Биогафии

Статическое электрическое поле обладает свойствами циркуляция. Теорема о циркуляции вектора напряженности. Потенциальная энергия заряда

Если в электростатическом поле точечного заряда Q из точки1 в точку2 вдоль произвольной траектории (рис. 132) перемещается другой точечный зарядQ 0 , то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном перемеще­нии dl равна

Так как d/cos=dr , то

Работа при перемещении заряда Q 0 из точки1 в точку2

(83.1)

не зависит от траектории перемещения, а определяется только положениями начальной 1 и конечной2 точек. Следовательно, электростатическое поле точечного заряда являетсяпотенциальным , а электростатические силы -консервативными (см. § 12).

Из формулы (83.1) следует, что работа, совершаемая при перемещении электричес­кого заряда во внешнем электростатическом поле по любому замкнутому пути L , равна нулю, т.е.

Если в качестве заряда, переносимого в электростатическом поле, взять единичный точечный положительный заряд, то элементарная работа сил поля на пути dl равнаЕ dl =E l dl , гдеE l =E cos - проекция вектораЕ на направление элементарного переме­щения. Тогда формулу (83.2) можно записать в виде

(83.3)

Интеграл называется циркуляцией вектора напряженности. Следователь­но, циркуляция вектора напряженности электростатического поля вдоль любого за­мкнутого контура равна нулю. Силовое поле, обладающее свойством (83.3), называет­ся потенциальным. Из обращения в нуль циркуляции вектораЕ следует, что линии напряженности электростатического поля не могут быть замкнутыми, они начинаются и кончаются на зарядах (соответственно на положительных или отрицательных) или же уходят в бесконечность.

Формула (83.3) справедлива только для электростатического поля. В дальнейшем будет показано, что для поля движущихся зарядов условие (83.3) не выполняется (для него циркуляция вектора напряженности отлична от нуля).

§ 84. Потенциал электростатического поля

Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа (см. § 12). Как известно (см. (12.2)), работа консервативных сил совершается за счет убыли потенциальной энергии. Поэтому работу (83.1) сил электро­статического поля можно представить как разность потенциальных энергий, которыми обладает точечный заряд Q 0 в начальной и конечной точках поля зарядаQ :

(84.1)

откуда следует, что потенциальная энергия заряда qq в поле зарядаQ равна

Она, как и в механике, определяется неоднозначно, а с точностью до произвольной постоянной С . Если считать, что при удалении заряда в бесконечность (r ) потенци­альная энергия обращается в нуль (U =0), тоС =0 и потенциальная энергия зарядаQ 0 , находящегося в поле зарядаQ на расстоянии г от него, равна

(84.2)

Для одноименных зарядов Q 0 Q > 0 и потенциальная энергия их взаимодействия (оттал­кивания) положительна, для разноименных зарядовQ 0 Q <0 и потенциальная энергия их взаимодействия (притяжения) отрицательна.

Если поле создается системой n точечных зарядовQ 1 , Q 2 , ..., Q n , то работа электростатических сил, совершаемая над зарядомQ 0 , равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергияU зарядаQ 0 , находящегося в этом поле, равна сумме потенциальных энергийU i , каждого из зарядов:

(84.3)

Из формул (84.2) и (84.3) вытекает, что отношение U / Q 0 не зависит отQ 0 и является поэтомуэнергетической характеристикой электростатического поля, называемой по­тенциалом:

Потенциал в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещен­ного в эту точку.

Из формул (84.4) и (84.2) следует, что потенциал поля, создаваемого точечным зарядом Q , равен

Работа, совершаемая селами электростатического поля при перемещении заряда Q 0 из точки1 в точку2 (см. (84.1), (84.4), (84.5)), может быть представлена как

т. е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках. Разность потенциалов двух точек1 и2 в электростатическом поле определяется работой, совершаемой силами поля, при перемещении единичного поло­жительного заряда из точки1 в точку2 .

Работа сил поля при перемещении заряда Q 0 из точки1 в точку2 может быть записана также в виде

(84.7)

Приравняв (84.6) и (84.7), придем к выражению для разности потенциалов:

(84.8)

где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траек­тории перемещения.

Если перемещать заряд Q 0 из произвольной точки за пределы поля, т. е. в бесконеч­ность, где, по условию, потенциал равен нулю, то работа сил электростатического поля, согласно (84.6),A = Q 0 , откуда

Таким образом, потенциал - физическая величина, определяемая работой по переме­щению единичного положительного заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Из выражения (84.4) следует, что единица потенциала - вольт (В): 1 В есть потен­циал такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В= 1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная в § 79 единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 Нм/(Клм)=1 Дж/(Клм)=1 В/м.

Из формул (84.3) и (84.4) вытекает, что если поле создается несколькими зарядами, то потенциал поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:

При перемещении заряда по произвольному замкнутому пути L работа сил электростатического поля равна нулю. Поскольку, конечное положение заряда равно начальному r 1 =r 2 , то и (кружок у знака интеграла указывает на то, что интегрирование производится по замкнутому пути). Так как и , то . Отсюда получаем . Сократив обе части равенства на q 0 , получим или , где E l =Ecosa - проекция вектора Е на направление элементарного перемещения . Интеграл называется циркуляцией вектора напряженности . Таким обра­зом, циркуляция вектора напряженности электростатического поля вдоль лю­бого замкнутого контура равна нулю . Это заключение есть условие потенциаль­ности поля .

Потенциальная энергия заряда.

В потенциальном поле тела обладают потенциальной энергией и работа консервативных сил совершается за счет убыли потенциальной энергии.

Поэтому работу A 12 можно представить, как разность потенциальных энергий заряда q 0 в начальной и конечной точках поля заряда q :

Потенциальная энергия заряда q 0 , находящегося в поле заряда q на расстоянии r от него равна

Считая, что при удалении заряда на бесконечность, потенциальная энергия обращается в нуль, получаем: const = 0 .

Для одноименных зарядов потенциальная энергия их взаимодействия (отталкивания) положительна , для разноименных зарядов потенциальная энергия из взаимодействия (притяжения ) отрицательна .

Если поле создается системой n точечных зарядов, то потенциальная энергия заряда q 0 , находящегося в этом поле, равна сумме его потенциальных энергий, создаваемых каждым из зарядов в отдельности:

Потенциал электростатического поля.

Отношение не зависит от пробного заряда q0 и является, энергетической характеристикой поля, называемой потенциалом :



Потенциал ϕ в какой-либо точке электростатического поля есть скалярная физическая величина , определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

1.7 Связь между напряженностью и потенциалом.

Связь между потенциалом и напряженностью электростатического поля. Эквипотенциальные поверхности.

Как ранее показано, работа сил электростатического поля при перемещении за­ряда q 0 может быть записана с одной стороны, как , с другой же - как убыль потенциальной энергии, т.е. . Здесь dr - есть проекция элементарного перемещения dl заряда на направление силовой линии , - есть малая разность потенциалов двух близко расположенных точек поля. Приравняем правые части равенств и сократим на q 0 . Получаем соотношения , . Отсюда .

Последнее соотношение представляет связь ос­новных характеристик электро­статического поля Е и j. Здесь - быстрота изменения потенциала в направле­нии силовой линии. Знак ми­нус указывает на то, что вектор направлен в сторону убывания потенциала. Поскольку , можно записать проекции вектора на координатные оси: . Отсюда следует, что . Выраже­ние, стоящее в скобках, называется градиентом скаляра j и обозначается как gradj.

Напряженность электростатического поля равна гра­диенту потенциала, взя­тому с обратным знаком .

Для графического изображения распределения потенциала электростатичес­кого поля пользуются эквипотенциальными поверхностями - поверхностями, потен­циал всех точек которых одинаков . Потенциал поля одиночного точечного заряда . Эквипотенциальные поверх­нос­ти в данном случае есть концентрические сферы с центром в точке расположе­ния за­ряда q (рис.1.13). Эквипотенциальных поверхностей можно провести бесконеч­ное множество, однако принято чертить их с густотой, пропорциональной величине Е.

1.8 Электроемкость, плоский конденсатор.

Электроемкость.

Рассмотрим уединенный проводник - проводник, удаленный от других тел и зарядов. Из опыта следует, что разные проводники, будучи одинаково заряженными, имеют разные потенциалы.

Физическая величина C , равная отношению заряда проводника q к его потенциалу ϕ , называется электрической емкостью этого проводника.

Электроемкость уединенного проводника численно равна заряду, который нужно сообщить этому проводнику для того, чтобы изменить его потенциал на единицу.

Она зависит от формы и размеров проводника и от диэлектрических свойств окружающей среды. Емкости геометрически подобных проводников пропорциональны их линейным размерам.

Пример : Рассмотрим уединенный шар радиуса R, находящийся в однородной среде с диэлектрической проницаемостью e. Ранее было получено, что потенциал шара ра­вен . Тогда емкость шара , т.е. зависит только от его ра­диуса.

Единица электроемкости -фарад(Ф):1Ф-емкость такогоуединенного проводника, потенциал которого изменяется на 1В при сообщении ему заряда 1Кл. Емкостью 1Ф обладает шар с радиусом R = 9 ⋅10 6 км. Емкость Земли 0,7мФ.

Поле Е обладает двумя чрезвычайно важными свойствами, знание которых помогло глубже проникнуть в суть самого понятия поля и сформировать его законы. Эти свойства - теорема Гаусса и теорема о циркуляции вектора Е - связаны с двумя важнейшими математическими характеристиками всех векторных полей: циркуляцией и потоком . Пользуясь только этими двумя понятиями можно описать все законы. Рассмотрим эти свойства.

Из механики известно, что любое стационарное поле центральных сил является консервативным, т.е. работа сил этого поля не зависит от пути, а определяется только положением начальной и конечной точек перемещения. Именно таким свойством обладает электростатическое поле - поле, образованное системой неподвижных точечных зарядов.

1. Рассчитаем работу при перемещении точечного заряда в электростатическом поле.

Пусть электростатическое поле создано зарядом + Q. Будем перемещать другой точечный заряд q (q – пробный положительный точечный заряд) в электростатическом поле, созданном зарядом (+Q) из точки 1 в точку 2 по произвольной траектории (смотри рис. 6.1.). Работу будет совершать сила F К – кулоновская сила, действующая на заряд q . Работа силыF К на элементарном перемещении dl равна:

Рис.6.1.Работа перемещения точечного заряда в электростатическом поле

Для нахождения работы перемещения заряда q из точки 1 в точку 2 проинтегрируем (6.2) по переменной r .

Работа перенесения заряда q из точки 1 в точку 2 не зависит от траектории перемещения, а определяется только положениями начальной и конечной точек перемещения, следовательно , электростатическое поле точечного заряда является потенциальным, а кулоновские силы – консервативными.

.

(6.3 )

Покажем, что работа сил ЭС поля по любому замкнутому пути равна 0 .

Пусть перемещается положительный единичный заряд q из точки 1 в неё же по замкнутому пути - 1а2b1- замкнутый контур Г (рис.6.2) . Согласно соотношению (6.3) работа будет равна 0, т.к. r 1 = r 2 . Но, с другой стороны величину этой работы можем записать, используя связь между кулоновской силой и вектором напряженности электростатического поля (q ) в виде:

Но, модуль вектора напряженности точечного заряда равен kQ/r 2 =| |, следовательно элементарную работу сил электростатического поля можно представить в виде выражения:

Интеграл r dr = - называют циркуляцией вектора Е .

Теорема о циркуляции вектора Е: Циркуляция вектора напряженности электростатического поля по произвольному замкнутому контуру тождественно равна нулю.

Взаимодействие неподвижных зарядов реализуется посредством электростатического поля. Описывают электростатическое поле при помощи вектора напряженности ($\overline{E}$), который определен как сила ($\overline{F}$), действующая на единичный положительный заряд, размещенный в рассматриваемой точке поля:

\[\overline{E}=\frac{\overline{F}}{q}\left(1\right).\]

Электростатические силы являются консервативными, это значит, что их работа по замкнутой траектории ($L$) равна нулю:

где $\overline{r}$ - перемещение.

Интеграл в формуле (2) называется циркуляцией вектора напряженности электростатического поля. Циркуляция вектора $\overline{E}$- это работа, которую могут совершить силы Кулона, перемещая положительный заряд равный единице по контуру.

Учитывая, что $q\ne 0$, получим:

\[\oint\nolimits_L{\overline{E}d\overline{r}=}0\ \left(3\right).\]

Теорема о циркуляции вектора напряжённости электростатического поля говорит о том, циркуляция $\overline{E}$ по замкнутому контуру равна нулю.

В дифференциальной форме теорему о циркуляции записывают как:

Такой вид записи как (4) удобно использовать для проверки потенциальности векторного поля. Потенциальное поле является безвихревым.

Как следствие из теоремы о циркуляции $\overline{E}$: работа при перемещении заряда из одной точки поля в другую не зависит от формы траектории движения.

Из теоремы о циркуляции следует, что линии электростатического поля не бывают замкнутыми, они начинаются на положительных, а заканчиваются на отрицательных зарядах.

Теорема о циркуляции вектора напряженности магнитного поля

Физическая величина ($\overline{H}$), являющаяся характеристикой магнитного поля, равная:

\[\overline{H}=\frac{\overline{B}}{{\mu }_0}-{\overline{P}}_m(5)\]

называется напряженностью магнитного поля. $\overline{B}$ - вектор магнитной индукции поля; ${\mu }_0$ - магнитная постоянная; ${\overline{P}}_m$- вектор намагниченности.

Циркуляция вектора напряженности магнитного поля равна алгебраической сумме токов проводимости, которые охвачены замкнутым контуром, по которому рассматривается циркуляция:

\[\oint\limits_L{\overline{H}d\overline{r}=\sum{I_m}\left(6\right).}\]

Если направление обхода контура связывается с направлением тока правилом правого винта, то ток в сумме (5) стоит со знаком плюс.

Циркуляция вектора напряженности в общем случае отлична от нуля, это означает, что магнитное поле - это вихревое поле, оно не является потенциальным.

Теорему о циркуляции вектора напряженности магнитного поля доказывают, опираясь на закон Био-Савара-Лапласа и принцип суперпозиции.

Теорема о циркуляции вектора $\overline{H}$ исполняет роль, похожую на роль теоремы Гаусса для вектора напряженности электрического поля. Если имеется симметрия при распределении токов, то используя теорему о циркуляции $\overline{H},$ находят саму напряженность магнитного поля.

Примеры задач с решением

Пример 1

Задание. Определите, является ли потенциальным электрическое поле, которое задано уравнением: $\overline{E}\left(x,y\right)=A\left(2xy\ \overline{i}+\left(x^2-y^2\right)\overline{j}\right).$

Решение. Из теоремы о циркуляции, которая записана в дифференциальном виде:

следует, что если вихрь поля равен нулю, то поле потенциально. Используя определение ротора:

\=\frac{\partial E_y}{\partial x}\overline{k}-\frac{\partial E_x}{\partial y}\overline{k}\left(1.3\right).\]

Частные производные от $\overline{E}$ равны:

\[\frac{\partial E_y}{\partial x}=A\cdot 2x;;\ \frac{\partial E_x}{\partial y}=A\cdot 2x\ \left(1.4\right).\]

Подставляя (1.4) в (1.3), получаем, что

\=0.\]

Ответ. Поле является потенциальным.

Пример 2

Задание. Какова циркуляция вектора напряженности магнитного поля для замкнутого контура $L$ (рис.1), если $I_1=5\ A;;\ I_2=2\ A;;\ I_3=10\ A;;\ I_4=1\ A?$

Решение. Основой для решения задачи служит теорема о циркуляции вектора напряжённости магнитного поля:

\[\oint\limits_L{\overline{H}d\overline{r}=\sum{I_m}\left(2.1\right).}\]

Контур $L$ охватывает три тока, следовательно:

\[\oint\limits_L{\overline{H}d\overline{r}=I_1-I_2+I_3.}\]

Вычислим циркуляцию:

\[\oint\limits_L{\overline{H}d\overline{r}=5-2+10=13\ (А).}\]

Ответ. $\oint\limits_L{\overline{H}d\overline{r}=13А\ .}$

Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль про­извольной траектории (рис. 132) переме­щается другой точечный заряд Q 0 , то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном переме­щении dl равна

Работа при перемещении заряда Q 0 из точки 1 в точку 2

не зависит от траектории перемещения, а определяется только положениями на­чальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциаль­ным, а электростатические силы - консер­вативными (см. §12).

Из формулы (83.1) следует, что рабо­та, совершаемая при перемещении элек­трического заряда во внешнем электроста­тическом поле по любому замкнутому пути L, равна нулю, т. е.

Если в качестве заряда, переносимого в электростатическом поле, взять единич­ный точечный положительный заряд, то элементарная работа сил поля на пути dl равна Е dl =E l dl, где E l =E cosa - про­екция вектора Е на направление элемен­тарного перемещения. Тогда формулу (83.2) можно записать в виде

Интеграл

называется циркуляцией вектора напряженности. Следо­вательно, циркуляция вектора напряжен­ности электростатического поля вдоль лю­бого замкнутого контура равна нулю. Силовое поле, обладающее свойством (83.3), называется потенциальным. Из об­ращения в нуль циркуляции вектора Е следует, что линии напряженности элек­тростатического поля не могут быть за­мкнутыми, они начинаются и кончаются на зарядах (соответственно на положи­тельных или отрицательных) или же ухо­дят в бесконечность.

Формула (83.3) справедлива только для электростатического поля. В дальней­шем будет показано, что для поля движу­щихся зарядов условие (83.3) не выпол­няется (для него циркуляция вектора на­пряженности отлична от нуля).