварительного согласия.

4. Реализованные требования по обеспечению безопасности персональных данных

4.1. С целью обеспечения безопасности персональных данных при их обработке в Компании реализуются требования следующих нормативных документов РФ в области обработки и обеспечения безопасности персональных данных:

Федеральный закон от 27.07.2006 г. № 152-ФЗ «О персональных данных»;

Постановление Правительства Российской Федерации от 1 ноября 2012 г. N 1119 "Об утверждении требований к защите персональных данных при их обработке в информационных системах персональных данных";

Постановление Правительства Российской Федерации от 15.09.2008 г. №687 «Об утверждении Положения об особенностях обработки персональных данных, осуществляемой без использования средств автоматизации»;

Приказ ФСТЭК России от 18.02.2013 N 21 "Об утверждении Состава и содержания организационных и технических мер по обеспечению безопасности персональных данных при их обработке в информационных системах персональных данных";

Базовая модель угроз безопасности персональных данных при их обработке в информационных системах персональных данных (утверждена заместителем директора ФСТЭК России 15.02.2008 г.);

Методика определения актуальных угроз безопасности персональных данных при их обработке в информационных системах персональных данных (утверждена заместителем директора ФСТЭК России 14.02.2008 г.).

4.2. Компания проводит оценку вреда, который может быть причинен субъектам персональных данных и определяет угрозы безопасности персональных данных. В соответствии с выявленными актуальными угрозами Компания применяет необходимые и достаточные организационные и технические меры, включающие в себя использование средств защиты информации, обнаружение фактов несанкционированного доступа, восстановление персональных данных, установление правил доступа к персональным данным, а также контроль и оценку эффективности применяемых мер.

4.3. В Компании назначены лица, ответственные за организацию обработки и обеспечения безопасности персональных данных.

4.4. Руководство Компании осознает необходимость и заинтересовано в обеспечении должного как с точки зрения требований нормативных документов РФ, так и обоснованного с точки зрения оценки рисков для бизнеса уровня безопасности персональных данных, обрабатываемых в рамках выполнения основной деятельности Компании.

ов, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.

Определение 1

Если точка $A$ начала какого-либо вектора $\overrightarrow{a}$, то говорят, что вектор $\overrightarrow{a}$ отложен от точки $A$ (рис. 1).

Рисунок 1. $\overrightarrow{a}$ отложенный от точки $A$

Введем следующую теорему:

Теорема 1

От любой точки $K$ можно отложить вектор $\overrightarrow{a}$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

    Вектор $\overrightarrow{a}$ - нулевой.

    В этом случае, очевидно, что искомый вектор -- вектор $\overrightarrow{KK}$.

    Вектор $\overrightarrow{a}$ -- ненулевой.

    Обозначим точкой $A$ -- начало вектора $\overrightarrow{a}$, а точкой $B$ - конец вектора $\overrightarrow{a}$. Проведем через точку $K$ прямую $b$ параллельную вектору $\overrightarrow{a}$. Отложим на этой прямой отрезки $\left|KL\right|=|AB|$ и $\left|KM\right|=|AB|$. Рассмотрим векторы $\overrightarrow{KL}$ и $\overrightarrow{KM}$. Из этих двух векторов искомым будет тот, который будет сонаправлен с вектором $\overrightarrow{a}$ (рис. 2)

Рисунок 2. Иллюстрация теоремы 1

Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

Теорема доказана.

Вычитание векторов. Правило первое

Пусть нам даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$.

Определение 2

Разностью двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ называется такой вектор $\overrightarrow{c}$, который при сложении с вектором $\overrightarrow{b}$ дает вектор $\overrightarrow{a}$, то есть

\[\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}\]

Обозначение: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{c}$.

Построение разности двух векторов рассмотрим с помощью задачи.

Пример 1

Пусть даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$. Построить вектор $\overrightarrow{a}-\overrightarrow{b}$.

Решение.

Построим произвольную точку $O$ и отложим от нее векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$. Соединив точку $B$ с точкой $A$, получим вектор $\overrightarrow{BA}$ (рис. 3).

Рисунок 3. Разность двух векторов

По правилу треугольника для построения суммы двух векторов видим, что

\[\overrightarrow{OB}+\overrightarrow{BA}=\overrightarrow{OA}\]

\[\overrightarrow{b}+\overrightarrow{BA}=\overrightarrow{a}\]

Из определения 2, получаем, что

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}\]

Ответ: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}$.

Из этой задачи получаем следующее правило для нахождения разности двух векторов. Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$ и соединить конец второго вектор с концом первого вектора.

Вычитание векторов. Правило второе

Вспомним следующее необходимое нам понятие.

Определение 3

Вектор $\overrightarrow{a_1}$ называется произвольным для вектора $\overrightarrow{a}$, если эти векторы противоположно направлены и имеют равную длину.

Обозначение: Вектор $(-\overrightarrow{a})$ противоположный для вектора $\overrightarrow{a}$.

Для того чтобы ввести второе правило для разности двух векторов, нам необходимо в начале ввести и доказать следующую теорему.

Теорема 2

Для любых двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ справедливо следующее равенство:

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{a}+(-\overrightarrow{b})\]

Доказательство.

По определению 2, имеем

Прибавим к обеим частям вектор $\left(-\overrightarrow{b}\right)$, получим

Так как векторы $\overrightarrow{b}$ и $\left(-\overrightarrow{b}\right)$ противоположны, то $\overrightarrow{b}+\left(-\overrightarrow{b}\right)=\overrightarrow{0}$. Имеем

Теорема доказана.

Из этой теоремы получаем следующее правило для разности двух векторов: Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить вектор $\overrightarrow{OA}=\overrightarrow{a}$, затем от полученной точки $A$ отложить вектор $\overrightarrow{AB}=-\overrightarrow{b}$ и соединить начало первого вектора с концом второго вектора.

Пример задачи на понятие разности векторов

Пример 2

Пусть дан параллелограмм $ADCD$, диагонали которого пересекаются в точке $O$. $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AD}=\overrightarrow{b}$ (рис. 4). Выразить через векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ следующие векторы:

а) $\overrightarrow{DC}+\overrightarrow{CB}$

б) $\overrightarrow{BO}-\overrightarrow{OC}$

Рисунок 4. Параллелограмм

Решение.

а) Произведем сложение по правилу треугольника, получим

\[\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\]

Из первого правила разности двух векторов, получаем

\[\overrightarrow{DB}=\overrightarrow{a}-\overrightarrow{b}\]

б) Так как $\overrightarrow{OC}=\overrightarrow{AO}$, получим

\[\overrightarrow{BO}-\overrightarrow{OC}=\overrightarrow{BO}-\overrightarrow{AO}\]

По теореме 2, имеем

\[\overrightarrow{BO}-\overrightarrow{AO}=\overrightarrow{BO}+\left(-\overrightarrow{AO}\right)=\overrightarrow{BO}+\overrightarrow{OA}\]

Используя правило треугольника, окончательно имеем

\[\overrightarrow{BO}+\overrightarrow{OA}=\overrightarrow{BA}=-\overrightarrow{AB}=-\overrightarrow{a}\]