Биогафии

Реакции матричного синтеза. Матричный синтез: описание, особенности и свойства

На вопрос Матричный синтез это заданный автором Алена Августеняк лучший ответ это МАТРИЧНЫЙ СИНТЕЗ - ЭТО
1. Полимеризация и поликонденсация, при к-рых строение образующегося полимера и (или) кинетика процесса определяются др. макромолекулами (матрицами) , находящимися в непосредств. контакте с молекулами одного или неск. мономеров и растущими цепями. Пример М. с. в живой природе - синтез нуклеиновых к-т и белков, в к-ром роль матрицы играют ДНК и РНК, а состав и порядок чередования звеньев в растущей (дочерней) цепи однозначно определяются составом и структурой матрицы. Термин "М. с. " обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация.

Такой М. с. реализуется при условии хим. и стерич. соответствия (комплементарности) мономеров и растущей цепи, с одной стороны, и матрицы - с другой; при этом элементарные акты осуществляются между мономерами и растущими макромолекулами (а также олигомерами - при матричной поликонденсации) , связанными с матрицей. Обычно мономеры и олигомеры обратимо связываются с матрицей достаточно слабыми межмол. взаимод. - электростатич. , донорно-акцепторным и т. д. Дочерние цепи практически необратимо ассоциируют с матрицей ("узнают" матрицу) только после того, как достигнут нек-рой определенной длины, зависящей от энергии взаимод. между звеньями матрицы и дочерней цепи. "Узнавание" матрицы растущей цепью - необходимая стадия М. с. ; дочерние цепи практически всегда содержат фрагмент или фрагменты, образовавшиеся по "обычному" механизму, т. е. без влияния матрицы. Скорость М. с. может быть выше, ниже или равна скорости процесса в отсутствие матрицы (кинетич. матричный эффект). Структурный матричный эффект проявляется в способности матрицы влиять на длину и хим. строение дочерних цепей (в т. ч. их стерич. структуру) , а если в М. с. участвуют два или более мономера - то также на состав сополимера и способ чередования звеньев. Методом М. с. получают полимер-полимерные комплексы, обладающие более упорядоченной структурой, чем поликомплексы, синтезируемые простым смешением р-ров полимеров, а также поликомплексы, к-рые нельзя получить из готовых полимеров вследствие нерастворимости одного из них. М. с. - перспективный метод получения новых полимерных материалов. Термин "М. с. " обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация. Лит. : Кабанов В. А. , Паписов И. М. , "Высокомолекулярные соединения", сер. А, 1979, т. 21, № 2, с. 243-81; Картина О. В. [и др.] , "ДАН СССР", 1984, т. 275, №3, с. 657-60; Литманович А. А. , Марков С. В. , Паписов И. М. , "Высокомолекулярные соединения", сер. А, 1986, т. 28, №6, с. 1271-78; Ferguson J., Al-Alawi S., Graumayen R., "European Polymer Journall", 1983, v. 19, № 6, p. 475-80; Polоwinski S., "J. Polymer. Sci.", Polimer Chemistry Edition, 1984, v. 22, № 11, p. 2887-94. И. М. Паписов.
ссылка


Матричный синтез

Способность генетического материала, ДНК, к самовоспроизведению (репликации) лежит в основе размножения живых организмов, передачи наследственных свойств из поколения в поколение и развития многоклеточного организма из зиготы. Модель ДНК Уотсона и Крика сразу же позволила понять принцип удвоения ДНК. Поскольку каждая из цепей ДНК содержит последовательность нуклеотидов, комплементарную другой цепи, т. е. их информационное содержание идентично, представлялось вполне логичным, что при удвоении ДНК цепи расходятся, а затем каждая цепь служит матрицей, на которой выстраивается комплементарная ей новая цепь ДНК. В результате образуются два дуплекса ДНК, каждый из которых состоит из одной цепи исходной родительской молекулы ДНК и одной новосинтезированной цепи. Экспериментально показано, что именно так, по полуконсервативному механизму, происходит репликация ДНК.

Несмотря на простоту основного принципа, процесс репликации сложно организован и требует участия множества белков. Эти белки, как и все другие, закодированы в последовательности нуклеотидов ДНК. Таким образом, возникает важнейшая для жизни петля обратной связи: ДНК направляет синтез белков, которые реплицируют ДНК.

ДНК-полимеразы

Комплементарное копирование матрицы осуществляют ферменты ДНК-зависимые ДНК-полимеразы или просто ДНК-полимеразы. ДНК-полимеразы ведут синтез ДНК на одноцепочечной матрице фрагмент растущей цепи ДНК. ДНК-полимеразы последовательно наращивают конец затравки, шаг за шагом присоединяя к нему следующие нуклеотиды, причем выбор очередного нуклеотида для присоединения к концу затравки диктуется матрицей.

Очередной нуклеотид, субстрат для ДНК-полимеразы, поступает в реакцию в активированной высокоэнергетической форме дезокси-рибонуклеозидтрифосфата. В этом отношении синтез ДНК напоминает синтез всех других биополимеров: поскольку полимеризация мономеров в полимер энергетически не выгодна, мономеры всегда поступают в реакцию синтеза в активированной форме. В случае синтеза ДНК присоединение очередного нуклеотида к концу затравки сопровождается гидролизом богатой энергией связи и отщеплением пирофосфата, что и делает реакцию в целом энергетически выгодной. Наличие в клетке пирофосфатазы обеспечивает расщепление пирофосфата и делает реакцию практически необратимой. При полимеризации растет всегда 3"-конец затравки, т. е. синтез происходит в направлении 5"→ 3": 3"-ОН-группа концевого нуклеотида затравки атакует a-фосфат очередного дезоксирибонуклеозидтрифосфата (но только в том случае, если он комплементарен очередному нуклеотиду матрицы), в результате чего отщепляется пирофосфат, а дезоксирибонуклеозид- монофосфат оказывается связанным фосфодиэфирной связью с растущей цепью ДНК, удлиняя ее на одно звено.

Затравка антипараллельна матрице. Естественно, эта полярность сохраняется и при ее дальнейшем росте, так что результатом работы ДНК-полимеразы на одноцепочечной матрице является антипараллельная двойная спираль ДНК.

ДНК-полимеразы безразличны к последовательности нуклеотидов матрицы; задача этих ферментов - снять точную копию с матрицы, с какой - неважно.

Точность синтеза ДНК и коррекция

Нормальное размножение клеток требует высокой точности копирования ДНК-матрицы. Генетический материал живых организмов имеет огромные размеры. Оказывается, у всех организмов точность работы репликативной машины (включающей не только ДНК-полимеразы, но и другие белки) как раз такова, чтобы обеспечить безошибочное воспроизведение всего генома или допустить лишь малое число ошибок. Так, у бактерий ошибки синтеза ДНК происходят не чаще чем один раз на много миллионов нуклеотидов. Молекулярные взаимодействия, на которых основаны ферментативные реакции, в частности синтез ДНК, не могут быть абсолютно надежными, кроме того, точность процесса связана с его скоростью. Для того чтобы обеспечить высокую точность наряду с высокой скоростью репликации, природе пришлось прибегнуть к специальным механизмам, один из которых - механизм коррекции.

ДНК-полимеразы проверяют комплементарность каждого нуклеотида матрице дважды: один раз перед включением его в состав растущей цепи и второй раз перед тем, как включить следующий нуклеотид. Очередная фосфодиэфирная связь образуется лишь в том случае, если последний (3"-концевой) нуклеотид затравки комплементарен матрице. Если же на предыдущей стадии полимеризации произошла ошибка (например, из-за того, что нуклеотид в момент полимеризации находился в необычной таутомерией форме), то репликация останавливается до тех пор, пока неправильный нуклеотид не будет удален. Некоторые ДНК-полимеразы обладают не только полимеризующей, но и 3"- экзонуклеазной активностью, которая отщепляет не спаренный с матрицей нуклеотид затравки, после чего полимеризация восстанавливается. Этот механизм, коррекция, заметно увеличивает точность работы ДНК-полимераз. Мутации, нарушающие 3"-экзонуклеазную активность ДНК-полимеразы, существенно повышают частоту возникновения прочих мутаций. Напротив, мутации, приводящие к усилению экзонуклеазной активности относительно полимеризующей, снижают темп мутирования генетического материала.

Разные ДНК-полимеразы одного организма и ДНК-полимеразы различных организмов имеют разное строение. Иногда один полипептид обладает и полимеразной, и 3"-экзонуклеазной активностями, в других случаях за эти активности ответственны разные субъединицы мультисубъединичного фермента. У некоторых ДНК-полимераз корректирующая экзонуклеазная активность не обнаружена. Не исключено, что за коррекцию в этих случаях ответствен отдельный белок.

Основные принципы репликации

Инициация цепей ДНК

ДНК-полимеразы не способны инициировать новые цепи ДНК. Они могут лишь достраивать уже имеющуюся затравку. Иными словами, синтез ДНК начинается с синтеза РНК. РНК-затравку для синтеза ДНК образует специальный фермент, называемый ДНК-праймазой (от англ праймер - затравка). Праймаза может быть отдельным ферментом, как у бактерий, или входить в качестве субъединицы в ДНК-полимеразу (как у ДНК-полимеразы а животных). В любом случае праймаза - это фермент, отличный от РНК-полимераз, синтезирующих разнообразные клеточные РНК и тоже способных инициировать синтез новых полинуклеотидных цепей. После того как цепь ДНК начала синтезироваться, РНК-затравки удаляются и образовавшиеся бреши застраиваются ДНК-полимеразой, т. е. с высокой точностью.

Расплетание двойной спирали ДНК в ходе репликации

Нативные ДНК двуспиральны; следовательно, перед репликацией цепи родительской молекулы, матричные цепи ДНК, должны быть разделены. Эту реакцию осуществляют два типа белков: хеликазы и SSB-белки (от англ, single strand binding - белки, связывающиеся с однонитевой ДНК). Хеликазами называют ДНК-зависимые АТРа-зы, использующие энергию гидролиза АТР для расплетания двойной спирали (helix) ДНК. Считается, что хеликаза, движимая гидролизом АТР, однонаправленно «едет» по одной из цепей ДНК, расплетая перед собой двойную спираль. Есть хеликазы, которые едут от 5"-конца к 3"-концу цепи ДНК, и есть другие, перемещающиеся в обратном направлении. В результате работы хеликаз возникает «вилка» из двуспирального участка ДНК и двух одноцепочечных ветвей. Ренатурации одноцепочечных участков ДНК препятствует их связывание SSB-белком, имеющим избирательное сродство к однонитевой ДНК (рис. 3).

SSB-белки и хеликазы обнаружены у многих про- и эукариотических организмов. Роль SSB-белка в репликации, по-видимому, состоит в том, чтобы расправить ДНК, вытянуть ее и удалить возможные элементы вторичной структуры, которые могли бы образоваться в самокомплементарных участках ДНК. Связывание одноцепочечной ДНК с SSB-белком стимулирует ДНК- полимеразу и повышает точность ее работы. Этот эффект вызывается не только разрушением вторичной структуры одноцепочечной ДНК, но и непосредственным взаимодействием ДНК-полимеразы с SSB-белком, поскольку обычно полимеразу стимулирует лишь «свой» SSB-белок, но не аналогичный белок из другого источника. SSB-белок Е. coli - тетрамер, состоящий из идентичных субъединиц размером 19 кД. SSB-белок связывается с ДНК кооперативно, т. е. за счет белок-белковых взаимодействий тетрамеры покрывают ДНК вплотную друг к другу.

Рисунок 3. Расплетание двойной спирали ДНК хеликазой и SSB-белком

Прерывистый синтез ДНК

Так как цепи ДНК в дуплексе антипараллельны, то очевидно, что направление расплетания двойной спирали при репликации совпадает с направлением синтеза ДНК лишь для одной матричной цепи, но противоположно направлению синтеза ДНК на комплементарной матрице (рис. 4). Это значит, что лишь на одной из матричных цепей синтез ДНК может происходить непрерывно. Показано, что ДНК синтезируется сравнительно короткими фрагментами, называемыми фрагментами Оказаки. Таким образом, синтез ДНК на двух матричных цепях исходной молекулы заметно различается. Новосинтезированная цепь, которая синтезируется непрерывно, называется ведущей (англ, leading), другая цепь называется запаздывающей (англ, lagging). Каждый фрагмент Оказаки имеет на 5"-конце несколько рибонуклеоти-дов - результат действия праймазы. Характерный размер фрагментов Оказаки различается для бактерий и эукариот: у бактерий они имеют длину около 1000 нуклеотидов, у эукариот они короче, порядка 100 нуклеотидов. Через некоторое время после синтеза РНК-затравки удаляются, бреши застраиваются ДНК-полимеразой, а фрагменты сшиваются в одну ковалентно-непрерывную цепь ДНК предназначенным специально для этого ферментом, ДНК-лигазой. ДНК-лигазы обнаружены у самых разных организмов. Они нуждаются в высокоэнергетических кофакторах.

Репликатитвная вилка

Рисунок участка ДНК в районе репликативной вилки



1. Полимеризация и поликонденсация, при к-рых строение образующегося полимера и (или) кинетика процесса определяются др. макромолекулами (матрицами), находящимися в непосредств. контакте с молекулами одного или неск. мономеров и растущими цепями. Пример М. с. в живой природе - синтез нуклеиновых к-т и белков, в к-ром роль матрицы играют ДНК и РНК, а состав и порядок чередования звеньев в растущей (дочерней) цепи однозначно определяются составом и структурой матрицы. Термин "М. с." обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация. Такой М. с. реализуется при условии хим. и стерич. соответствия (комплементарности) мономеров и растущей цепи, с одной стороны, и матрицы - с другой; при этом элементарные акты осуществляются между мономерами и растущими макромолекулами (а также олигомерами - при матричной поликонденсации), связанными с матрицей. Обычно мономеры и олигомеры обратимо связываются с матрицей достаточно слабыми межмол. взаимод. - электростатич., донорно-акцепторным и т. д. Дочерние цепи практически необратимо ассоциируют с матрицей ("узнают" матрицу) только после того, как достигнут нек-рой определенной длины, зависящей от энергии взаимод. между звеньями матрицы и дочерней цепи. "Узнавание" матрицы растущей цепью - необходимая стадия М. с.; дочерние цепи практически всегда содержат фрагмент или фрагменты, образовавшиеся по "обычному" механизму, т. е. без влияния матрицы. Скорость М. с. может быть выше, ниже или равна скорости процесса в отсутствие матрицы (кинетич. матричный эффект). Структурный матричный эффект проявляется в способности матрицы влиять на длину и хим. строение дочерних цепей (в т. ч. их стерич. структуру), а если в М. с. участвуют два или более мономера - то также на состав сополимера и способ чередования звеньев. Методом М. с. получают полимер-полимерные комплексы, обладающие более упорядоченной структурой, чем поликомплексы, синтезируемые простым смешением р-ров полимеров, а также поликомплексы, к-рые нельзя получить из готовых полимеров вследствие нерастворимости одного из них. М. с. - перспективный метод получения новых полимерных материалов. Термин "М. с." обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация. Лит.: Кабанов В. А., Паписов И. М., "Высокомолекулярные соединения", сер. А, 1979, т. 21, № 2, с. 243-81; Картина О. В. [и др.], "ДАН СССР", 1984, т. 275, №3, с. 657-60; Литманович А. А., Марков С. В., Паписов И. М., "Высокомолекулярные соединения", сер. А, 1986, т. 28, №6, с. 1271-78; Ferguson J., Al-Alawi S., Graumayen R., "European Polymer Journall", 1983, v. 19, № 6, p. 475-80; Polоwinski S., "J. Polymer. Sci.", Polimer Chemistry Edition, 1984, v. 22, № 11, p. 2887-94. И. М. Паписов.
2. Хим. р-ции, в к-рых строение образующегося мономолекулярного орг. соед. и (или) кинетика процесса определяется атомом металла (т. наз. темплатный синтез). Атом металла может входить в состав соли или комплексного соед. и выполнять в М. с. разл. ф-ции. Он координирует молекулы и тем самым ориентирует их реагирующие фрагменты (т. наз. кинетич. эффект в М. с.); в этом случае образование целевого продукта без участия в р-ции атома металла вообще не происходит. Атом металла может связывать в комплекс только один из конечных продуктов, к-рые образуются в равновесной р-ции (т. наз. термодинамич. эффект в М. с.); образование целевого продукта может происходить и в отсутствие металла, однако под влиянием последнего выход р-ции существенно возрастает. Часто оба эти механизма проявляются одновременно. Известны случаи, когда равновесная р-ция осуществляется на стадии образования промежут. продукта. Последний фиксируется в виде металлокомплекса, и дальнейшее превращ. идет специфич. образом (т. наз. равновесный эффект в М. с.). Возможны и др. механизмы М. с. М. с. обычно используют для синтеза циклич. соединений. Типичный пример М. с. - получение коррина (промежут. в-ва в синтезе витамина В 12) из соед. I:


В отсутствие Со соед. I переходит преим. в эндо -изомер, к-рый бесполезен для дальнейшего синтеза. Нужную экзо- структуру (I) закрепляют, получая комплексное соединение (II). Наличие атома Со в комплексе (он необходим и в витамине В 12) обусловливает пространств. сближение тиометильной и метиленовой групп, что имеет ключевое значение для образования цикла коррина (III). Важное значение приобрел М. с. краун-эфиров в присут. ионов щелочных или щел.-зем. металлов (М). Матричный эффект ионов М n+ обусловлен их способностью к реорганизации пространств. строения молекулы открытоцепного реагента в конфигурацию, удобную для замыкания цикла. При этом обеспечивается большая прочность координац. связей в переходном состоянии, чем в комплексе М n+ с открытоцепной молекулой. Возникает прямой предшественник макроциклич. комплекса, в к-ром соблюдается соответствие между диаметром М n+ и размером полости макроцикла. Ионы атомов металла, размеры к-рых меньше или больше определенного размера (разного для разл. соед.), после осуществления М. с. могут и не входить в координац. полость конечного макроцикла. Так, при конденсации фурана с ацетоном в кислой среде без ионов металла образуется полимер линейного строения; выход циклич. тетрамера IV незначителен. В присут. LiClO 4 выход линейного продукта резко падает, а основным направлением становится образование макрогетероцикла IV:


В подобных р-циях связывание катиона металла посторонними и более сильными комплексообразователями, напр. краун-эфирами, блокирует М. с. Если по завершении М. с. ион металла не уходит самопроизвольно, а образовавшийся лиганд принципиально может существовать в своб. виде, встает задача деметаллизации продукта. Этого достигают действием к-т, реагентов, специфично связывающих металлы (цианиды связывают Ni, о-фенантролин - Fe). Иногда деметаллизацию осуществляют, снижая координац. способность металла изменением его валентности с помощью окислит.-восстановит. р-ций. Принципиально важны случаи, когда образуется продукт, координац. связь к-рого с ионом металла слабее, чем связь этого иона с исходными реагентами. Тогда продукт легко "соскальзывает" с иона металла; исходные реагенты образуют с металлом новый комплекс, идентичный первоначальному. К числу таких р-ций принадлежит циклоолигомеризация ацетилена под действием Ni(CN) 2 . Кол-во атомов С в образующемся цикле зависит от числа молекул ацетилена, координированных у атома Ni, и от их взаимного расположения. Если возникает октаэдрич. шестикоординационный комплекс V, в к-ром 4 координац. места заняты p-связанными молекулами ацетилена, то образуется циклооктатетраен:


Если в реакц. среде присутствует РРh 3 , формируется комплекс VI, в к-ром на долю ацетилена остается лишь 3 своб. места; конечный продукт циклизации - бензол:


В присут. 1,10-фенантролина образуется комплекс VII, в к-ром ацетилен занимает 2 разобщенных положения. Катализатор при этом отравляется и циклизация не происходит.

В нек-рых случаях М. с. могут вызывать и ионы водорода; макроцикл как бы наращивается на протоны, действующие в паре на таком расстоянии между ними, к-рое минимально допустимо с точки зрения кулоновского отталкивания, напр.:


М. с. имеет важное значение для изучения механизмов р-ций. Кроме чисто топологич. ф-ции подготовки и сближения реакц. центров, ионы металлов стабилизируют неустойчивые промежут. соед., облегчая их выделение и исследование. С помощью М. с. получены многочисл. циклич. соед., используемые в разл. областях. Лит.: Гэрбэлэу Н. В., Реакции на матрицах, Киш., 1980; Дзиомко В. М., "Химия гетероциклических соединений", 1982, № 1, с. 3 18; Mandolini L., "Pure and Appl. Chem.", 1986, v.58, № 11, p. 1485-92. 3. В. Тодрес.

  • - pseudobridge, matrix bridge - “псевдомост”, .Aнафазный мост, образующийся в результате слипания хромосомного матрикса расходящихся к противоположным полюсам хромосом...

    Молекулярная биология и генетика. Толковый словарь

  • - англ. matrix analysis; нем. Matrixanalyse. В социологии - метод исследования свойств соц. объектов на основе использования правил теории матриц...

    Энциклопедия социологии

  • - в полиграфии - пресс для тиснения стереотипных матриц или неме-таллич. стереотипов, как правило, гидравлический...

    Большой энциклопедический политехнический словарь

  • - Устройство, применяемое для прессования картонных или винипластовых матриц, а также пластмассовых стереотипов...

    Краткий толковый словарь по полиграфии

  • - анализ, основанный на применении теории матриц, по которым вычисляются параметры элементов модели, составляющие экономические системы...

    Словарь бизнес терминов

  • - метод научного исследования свойств объектов на основе использования правил теории матриц, по которым определяется значение элементов модели, отображающих взаимосвязи экономических объектов...

    Большой экономический словарь

  • - в экономике, метод научного исследования свойств объектов на основе использования правил теории матриц, по которым определяется значение элементов модели, отображающих взаимосвязи экономических объектов...

    Большая Советская энциклопедия

  • - метод исследования взаимосвязей между экономическими объектами с помощью их матричного моделирования...

    Большой энциклопедический словарь

  • - ...

    Орфографический словарь русского языка

  • - МА́ТРИ-А, -ы, ж. ...

    Толковый словарь Ожегова

  • - МА́ТРИЧНЫЙ, матричная, матричное. прил. к матрица. Матричный картон...

    Толковый словарь Ушакова

  • - ма́тричный I прил. соотн. с сущ. матрица I, связанный с ним II прил. 1. соотн. с сущ. матрица II, связанный с ним 2. Обеспечивающий печать с помощью матрицы. III прил. соотн...

    Толковый словарь Ефремовой

  • - м"...

    Русский орфографический словарь

  • - ...

    Формы слова

  • - прил., кол-во синонимов: 1 матрично-векторный...

    Словарь синонимов

  • - прил., кол-во синонимов: 1 четырех...

    Словарь синонимов

"МАТРИЧНЫЙ СИНТЕЗ" в книгах

Синтез

Из книги Листы дневника. Том 2 автора

Синтез Иногда кажется, что многое без следа забывается, исчезает. С годами ли? Или нечто более важное прикрывает давно бывшее? Ни то, ни другое. Постоянно убеждаемся, что все сохранно. Сложено глубоко и выявляется по мере надобности. Происходит синтез. Но трудно судить,

13. СИНТЕЗ

Из книги Рерих автора Антология гуманной педагогики

13. СИНТЕЗ Иногда кажется, что многое без следа забывается, исчезает. С годами ли? Или нечто более важное прикрывает давно бывшее? Ни то, ни другое. Постоянно убеждаемся, что все сохранно. Сложено глубоко и выявляется по мере надобности. Происходит синтез. Но трудно судить,

Речевые «формулы детства»: «Понимать – говорить – читать – писать» и «Синтез – анализ – синтез»

Из книги Психология речи и лингвопедагогическая психология автора Румянцева Ирина Михайловна

Речевые «формулы детства»: «Понимать – говорить – читать – писать» и «Синтез – анализ – синтез» Можно сказать, что одними из главных положений в обучении через ИЛПТ являются два психологических и психолингвистических закона, которые мы окрестили «формулами детства»,

Беседа 8. Я несу величайший синтез, который возможен для вас в этом мире, - синтез любви и медитации

Из книги Приходи, следуй за Мною. Беседы по притчам Иисуса. Том 3 автора Раджниш Бхагван Шри

Беседа 8. Я несу величайший синтез, который возможен для вас в этом мире, - синтез любви и медитации 18 декабря 1975г., ПунаУ меня часто возникает желание иметь изолированное безопасное место, способствующее отказу от мира. Медитации по нескольку часов в день, все более и

Синтез

Из книги О Вечном… автора Рерих Николай Константинович

Синтез Иногда кажется, что многое без следа забывается, исчезает. С годами ли? Или нечто более важное прикрывает давно бывшее? Ни то, ни другое. Постоянно убеждаемся, что все сохранено. Сложено глубоко и выявляется по мере надобности. Происходит синтез. Но трудно судить,

Синтез

Из книги Легенды Азии (сборник) автора Рерих Николай Константинович

Синтез Синтез самый вмещающий, самый доброжелательный может создавать то благотворное сотрудничество, в котором все человечество так нуждается сейчас. От высших представителей духовного мира до низшего материалиста-торговца - все согласятся на том, что без

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства Термины и понятия, проверяемые в экзаменационной работе: антикодон, биосинтез, ген, генетическая информация,

Матричный анализ

Из книги Большая Советская Энциклопедия (МА) автора БСЭ

Синтез

Из книги Большая Советская Энциклопедия (СИ) автора БСЭ

СИНТЕЗ

Из книги Рок-энциклопедия. Популярная музыка в Ленинграде-Петербурге, 1965–2005. Том 3 автора Бурлака Андрей Петрович

СИНТЕЗ Группу СИНТЕЗ организовал в декабре 1976 года музыкант-любитель и специалист по электронике Александр Супрунов (р. 2.07.53 в Ленинграде). В конце 60-х он впервые услышал на альбомах западных рок-групп звучание тогдашних электронных клавишных инструментов

Матричный замер

Из книги Цифровая фотография от А до Я автора Газаров Артур Юрьевич

Матричный замер Матричный замер (Matrix metering, Pattern Evaluative, E) также называют мультизонным, многозональным, многосегментным, оценочным. В автоматическом режиме камера устанавливает стандартный матричный экспозамер, используемый чаще других. Это самый интеллектуальный замер,

12.9. Матричный метод разработки решений

Из книги Системное решение проблем автора Лапыгин Юрий Николаевич

12.9. Матричный метод разработки решений Принятие решения на основе матричного метода сводится к осуществлению выбора с учетом интересов всех заинтересованных сторон. Схематично процесс решений при этом выглядит так, как это показано на рис. 12.7. Как мы видим, существует

8.11. Матричный метод РУР

Из книги Управленческие решения автора Лапыгин Юрий Николаевич

8.11. Матричный метод РУР Принятие решения на основе матричного метода сводится к осуществлению выбора с учетом интересов всех заинтересованных сторон. Схематично процесс РУР при этом выглядит так, как это показано на рис. 8.13. Рис. 8.13. Модель РУР матричным методомНа

11.3. Матричный метод разработки стратегий

Из книги Стратегический менеджмент: учебное пособие автора Лапыгин Юрий Николаевич

11.3. Матричный метод разработки стратегий Разработка видения организацииРазличные состояния внешней и внутренней среды организаций объясняют разнообразие самих организаций и их фактическое состояние.Многофакторность параметров, определяющих положение каждой

Синтез

Из книги Суверенитет духа автора Матвейчев Олег Анатольевич

Синтез Следующий, и, наверное, завершающий (почему завершающей, мы увидим ниже) всю западную политическую мысль, этап связан с диалектикой Гегеля.В логике вообще, говорит Гегель, смысл слова «единичность» познается только в отношении к «некоторости» и «множественности».

Матричный синтез представляет собой образование биополимера, последовательность звеньев в котором определяется первичной структурой другой молекулы. Последняя как бы выполняет роль матрицы, "диктующей" нужный порядок сборки цепи. В живых клетках известны три биосинтетических процесса, основанных на этом механизме.

Какие молекулы синтезируются на основе матрицы

К реакциям матричного синтеза относят:

  • репликацию - удвоение генетического материала;
  • транскрипцию - синтез рибонуклеиновых кислот;
  • трансляцию - производство белковых молекул.

Репликация представляет собой превращение одной молекулы ДНК в две идентичные друг другу, что имеет огромное значение для жизненного цикла клеток (митоз, мейоз, удвоение плазмид, деление бактериальных клеток и т. д.). Очень многие процессы основаны на "размножении" генетического материала, а матричный синтез позволяет воссоздать точную копию любой молекулы ДНК.

Транскрипция и трансляция представляют собой две стадии реализации генома. При этом наследственная информация, записанная в ДНК, преобразуется в определенный белковый набор, от которого зависит фенотип организма. Данный механизм именуется путем "ДНК-РНК-белок" и составляет одну из центральных догм молекулярной биологии.

Реализация этого принципа достигается при помощи матричного синтеза, который сопрягает процесс образования новой молекулы с "исходным образцом". Основой такого сопряжения является фундаментальный принцип комплементарности.

Основные аспекты синтеза молекул на основе матрицы

Информация о структуре синтезируемой молекулы содержится в последовательности звеньев самой матрицы, к каждому из которых подбирается соответствующий элемент "дочерней" цепи. Если химическая природа синтезируемой и матричной молекул совпадают (ДНК-ДНК или ДНК-РНК), то сопряжение происходит напрямую, так как каждый нуклеотид имеет пару, с которой может связаться.

Для синтеза белка требуется посредник, одна часть которого взаимодействует с матрицей по механизму нуклеотидного соответствия, а другая присоединяет белковые звенья. Таким образом, принцип комплементарности нуклеотидов работает и в этом случае, хоть и не связывает напрямую звенья матричной и синтезируемой цепей.

Этапы синтеза

Все процессы матричного синтеза поделены на три этапа:

  • инициация (начало);
  • элонгация;
  • терминация (окончание).

Инициация представляет собой подготовку к синтезу, характер которой зависит от вида процесса. Главной целью этой стадии является приведение системы фермент-субстрат в рабочее состояние.

Во время элонгации непосредственно осуществляется наращивание синтезируемой цепи, при котором между подобранными согласно матричной последовательности звеньями замыкается ковалентная связь (пептидная или фосфодиэфирная). Терминация приводит к остановке синтеза и освобождению продукта.

Роль комплементарности в механизме матричного синтеза

Принцип комплементарности основан на выборочном соответствии азотистых оснований нуклеотидов друг другу. Так, аденину в качестве пары подойдут только тимин или урацил (двойная связь), а гуанину - цитозин (3 тройная связь).

В процессе синтеза нуклеиновых кислот со звеньями одноцепочечной матрицы связываются комплементарные нуклеотиды, выстраиваясь в определенную последовательность. Таким образом, на основании участка ДНК ААЦГТТ при репликации может получиться только ТТГЦАА, а при транскрипции - УУГЦАА.

Как уже было отмечено выше, белковый синтез происходит с участием посредника. Эту роль выполняет транспортная РНК, которая имеет участок для присоединения аминокислоты и нуклеотидный триплет (антикодон), предназначенный для связывания с матричной РНК.

В этом случае комплементарный подбор происходит не по одному, а по три нуклеотида. Так как каждая аминокислота специфична только к одному виду тРНК, а антикодон соответствует конкретному триплету в РНК, синтезируется белок с определенной последовательностью звеньев, которая заложена в геноме.

Как происходит репликация

Матричный синтез ДНК происходит с участием множества ферментов и вспомогательных белков. Ключевыми компонентами являются:

  • ДНК-хеликаза - расплетает двойную спираль, разрушает связи между цепями молекулы;
  • ДНК-лигаза - "зашивает" разрывы между фрагментами Оказаки;
  • праймаза - синтезирует затравку, необходимую для работы ДНК-синтезирующего фрагмента;
  • SSB-белки - стабилизируют одноцепочечные фрагменты расплетенной ДНК;
  • ДНК-полимеразы - синтезируют дочернюю матричную цепь.

Хеликаза, праймаза и SSB-белки подготавливают почву для синтеза. В результате каждая из цепей исходной молекулы становится матрицей. Синтез осуществляется с огромной скоростью (от 50 нуклеотидов в секунду).

Работа ДНК-полимеразы происходит в направлении от 5`к 3`- концу. Из-за этого на одной из цепей (лидирующей) синтез происходит по ходу расплетания и непрерывно, а на другой (отстающей) - в обратном направлении и отдельными фрагментами, названными "Оказаки".

Y-образная структура, образованная в месте расплетания ДНК, называется репликационной вилкой.

Механизм транскрипции

Ключевым ферментом транскрипции является РНК-полимераза. Последняя бывает нескольких видов и отличается по строению у прокариот и эукариот. Однако механизм ее действия везде одинаков и заключается в наращивании цепи комплементарно подбираемых рибонуклеотидов с замыканием фосфодиэфирной связи между ними.

Матричной молекулой для этого процесса служит ДНК. На ее основе могут создаваться разные типы РНК, а не только информационные, которые используются в белковом синтезе.

Участок матрицы, с которого "списывается" последовательность РНК, называется транскриптоном. В его составе имеется промотор (место для присоединения РНК-полимеразы) и терминатор, на котором синтез останавливается.

Трансляция

Матричный синтез белка и у прокариот, и у эукариот осуществляется в специализированных органоидах - рибосомах. Последние состоят из двух субъединиц, одна из которых (малая) служит для связывания тРНК и матричной РНК, а другая (большая) принимает участие в образовании пептидных связей.

Началу трансляции предшествует активация аминокислот, т. е. присоединение их к соответствующим транспортным РНК с образованием макроэргической связи, за счет энергии которых впоследствии осуществляются реакции транспептидирования (присоединения к цепи очередного звена).

В процессе синтеза также принимают участие белковые факторы и ГТФ. Энергия последнего необходима для продвижения рибосомы по матричной цепи РНК.