Биогафии

Выбрать утверждения относящиеся к описанию схемы бернулли. Применение интегральной теоремы Лапласа. Схема независимых испытаний Бернулли

Краткая теория

Теория вероятностей имеет дело с такими экспериментами, которые можно повторять (по крайней мере теоретически) неограниченное число раз. Пусть некоторый эксперимент повторяется раз, причем результаты каждого повторения не зависят от исходов предыдущих повторений. Такие серии повторений называют независимыми испытаниями. Частным случаем таких испытаний являются независимые испытания Бернулли , которые характеризуются двумя условиями:

1) результатом каждого испытания является один из двух возможных исходов, называемых соответственно «успехом» или «неудачей».

2) вероятность «успеха», в каждом последующем испытании не зависит от результатов предыдущих испытаний и остается постоянной.

Теорема Бернулли

Если производится серия из независимых испытаний Бернулли, в каждом из которых «успех» появляется с вероятностью , то вероятность того, что «успех» в испытаниях появится ровно раз, выражается формулой:

где – вероятность «неудачи».

– число сочетаний элементов по (см. основные формулы комбинаторики)

Эта формула называется формулой Бернулли .

Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний.

Схему испытаний Бернулли называют также биномиальной схемой , а соответствующие вероятности – биномиальными, что связано с использованием биномиальных коэффициентов .

Распределение по схеме Бернулли позволяет, в частности, .

Если число испытаний n велико, то пользуются:

Пример решения задачи

Условие задачи

Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10 посеянных семян взойдут: 8, по крайней мере 8; не менее 8?

Решение задачи

Воспользуемся формулой Бернулли:

В нашем случае

Пусть событие – из 10 семян взойдут 8:

Пусть событие – взойдет по крайней мере 8 (это значит 8, 9 или 10)

Пусть событие – взойдет не менее 8 (это значит 8,9 или 10)

Ответ

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Предположим, что имеется n независимых испытаний с двумя исходами в каждом испытании. Один из исходов будем называть успехом и кодировать цифрой 1, другой исход будем называть неудачей и кодировать цифрой 0. Предполагаем, что вероятность успеха в каждом испытании одна и та же и равна числу p , следовательно, вероятность неудачи равна . Эта схема, очевидно, является обобщением схемы независимого бросания монеты.

Пусть вероятность того, что общее число успехов равно m. Тогда основная формула схемы Бернулли имеет вид .

Когда числа n и m становятся большими, вычисления по этой формуле становятся затруднительны. Поэтому используются три предельные теоремы: теорема Пуассона, локальная теорема Муавра–Лапласа и интегральная теорема Муавра–Лапласа. Приведем их формулировки.

Теорема Пуассона . (Формулировка приводится в упрощенном виде.) Пусть имеется n независимых испытаний. – вероятность успеха в одном испытании, – вероятность неудачи. Пусть . Тогда для любого фиксированного m справедливо соотношение

при

Комментарий. На практике эта теорема применяется при Это означает, что p должно быть очень малым числом, а n большим.

Локальная теорема Муавра-Лапласа . Пусть имеется n независимых испытаний Бернулли с вероятностью успеха p () в одном испытании и – вероятностью неудачи. Величина не зависит от n . Предположим, что для некоторой постоянной выполнено условие , где Тогда при

.

Комментарий. Эта теорема применяется, когда p отделено от нуля и единицы.

Интегральная теорема Муавра-Лапласа . Пусть имеется n независимых испытаний с вероятностью успеха p () в одном испытании и вероятностью неудачи. Величина не зависит от n . Тогда для любых вещественных чисел при

.

Комментарий. Здесь – функция распределения стандартного нормального закона, значения которой затабулированы в таблицах, приведенных в большинстве задачников по теории вероятностей и математической статистике.

Приведем задачи на применение схемы Бернулли и соответствующих предельных теорем.

Задача 30. Случайное блуждание по прямой.Частица движется по целым точкам вещественной прямой, перемещаясь каждую секунду либо на единицу вправо, либо на единицу влево с равными вероятностями. Найти вероятность того, что через n секунд частица вернется в точку 0.

Решение. Очевидно, вернуться в 0 частица может только за четное число секунд. Поэтому считаем, что . Считая успехом движение частицы вправо, заметим, что для возвращения за n секунд должно быть ровно k успехов. Поэтому из формулы Бернулли следует, что вероятность возвращения равна .

Задача 31. Имеется 5 студенческих групп по 25 человек, в каждой из которых по 5 отличников. Из каждой группы выбирается случайным образом по одному студенту. Найти вероятность того, что среди выбранных студентов будет 3 отличника.

Решение. Вероятностьвыбрать отличника в одной группе равна . Выбор отличника будем считать успехом. Тогда число успехов среди испытаний должно равняться . Таким образом, по основной формуле схемы Бернулли искомая вероятность равна .

Задача 32. (Задача Банаха) У рассеянного курильщика в правом и левом карманах пиджака находится по коробку спичек. В каждом коробке по n спичек. Каждый раз, когда ему требуется закурить, курильщик вынимает новую спичку либо из левого, либо из правого кармана с вероятностью 1/2. Найти вероятность того, что в тот момент, когда окажется пустым один из коробков, во втором коробке останется k спичек.

Решение. Пусть A – это событие, сформулированное в вопросе задачи. Будем считать испытанием Бернулли вытаскивание спичек, причем вытаскивание спички из правого кармана будем считать успехом, а из левого – неудачей. Очевидно, вероятность успеха равна 1/2. Поскольку к моменту окончания «эксперимента» из одного коробка вытащили n спичек, а из другого – спичек, то общее число испытаний Бернулли можно считать равным , причем событие A реализуется, если число успехов равно n или k . Поэтому . Здесь использовано свойство биномиальных коэффициентов, согласно которому слагаемые в скобках равны между собой.

Задача 33. Монета бросается 100 раз. Найти приближенно вероятность того, что герб выпадет 40 раз. (Воспользоваться таблицей.)

,

где Таким образом, используя таблицы для плотности нормального распределения, получим .

Задача 34. Город ежедневно посещают 1000 туристов, которые днем идут обедать. Каждый из них выбирает для обеда один из двух городских ресторанов с равными вероятностями и независимо друг от друга. Владелец одного из ресторанов желает, чтобы с вероятностью близкой к 0,99, все пришедшие в ресторан туристы смогли бы там одновременно пообедать. Сколько мест должно быть для этого в ресторане?

Решение. Обозначим через событие, состоящее в том, что i-й турист пообедал у заинтересованного владельца ресторана i= 1, 2,…, 1000. Наступление события будем называть успехом в i- м испытании. Вероятность успеха . Пусть m – общее число успехов, событие A состоит в переполнении ресторана, k – общее число мест в ресторане. Тогда нам надо подобрать k таким образом, чтобы выполнялось приближенное равенство

Ранее в п. 1.4 введены понятия зависимых и независимых событий. С понятием независимых событий связано и имеет широкое применение понятие независимых опытов или испытаний.

Опыты α 1 , α 2 , … , α n называются независимыми, если любая комбинация их исходов является совокупностью независимых событий. Иначе, если в задаче проводится ряд многократно повторяющихся испытаний α 1 , α 2 , …, α n при неизменном комплексе условий и в каждом испытании некоторые событие А может наступить с некоторой вероятностью p = p (А ) не зависящей от других испытаний, и не наступить с вероятностью p (Ā ), то указанные испытания называются независимыми. Данная схема независимых испытаний носит название схемы Бернулли.

Схема названа в честь Якоба Бернулли – родоначальника семьи выдающихся швейцарских учёных. (Якоб Б., Иоганн Б., Николай Б., Даниил Б. и др.). Якоб Бернулли доказал так называемую теорему Бернулли – важный частный случай закона больших чисел (см. п. 3.11). Указанная теорема относится к рассматриваемой здесь последовательности независимых испытаний.

Примерами независимых испытаний являются: а) многократное (n раз) подбрасывание монеты; б) извлечение (n раз) одинаковых на ощупь шаров из урны с их последующим возвращением; в) любая совокупность независимых испытаний (опытов), в каждом из которых вероятность успешных исходов одинакова, например, серия выстрелов по мишени, выбор n деталей из их совокупности, изучение n анализов горной породы определённого свойства и т.д.

В схеме Бернулли наступление события А с вероятностью p = p (А ) условно называется успехом, а его ненаступление (противоположное событие Ā ) –неудачей. Вероятность неудачи в каждом опыте такого типа равна q = 1 – p .

На практике обычно возникают задачи со сложными событиями, в которых из n опытов, составляющих схему Бернулли, в m опытах (m < n ) событие А наступает (т.е завершается успехом), а в (n m ) опытах это событие не наступает (завершается неудачей). Пусть P n (k ) – обозначает вероятность того, что при производстве n опытов успех наступает в k опытах (успех реализуется k раз). Ставится следующая задача: пусть в n испыта-ниях, соответствующих схеме Бернулли, k испытаний завершились успехом. Требуется найти вероятность P n (k ) (читается: « P из n испытаний k успешных» ). Данная вероятность рассчитывается по формуле Бернулли, которой соответствует одноименная теорема.

Теорема Бернулли. Если вероятность p наступления события А в каждом из последовательности n испытаний α 1 , α 2 , … , α n постоянна, то вероятность того, что событие А наступит k раз и не наступит n k раз, вычисляется по формуле Бернулли:

P n (k ) = С n k p k q n-k , (2.1)

где q = 1- p .

Доказательство. Действительно, пусть события A į и Ā į – появление и непоявление соответственно события А в į -ом испытании α i (i = 1, 2, … , n ). Пусть также В k обозначает событие, состоящее в том, что в n независимых испытаниях событие А появилось k раз. При n = 3 и k = 2 событие В 2 выражается через элементарные события А į (į = 1, 2, 3) по формуле:

В 2 = А 1 А 2 Ā 3 + А 1 Ā 2 А 3 + Ā 1 А 2 А 3 .

В общем виде последняя формула будет такой

т.е каждый член суммы (2.2) соответствует появлению события А k раз и (n k ) раз непоявлений. Число всех комбинаций (слагаемых) в (2.2) равно числу способов выбора из n испытаний k испытаний, в которых событие А произошло, т.е числу сочетаний C n k . Вероятность каждой такой комбинации по теореме умножения вероятностей независимых событий равна p k × q n k , так как p (А į) = p , p (Ā į) = q , i = 1,2,…,n . Но комбинации в (2.2) являются несовместными событиями. Поэтому по теореме сложения вероятностей получим

Таким образом, имеет место формула Бернулли

P n (k) = C n k p k q n-k .

Что и требовалось доказать.

Замечание 1. Сформулированная выше теорема относится к случаю, когда в каждом испытании вероятность появления события А постоянна. Тогда для расчета вероятности P n (k ) справедлива формула Бернулли (2.1). Если же вероятности наступления события А в испытаниях α 1 , α 2 , … , α n разные, т.е. вероятности составляют значения p 1 , p 2 , … , p n , то тогда вместо (2.1) справедлива формула:

Замечание 6. Вероятность того, что в n опытах, проводящихся по схеме Бернулли, успех наступит от k 1 до k 2 раз , вычисляется по формулеP n (k )) для конкретных значений n и p . Так как аргумент k принимает лишь целые значения, график представляется в виде точек на плоскости (k , P n (k )). Для наглядности точки соединяются ломаной линией, и такой график называется полигоном распределения (рис.2.1). При p = 0,5, n = 6, как показано на рисунке 2.1, полигон симметричен относительно прямой x = np (если p близко к 0,5, то полигон близок к симметричному). При малых p полигон существенно асимметричен, и наивероятнейшими явля-ются частоты, близкие к нулю. На рисунке 2.2 изображен полигон распределения для p = 0,2 при числе испытаний n = 6. При больших p , близких к 1, наиболее вероятны максимальные значения. На рис. 2.3 показан полигон распределения, для p = 0,8 и n = 6.

Рис. 2.3.

(опять же согласно теореме 5.5) 48!(12!)4 способами. Следовательно, искомая вероятность равна

24 48!(13!) 4 = 2448!13 4 = 0,105... .

(12!)4 52! 52!

Любопытно, что при игре «в дурака» такая вероятность оказывается существенно меньше. Действительно, найдем вероятность того, что при раздачечетыремигрокампо6картизколодыв36карт,каждыйигрокполучит ровно по одному тузу. Поскольку раздается 24 карты из 36, то нам прежде всего надо знать число способов, которыми можно выбрать 24 карты из 36. Это число равно C 36 24 = 36!(24!12!) .

Далее, число способов, которыми можно разбить 24 карты на 4 группы по 6 карт согласно теореме 5.5 равно 24! (6!)4 . Таким образом, общее число способов, которыми можно раздать четырем игрокам по 6 карт из колоды в 36

карт, равно C 36 24 (6!) 24! 4 . Четыре туза могут быть распределены между четырьмя

игроками 4!= 24 способами. Число способов, которыми можно раздать четыремигрокампо5картизоставшихся32 карт, подсчитываетсяаналогично

предыдущему, и будет равно C 32 20 (5!) 20! 4 . Таким образом, искомая вероятность равна

24 C 20

32!12!64

(5!)4

≈ 0,022 .

(6!)4

§6. ИСПЫТАНИЯ БЕРНУЛЛИ. ФОРМУЛА ПУАССОНА

6.1. Схема независимых испытаний Бернулли

На практике часто встречается ситуация, хорошо иллюстрирующаяся

следующими примерами.

Некто несколько раз подряд бросает монету. Спрашивается, можно ли заранее оценить вероятность того, что в результате n бросаний герб выпадет ровноm раз? Или:n раз бросается игральная кость; требуется оценить вероятность того, что при этомm раз выпадет 5 или 6 очков.

Очевидно, что без дополнительных предположений относительно условий проведения эксперимента однозначно ответить на эти вопросы нельзя. Так, результат, несомненно, должен зависеть от того, является ли монета (или кость) правильной, т.е. однородной и симметричной. С другой стороны, возможно ли ответить на вопрос: сколько раз надо бросить монету (или кость), чтобы с достаточной степенью уверенности можно было утверждать, что данная монета (или кость) не является правильной ? Умение отвечать на такой вопрос весьма важно, например, для игорных заведений.

Естественно предположить, что если монета правильная, то вероятность появления герба при каждом бросании равна ½ . Аналогично, в случае правильной кости вероятность появления 5 или 6 очков при каждом бросании равна⅓ . Иными словами, если испытаний достаточно много, то герб при бросании монеты будет появляться примерно в половине исходов, а 5 или 6 очков на кости – в одной трети случаев.

Однако всеэти рассуждения основаны на интуиции. Мы жепостараемся в этом параграфе описать теоретическую модель, которая позволит нам вполне обоснованно ответить на все сформулированные выше вопросы. Модель, о которой пойдет речь ниже, впервые была предложена швейцарским математиком Якобом Бернулли (1654 1705), и получила его имя37 .

Схема независимых испытаний Бернулли. Будем производить последовательные испытания, в результате каждого из которых может

37 Основные результаты Я. Бернулли по теории вероятностей были опубликованы лишь после его смерти в 1713 г. Брат Я. Бернулли – Иоганн (1667-1748) и сын – Даниил (1700-1782) являлись членами Петербургской Императорской Академии Наук, и внесли большой вклад в развитие вариационного исчисления и теоретической механики.

наступить или не наступить некоторое событие А . Пусть при каждом отдельном испытании вероятность наступления событияА одна и та же и не зависит от наступления или ненаступления этого события при других испытаниях; обозначим эту вероятность черезp . Обычно говорят, чтоp – это вероятность «успеха»; соответственно величинаq = 1− p называется вероятностью «неудачи». Понятно, что эта терминология весьма условна.

Такая модель называется схемой (независимых) испытаний Бернулли.

Зададимся следующим вопросом: какова вероятность того, что при проведении n испытаний «успех» (т.е. появления событияА ) будет наблюдаться ровно вm случаях?38

Эта задача решается следующим образом. Представим себе все возможные комбинации из последовательных результатов наших испытаний. Так, например, в случае 3 испытаний возможны восемь таких комбинаций39 , а именно:

AAA; AAA; AAA; AAA;

AAA; AAA; AAA; AAA.

Выделим те комбинации, в которых событие А наступает ровноm раз (и, следовательно, не наступает ровноn ─ m раз); назовем для краткости такие комбинациидопустимыми . Определим вероятность появления каждой отдельной допустимой комбинации. Для этого заметим, что появление допустимой комбинации представляет собой произведениеn событий, а именно:m наступлений событияА при одних испытаниях иn ─ m его ненаступлений при других испытаниях. Вероятность наступления событияА при каждом отдельном испытании по условию равнаp ; вероятность его ненаступления равна, следовательно,q = 1− p . По условию наступления или ненаступления событияА при различных испытаниях представляют собой независимые события; следовательно, вероятность их произведения равна

38 Здесь естественно считать, что m = 0, 1, 2, …,n .

39 Здесь A означает событие, противоположное событиюА , т.е. «неудачу».

произведению их вероятностей, т. е. равна величине p m q n − m = p m (1− p )n − m . Заметимтеперь, чтособытие, состоящеевнаступлениисобытияА ровно

при m испытаниях, равносильно появлению хотя бы одной из допустимых комбинаций. Так как различные допустимые комбинации представляют собой несовместимые события, искомая вероятность появления событияА ровно вm испытаниях равна сумме вероятностей появления допустимых комбинаций. Поскольку вероятности появления допустимых комбинаций одинаковы, то вероятность их суммы равна величинеKp m q n − m , гдеK – число всех допустимых комбинаций. Это число равно, очевидно, числу различных способов, которыми можно выделитьm мест из общего числаn мест, иными

словами равно

числу сочетаний из n элементов поm , т.е. равно

C n m= C n n− m=

m!(n− m)!

Таким образом, вероятность появления ровно m «успехов» в последовательностиn независимых испытаний Бернулли равна

распределением Бернулли , определяется формулой (6.1) и дает значение вероятностиm «успехов» вn испытаниях Бернулли с вероятностью «успеха»p . При фиксированныхn иp она является функцией целочисленного неотрицательного аргументаm .

Испытания Бернулли – теоретическая схема, и только практика может показать, годна ли схема для описания данного физического опыта. Однако такая ситуация, как мы видели ранее, вполне естественна при построении вероятностных моделей. При всем этом во многих практических ситуациях использование схемы Бернулли оказывается вполне оправданным.

Приведем следующий поучительный пример . Американский ученый Уэлдон провел 26 306 серий испытаний по 12 бросаний одной и той же

игральной кости в каждой серии, вычисляя частоту появления события («успеха»), состоящего в выпадении на кости 5 или 6 очков. Результаты его опытов приведены в табл. 6.1.

Если кость считать правильной, то вероятность «успеха» должна быть равна ⅓ . Соответствующие теоретические значения функцииb (k ;12,13) даны во второй колонке. Эксперимент показал, однако, довольно существенное отличие от теоретических значений приp =⅓ , но хорошее согласование с теоретическими значениями функцииb (k ;12, 0.3377) дляp = 0.3377 . Этот результат естественно интерпретировать в том смысле, что игральная кость, использованная в эксперименте,не является правильной .

Это замечание имеет весьма важные практические приложения в вопросах, связанных с контролем за выполнением определенных нормативов (например, в производстве). В связи с этим рассмотрим следующий пример.

Таблица 6.1

Экспериментальная

Задача о снабжении энергией . Допустим, чтоn рабочих время от


Определение повторных независимых испытаний. Формулы Бернулли для вычисления вероятности и наивероятнейшего числа. Асимптотические формулы для формулы Бернулли (локальная и интегральная, теоремы Лапласа). Использование интегральной теоремы. Формула Пуассона, для маловероятных случайных событий.

Повторные независимые испытания

На практике приходится сталкиваться с такими задачами, которые можно представить в виде многократно повторяющихся испытаний, в результате каждого из которых может появиться или не появиться событие A . При этом интерес представляет исход не каждого "отдельного испытания, а общее количество появлений события A в результате определенного количества испытаний. В подобных задачах нужно уметь определять вероятность любого числа m появлений события A в результате n испытаний. Рассмотрим случай, когда испытания являются независимыми и вероятность появления события A в каждом испытании постоянна. Такие испытания называются повторными независимыми.

Примером независимых испытаний может служить проверка на годность изделий, взятых по одному из ряда партий. Если в этих партиях процент брака одинаков, то вероятность того, что отобранное изделие будет бракованным, в каждом случае является постоянным числом.

Формула Бернулли

Воспользуемся понятием сложного события , под которым подразумевается совмещение нескольких элементарных событий, состоящих в появлении или непоявлении события A в i –м испытании. Пусть проводится n независимых испытаний, в каждом из которых событие A может либо появиться с вероятностью p , либо не появиться с вероятностью q=1-p . Рассмотрим событие B_m , состоящее в том, что событие A в этих n испытаниях наступит ровно m раз и, следовательно, не наступит ровно (n-m) раз. Обозначим A_i~(i=1,2,\ldots,{n}) появление события A , a \overline{A}_i - непоявление события A в i –м испытании. В силу постоянства условий испытания имеем

Событие A может появиться m раз в разных последовательностях или комбинациях, чередуясь с противоположным событием \overline{A} . Число возможных комбинаций такого рода равно числу сочетаний из n элементов по m , т. е. C_n^m . Следовательно, событие B_m можно представить в виде суммы сложных несовместных между собой событий, причем число слагаемых равно C_n^m :

B_m=A_1A_2\cdots{A_m}\overline{A}_{m+1}\cdots\overline{A}_n+\cdots+\overline{A}_1\overline{A}_2\cdots\overline{A}_{n-m}A_{n-m+1}\cdots{A_n},


где в каждое произведение событие A входит m раз, а \overline{A} - (n-m) раз.

Вероятность каждого сложного события, входящего в формулу (3.1), по теореме умножения вероятностей для независимых событий равна p^{m}q^{n-m} . Так как общее количество таких событий равно C_n^m , то, используя теорему сложения вероятностей для несовместных событий, получаем вероятность события B_m (обозначим ее P_{m,n} )

P_{m,n}=C_n^mp^{m}q^{n-m}\quad \text{or}\quad P_{m,n}=\frac{n!}{m!(n-m)!}p^{m}q^{n-m}.

Формулу (3.2) называют формулой Бернулли , а повторяющиеся испытания, удовлетворяющие условию независимости и постоянства вероятностей появления в каждом из них события A , называют испытаниями Бернулли , или схемой Бернулли .

Пример 1. Вероятность выхода за границы поля допуска при обработке деталей на токарном станке равна 0,07. Определить вероятность того, что из пяти наудачу отобранных в течение смены деталей у одной размеры диаметра не соответствуют заданному допуску.

Решение. Условие задачи удовлетворяет требования схемы Бернулли. Поэтому, полагая n=5,\,m=1,\,p=0,\!07 , по формуле (3.2) получаем

P_{1,5}=C_5^1(0,\!07)^{1}(0,\!93)^{5-1}\approx0,\!262.

Пример 2. Наблюдениями установлено, что в некоторой местности в сентябре бывает 12 дождливых дней. Какова вероятность того, что из случайно взятых в этом месяце 8 дней 3 дня окажутся дождливыми?

Решение.

P_{3;8}=C_8^3{\left(\frac{12}{30}\right)\!}^3{\left(1-\frac{12}{30}\right)\!}^{8-3}=\frac{8!}{3!(8-3)!}{\left(\frac{2}{5}\right)\!}^3{\left(\frac{3}{5}\right)\!}^5=56\cdot\frac{8}{125}\cdot\frac{243}{3125}=\frac{108\,864}{390\,625}\approx0,\!2787.

Наивероятнейшее число появлений события

Наивероятнейшим числом появления события A в n независимых испытаниях называется такое число m_0 , для которого вероятность, соответствующая этому числу, превышает или, по крайней мере, не меньше вероятности каждого из остальных возможных чисел появления события A . Для определения наивероятнейшего числа не обязательно вычислять вероятности возможных чисел появлений события, достаточно знать число испытаний n и вероятность появления события A в отдельном испытании. Обозначим P_{m_0,n} вероятность, соответствующую наивероятнейшему числу m_0 . Используя формулу (3.2), записываем

P_{m_0,n}=C_n^{m_0}p^{m_0}q^{n-m_0}=\frac{n!}{m_0!(n-m_0)!}p^{m_0}q^{n-m_0}.

Согласно определению наивероятнейшего числа, вероятности наступления события A соответственно m_0+1 и m_0-1 раз должны, по крайней мере, не превышать вероятность P_{m_0,n} , т. е.

P_{m_0,n}\geqslant{P_{m_0+1,n}};\quad P_{m_0,n}\geqslant{P_{m_0-1,n}}

Подставляя в неравенства значение P_{m_0,n} и выражения вероятностей P_{m_0+1,n} и P_{m_0-1,n} , получаем

Решая эти неравенства относительно m_0 , получаем

M_0\geqslant{np-q},\quad m_0\leqslant{np+p}

Объединяя последние неравенства, получаем двойное неравенство, которое используют для определения наивероятнейшего числа:

Np-q\leqslant{m_0}\leqslant{np+p}.

Так как длина интервала, определяемого неравенством (3.4), равна единице, т. е.

(np+p)-(np-q)=p+q=1,


и событие может произойти в n испытаниях только целое число раз, то следует иметь в виду, что:

1) если np-q - целое число, то существуют два значения наивероятнейшего числа, а именно: m_0=np-q и m"_0=np-q+1=np+p ;

2) если np-q - дробное число, то существует одно наивероятнейшее число, а именно: единственное целое, заключенное между дробными числами, полученными из неравенства (3.4);

3) если np - целое число, то существует одно наивероятнейшее число, а именно: m_0=np .

При больших значениях n пользоваться формулой (3.3) для расчета вероятности, соответствующей наивероятнейшему числу, неудобно. Если в равенство (3.3) подставить формулу Стирлинга

N!\approx{n^ne^{-n}\sqrt{2\pi{n}}},


справедливую для достаточно больших n , и принять наивероятнейшее число m_0=np , то получим формулу для приближенного вычисления вероятности, соответствующей наивероятнейшему числу:

P_{m_0,n}\approx\frac{n^ne^{-n}\sqrt{2\pi{n}}\,p^{np}q^{nq}}{(np)^{np}e^{-np}\sqrt{2\pi{np}}\,(nq)^{nq}e^{-nq}\sqrt{2\pi{nq}}}=\frac{1}{\sqrt{2\pi{npq}}}=\frac{1}{\sqrt{2\pi}\sqrt{npq}}.

Пример 2. Известно, что \frac{1}{15} часть продукции, поставляемой заводом на торговую базу, не удовлетворяет всем требованиям стандарта. На базу была завезена партия изделий в количестве 250 шт. Найти наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, и вычислить вероятность того, что в этой партии окажется наивероятнейшее число изделий.

Решение. По условию n=250,\,q=\frac{1}{15},\,p=1-\frac{1}{15}=\frac{14}{15} . Согласно неравенству (3.4) имеем

250\cdot\frac{14}{15}-\frac{1}{15}\leqslant{m_0}\leqslant250\cdot\frac{14}{15}+\frac{1}{15}


откуда 233,\!26\leqslant{m_0}\leqslant234,\!26 . Следовательно, наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, в партии из 250 шт. равно 234. Подставляя данные в формулу (3.5), вычисляем вероятность наличия в партии наивероятнейшего числа изделий:

P_{234,250}\approx\frac{1}{\sqrt{2\pi\cdot250\cdot\frac{14}{15}\cdot\frac{1}{15}}}\approx0,\!101

Локальная теорема Лапласа

Пользоваться формулой Бернулли при больших значениях n очень трудно. Например, если n=50,\,m=30,\,p=0,\!1 , то для отыскания вероятности P_{30,50} надо вычислить значение выражения

P_{30,50}=\frac{50!}{30!\cdot20!}\cdot(0,\!1)^{30}\cdot(0,\!9)^{20}

Естественно, возникает вопрос: нельзя ли вычислить интересующую вероятность, не используя формулу Бернулли? Оказывается, можно. Локальная теорема Лапласа дает асимптотическую формулу, которая позволяет приближенно найти вероятность появления событий ровно m раз в n испытаниях, если число испытаний достаточно велико.

Теорема 3.1. Если вероятность p появления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность P_{m,n} того, что событие A появится в n испытаниях ровно m раз, приближенно равна (тем точнее, чем больше n ) значению функции

Y=\frac{1}{\sqrt{npq}}\frac{e^{-x^2/2}}{\sqrt{2\pi}}=\frac{\varphi(x)}{\sqrt{npq}} при .

Существуют таблицы, которые содержат значения функции \varphi(x)=\frac{1}{\sqrt{2\pi}}\,e^{-x^2/2}} , соответствующие положительным значениям аргумента x . Для отрицательных значений аргумента используют те же таблицы, так как функция \varphi(x) четна, т. е. \varphi(-x)=\varphi(x) .


Итак, приближенно вероятность того, что событие A появится в n испытаниях ровно m раз,

P_{m,n}\approx\frac{1}{\sqrt{npq}}\,\varphi(x), где x=\frac{m-np}{\sqrt{npq}} .

Пример 3. Найти вероятность того, что событие A наступит ровно 80 раз в 400 испытаниях, если вероятность появления события A в каждом испытании равна 0,2.

Решение. По условию n=400,\,m=80,\,p=0,\!2,\,q=0,\!8 . Воспользуемся асимптотической, формулой Лапласа:

P_{80,400}\approx\frac{1}{\sqrt{400\cdot0,\!2\cdot0,\!8}}\,\varphi(x)=\frac{1}{8}\,\varphi(x).

Вычислим определяемое данными задачи значение x :

X=\frac{m-np}{\sqrt{npq}}=\frac{80-400\cdot0,\!2}{8}=0.

По таблице прил, 1 находим \varphi(0)=0,\!3989 . Искомая вероятность

P_{80,100}=\frac{1}{8}\cdot0,\!3989=0,\!04986.

Формула Бернулли приводит примерно к такому же результату (выкладки ввиду их громоздкости опущены):

P_{80,100}=0,\!0498.

Интегральная теорема Лапласа

Предположим, что проводится n независимых испытаний, в каждом из которых вероятность появления события A постоянна и равна p . Необходимо вычислить вероятность P_{(m_1,m_2),n} того, что событие A появится в n испытаниях не менее m_1 и не более m_2 раз (для краткости будем говорить "от m_1 до m_2 раз"). Это можно сделать с помощью интегральной теоремы Лапласа.

Теорема 3.2. Если вероятность p наступления события A в каждом испытании постоянна и отлична от нуля и единицы, то приближенно вероятность P_{(m_1,m_2),n} того, что событие A появится в испытаниях от m_1 до m_2 раз,

P_{(m_1,m_2),n}\approx\frac{1}{\sqrt{2\pi}}\int\limits_{x"}^{x""}e^{-x^2/2}\,dx, где .

При решении задач, требующих применения интегральной теоремы Лапласа, пользуются специальными таблицами, так как неопределенный интеграл \int{e^{-x^2/2}\,dx} не выражается через элементарные функции. Таблица для интеграла \Phi(x)=\frac{1}{\sqrt{2\pi}}\int\limits_{0}^{x}e^{-z^2/2}\,dz приведена в прил. 2, где даны значения функции \Phi(x) для положительных значений x , для x<0 используют ту же таблицу (функция \Phi(x) нечетна, т. е. \Phi(-x)=-\Phi(x) ). Таблица содержит значения функции \Phi(x) лишь для x\in ; для x>5 можно принять \Phi(x)=0,\!5 .

Итак, приближенно вероятность того, что событие A появится в n независимых испытаниях от m_1 до m_2 раз,

P_{(m_1,m_2),n}\approx\Phi(x"")-\Phi(x"), где x"=\frac{m_1-np}{\sqrt{npq}};~x""=\frac{m_2-np}{\sqrt{npq}} .

Пример 4. Вероятность того, что деталь изготовлена с нарушениями стандартов, p=0,\!2 . Найти вероятность того, что среди 400 случайно отобранных деталей нестандартных окажется от 70 до 100 деталей.

Решение. По условию p=0,\!2,\,q=0,\!8,\,n=400,\,m_1=70,\,m_2=100 . Воспользуемся интегральной теоремой Лапласа:

P_{(70,100),400}\approx\Phi(x"")-\Phi(x").

Вычислим пределы интегрирования:


нижний

X"=\frac{m_1-np}{\sqrt{npq}}=\frac{70-400\cdot0,\!2}{\sqrt{400\cdot0,\!2\cdot0,\!8}}=-1,\!25,


верхний

X""=\frac{m_2-np}{\sqrt{npq}}=\frac{100-400\cdot0,\!2}{\sqrt{400\cdot0,\!2\cdot0,\!8}}=2,\!5,

Таким образом

P_{(70,100),400}\approx\Phi(2,\!5)-\Phi(-1,\!25)=\Phi(2,\!5)+\Phi(1,\!25).

По таблице прил. 2 находим

\Phi(2,\!5)=0,\!4938;~~~~~\Phi(1,\!25)=0,\!3944.

Искомая вероятность

P_{(70,100),400}=0,\!4938+0,\!3944=0,\!8882.

Применение интегральной теоремы Лапласа

Если число m (число появлений события A при n независимых испытаниях) будет изменяться от m_1 до m_2 , то дробь \frac{m-np}{\sqrt{npq}} будет изменяться от \frac{m_1-np}{\sqrt{npq}}=x" до \frac{m_2-np}{\sqrt{npq}}=x"" . Следовательно, интегральную теорему Лапласа можно записать и так:

P\left\{x"\leqslant\frac{m-np}{\sqrt{npq}}\leqslant{x""}\right\}=\frac{1}{\sqrt{2\pi}}\int\limits_{x"}^{x""}e^{-x^2/2}\,dx.

Поставим задачу найти вероятность того, что отклонение относительной частоты \frac{m}{n} от постоянной вероятности p по абсолютной величине не превышает заданного числа \varepsilon>0 . Другими словами, найдем вероятность осуществления неравенства \left|\frac{m}{n}-p\right|\leqslant\varepsilon , что то же самое, -\varepsilon\leqslant\frac{m}{n}-p\leqslant\varepsilon . Эту вероятность будем обозначать так: P\left\{\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right\} . С учетом формулы (3.6) для данной вероятности получаем

P\left\{\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right\}\approx2\Phi\left(\varepsilon\,\sqrt{\frac{n}{pq}}\right).

Пример 5. Вероятность того, что деталь нестандартна, p=0,\!1 . Найти вероятность того, что среди случайно отобранных 400 деталей относительная частота появления нестандартных деталей отклонится от вероятности p=0,\!1 по абсолютной величине не более чем на 0,03.

Решение. По условию n=400,\,p=0,\!1,\,q=0,\!9,\,\varepsilon=0,\!03 . Требуется найти вероятность P\left\{\left|\frac{m}{400}-0,\!1\right|\leqslant0,\!03\right\} . Используя формулу (3.7), получаем

P\left\{\left|\frac{m}{400}-0,\!1\right|\leqslant0,\!03\right\}\approx2\Phi\left(0,\!03\sqrt{\frac{400}{0,\!1\cdot0,\!9}}\right)=2\Phi(2)

По таблице прил. 2 находим \Phi(2)=0,\!4772 , следовательно, 2\Phi(2)=0,\!9544 . Итак, искомая вероятность приближенно равна 0,9544. Смысл полученного результата таков: если взять достаточно большое число проб по 400 деталей в каждой, то примерно в 95,44% этих проб отклонение относительной частоты от постоянной вероятности p=0,\!1 по абсолютной величине не превысит 0,03.

Формула Пуассона для маловероятных событий

Если вероятность p наступления события в отдельном испытании близка к нулю, то даже при большом числе испытаний n , но при небольшом значении произведения np получаемые по формуле Лапласа значения вероятностей P_{m,n} оказываются недостаточно точными и возникает потребность в другой приближенной формуле.

Теорема 3.3. Если вероятность p наступления события A в каждом испытании постоянна, но мала, число независимых испытаний n достаточно велико, но значение произведения np=\lambda остается небольшим (не больше десяти), то вероятность того, что в этих испытаниях событие A наступит m раз,

P_{m,n}\approx\frac{\lambda^m}{m!}\,e^{-\lambda}.

Для упрощения расчетов с применением формулы Пуассона составлена таблица значений функции Пуассона \frac{\lambda^m}{m!}\,e^{-\lambda} (см. прил. 3).

Пример 6. Пусть вероятность изготовления нестандартной детали равна 0,004. Найти вероятность того, что среди 1000 деталей окажется 5 нестандартных.

Решение. Здесь n=1000,p=0,004,~\lambda=np=1000\cdot0,\!004=4 . Все три числа удовлетворяют требованиям теоремы 3.3, поэтому для нахождения вероятности искомого события P_{5,1000} применяем формулу Пуассона. По таблице значений функции Пуассона (прил. 3) при \lambda=4;m=5 получаем P_{5,1000}\approx0,\!1563 .

Найдем вероятность того же события по формуле Лапласа. Для этого сначала вычисляем значение x , соответствующее m=5 :

X=\frac{5-1000\cdot0,\!004}{\sqrt{1000\cdot0,\!004\cdot0,\!996}}\approx\frac{1}{1,\!996}\approx0,\!501.

Поэтому согласно формуле Лапласа искомая вероятность

P_{5,1000}\approx\frac{\varphi(0,\!501)}{1,\!996}\approx\frac{0,\!3519}{1,\!996}\approx0,\!1763


а согласно формуле Бернулли точное ее значение

P_{5,1000}=C_{1000}^{5}\cdot0,\!004^5\cdot0,\!996^{995}\approx0,\!1552.

Таким образом, относительная ошибка вычисления вероятностей P_{5,1000} по приближенной формуле Лапласа составляет

\frac{0,\!1763-0,\!1552}{0,\!1552}\approx0,\!196 , или 13,\!6\%


а по формуле Пуассона -

\frac{0,\!1563-0,\!1552}{0,\!1552}\approx0,\!007 , или 0,\!7\%

Т. е. во много раз меньше.
Перейти к следующему разделу
Одномерные случайные величины
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!