Биографии

Как определить обратимую и необратимую реакцию. Обратимые и необратимые химические реакции. Химическое равновесие. Смещение равновесия под действием различных факторов. Смещение химического равновесия. Принцип Ле-Шателье

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ РЕАКЦИИ.

Обратимыми в химической кинетике называют такие реакции, которые одновременно и независимо протекают в двух направлениях - прямом и обратном, но с различными скоростями. Для обратимых реакций характерно, что через некоторое время после их начала скорости прямой и обратной реакций становятся равными и наступает состояние химического равновесия.

Все химические реакции обратимы, но при определенных условиях некоторые из них могут протекать только в одном направлении до практически полного исчезновения исходных продуктов. Такие реакции называют необратимыми . Обычно необратимыми бывают реакции, в которых хотя бы один продукт реакции выводится из области реакции (в случае реакции в растворах - выпадает в осадок или выделяется в виде газа), или реакции, которые сопровождаются большим положительным тепловым эффектом. В случае ионных реакций, реакция является практически необратимой, если в результате нее образуется очень малорастворимое или малодиссоциированное вещество.

Рассмотренное здесь понятие обратимости реакции не совпадает с понятием термодинамической обратимости. Обратимая в кинетическом смысле реакция в термодинамическом смысле может протекать необратимо. Для того чтобы реакцию можно было назвать обратимой в термодинамическом смысле, скорость прямого процесса должна бесконечно мало отличаться от скорости обратного процесса и, следовательно, процесс в целом должен протекать бесконечно медленно.

В идеальных газовых смесях и в идеальных жидких растворах скорости простых (одностадийных) реакций подчиняются закону действующих масс . Скорость химической реакции (1.1) описывается уравнением (1.2), а в случае прямой реакции может быть, представлено в виде:

где - константа скорости прямой реакции.

Подобно этому, скорость обратной реакции:

(1.5)

При равновесии , следовательно:

(1.6)

Это уравнение выражает закон действующих масс для химического равновесия в идеальных системах; К - к о н с т а н т а р а в н о в е с и я.

Константа реакции позволяет найти равновесный состав реакционной смеси при данных условиях.

Закон действующих масс для скоростей реакций можно пояснить следующим образом.

Чтобы произошел акт реакции, необходимо столкновение молекул исходных веществ, т.е. молекулы должны сблизиться друг с другом на расстояние порядка атомных размеров. Вероятность найти в некотором малом объеме в данный момент l молекул вещества L , m молекул вещества M и т.д. пропорциональна ..... , следовательно, число столкновений в единице объема за единицу времени пропорционально этой величине; отсюда вытекает уравнение (1.4).

Одной из важнейших характеристик химической реакции является глубина (степень) превращения, показывающая, насколько исходные вещества превращаются в продукты реакции. Чем она больше, тем экономичнее можно проводить процесс. Глубина превращения, помимо других факторов, зависит от обратимости реакции.

Обратимые реакции, в отличие от необратимых , протекают не до конца: ни одно из реагирующих веществ не расходуется полностью. Одновременно идет взаимодействие продуктов реакции с образованием исходных веществ.

Рассмотрим примеры:

1) в замкнутый сосуд при определенной температуре введены равные объемы газообразного йода и водорода. Если столкновения молекул этих веществ происходят с нужной ориентацией и достаточной энергией, то химические связи могут перестроиться с образованием промежуточного соединения (активированный комплекс, см. п.1.3.1). Дальнейшая перестройка связей может привести к распаду промежуточного соединения на две молекулы йодистого водорода. Уравнение реакции:

H 2 + I 2 ® 2HI

Но молекулы йодистого водорода также будут беспорядочно сталкиваться с молекулами водорода, йода и между собой. При столкновении молекул HI ничто не помешает образоваться промежуточному соединению, которое затем может разложиться на йод и водород. Этот процесс выражается уравнением:

2HI ® H 2 + I 2

Таким образом, в этой системе одновременно будут протекать две реакции - образование йодистого водорода и его разложение. Их можно выразить одним общим уравнением

H 2 + I 2 « 2HI

Обратимость процесса показывает знак «.

Реакция, направленная в данном случае в сторону образования йодистого водорода, называется прямой, а противоположная - обратной.

2) если смешать два моль диоксида серы с одним моль кислорода, создать в системе условия, благоприятствующие протеканию реакции, и по истечении времени провести анализ газовой смеси, то результаты покажут, что в системе будут присутствовать как SO 3 – продукт реакции, так и исходные вещества – SO 2 и O 2 . Если в те же условия в качестве исходного вещества поместить оксид серы (+6), то можно будет обнаружить, что часть его разложится на кислород и оксид серы (+4), причем конечное соотношение между количествами всех трех веществ будет такое же, как и в том случае, когда исходили из смеси диоксида серы и кислорода.

Таким образом, взаимодействие диоксида серы с кислородом также является одним из примеров обратимой химической реакции и выражается уравнением

2SO 2 + O 2 « 2SO 3

3) взаимодействие железа с соляной кислотой протекает согласно уравнению:

Fe + 2HCL ® FeCL 2 + H 2

При достаточном количестве соляной кислоты реакция закончится, когда

все железо израсходуется. Кроме того, если попытаться провести эту реакцию в обратном направлении – пропускать водород через раствор хлорида железа, то металлического железа и соляной кислоты не получится – эта реакция не может идти в обратном направлении. Таким образом, взаимодействие железа с соляной кислотой – необратимая реакция.

Однако, следует иметь ввиду, что теоретически любой необратимый процесс можно представить протекающим в определенных условиях обратимо, т.е. в принципе все реакции можно считать обратимыми. Но очень часто одна из реакций явно преобладает. Это бывает в тех случаях, когда продукты взаимодействия удаляются из сферы реакции: выпадает осадок, выделяется газ, при ионообменных реакциях образуются практически недиссоциирующие продукты; или же когда за счет явного избытка исходных веществ противоположный процесс практически подавляется. Таким образом, естественное или искусственное исключение возможности протекания обратной реакции позволяет довести процесс практически до конца.

Примерами таких реакций могут служить взаимодействие хлорида натрия с нитратом серебра в растворе

NaCL + AgNO 3 ® AgCl¯ + NaNO 3 ,

бромида меди с аммиаком

CuBr 2 + 4NH 3 ® Br 2 ,

нейтрализация хлороводородной кислоты раствором едкого натра

HCl + NaOH ® NaCl + H 2 O.

Это все примеры лишь практически необратимых процессов, так как и хлорид серебра несколько растворим, и комплексный катион 2+ не абсолютно устойчив, и вода диссоциирует, хотя и в крайне незначительной степени.

>> Химия: Обратимые и необратимые реакции

СО2+ H2O = H2CO3

Оставим полученный раствор кислоты стоять в штативе. Через некоторое время мы увидим, что раствор снова стал фиолетовым, так как кислота разложилась на исходные вещества.

Это процесс можно провести гораздо быстрее, если подо треть раствор угольной кислоты. Следовательно, реакция получения угольной кислоты протекает как в прямом, так н в обратном направлении, то есть является обратимой. Обратимость реакции обозначается двумя противоположно направленными стрелками:

Среди обратимых реакций, лежащих в основе получения важнейших химических продуктов, в качестве примера назо вем реакцию синтеза (соединения) оксида серы (VI) из оксида серы (IV) и кислорода.

1. Обратимые и необратимые реакции.

2. Правило Бертолле.

Запишите уравнения реакций горения, о которых говорилось в тексте параграфа, зияя, что в результате этих реакций образованы оксиды тех элементов, из которых построены исходные вещества.

Дайте характеристику трех последних реакций, проведенных а конце параграфа, по плану: а) характер и число реагентов и продуктов; б) агрегатное состояние; в) направление: г) наличие катализатора; д) выделение или поглощение теплоты

Какая неточность допущена в предложенной в тексте параграфа записи уравнения реакции обжига известняка?

Насколько справедливо утверждение, что реакции соединения будут, как правило, зкзотермическими реакциями? Обоснуйте свою точку зрения, пользуясь приведенными в тексте учебника фактами.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Химические реакции, протекающие в одном направлении, называют необратимыми .

Большинство химических процессов являются обратимыми . Это значит, что при одних и тех же условиях протекают и прямая, и обратная реакции (особенно если речь идет о замкнутых системах).

Например:

а) реакция

в открытой системе необратима ;

б) эта же реакция

в замкнутой системе обратима .

Химическое равновесие

Рассмотрим более подробно процессы, протека­ющие при обратимых реакциях, например, для ус­ловной реакции:

На основании закона действующих масс ско­рость прямой реакции :

Так как со временем концентрации веществ А и В уменьшаются, то и скорость прямой реакции тоже уменьшается.

Появление продуктов реакции означает воз­можность обратной реакции, причем со временем концентрации веществ С и D увеличиваются, а зна­чит, увеличивается и скорость обратной реакции .

Рано или поздно будет достигнуто состояние, при котором скорости прямой и обратной реакций станут равными = .

Состояние системы, при котором скорость прямой ре­акции равна скорости обрат­ной реакции, называют хи­мическим равновесием .

При этом концентрации реагирующих веществ и про­дуктов реакции остаются без изменения. Их называют рав­новесными концентрациями. На макроуровне ка­жется, что в целом ничего не изменяется. Но на самом деле и прямой, и обратный процессы про­должают идти, но с равной скоростью. Поэтому такое равновесие в системе называют подвижным и динамическим.

Обозначим равновесные концентрации ве­ществ [A], [B], [C], [D]. Тогда так как = , k 1 [A] α [B] β = k 2 [C] γ [D] δ , откуда

где α, β, γ, δ - показатели степеней, равные коэффициентам в обратимой реакции ; К равн - констан­та химического равновесия .

Полученное выражение количественно описы­вает состояние равновесия и представляет собой математическое выражение закона действующих масс для равновесных систем.

При неизменной температуре константа равно­весия - величина постоянная для данной обрати­мой реакции . Она показывает соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое уста­навливается при равновесии.

Константы равновесия рассчитывают из опыт­ных данных, определяя равновесные концентра­ции исходных веществ и продуктов реакции при определенной температуре.

Значение константы равновесия характеризует выход продуктов реакции, полноту ее протекания. Если получают К » 1, это означает, что при равновесии [C] γ [D] δ » [A] α [B] β , т. е. концентра­ции продуктов реакции преобладают над концен­трациями исходных веществ, а выход продуктов реакции большой.

При К равн « 1 соответственно выход продуктов реакции мал. Например, для реакции гидролиза этилового эфира уксусной кислоты

константа равновесия:

при 20 °C имеет значение 0,28 (то есть меньше 1).

Это означает, что значительная часть эфира не ги­дролизовалась.

В случае гетерогенных реакций в выражение константы равновесия входят концентрации толь­ко тех веществ, которые находятся в газовой или жидкой фазе. Например, для реакции

Константы равновесия выражается так:

Значение константы равновесия зависит от при­роды реагирующих веществ и температуры.

От присутствия катализатора константа не за­висит , поскольку он изменяет энергию активации и прямой, и обратной реакции на одну и ту же ве­личину. Катализатор может лишь ускорить насту­пление равновесия, не влияя на значение констан­ты равновесия.

Состояние равновесия сохраняется сколь угодно долго при неизменных внешних условиях: темпе­ратуре, концентрации исходных веществ, давлении (если в реакции участвуют или образуются газы).

Изменяя эти условия, можно перевести систему из одного равновесного состояния в другое, отвеча­ющее новым условиям. Такой переход называют смещением или сдвигом равновесия .

Рассмотрим разные способы смещения равно­весия на примере реакции взаимодействия азота и водорода с образованием аммиака:

Влияние изменения концентрации веществ

При добавлении в реакционную смесь азота N 2 и водорода H 2 увеличивается концентрация этих газов, а значит, увеличивается скорость прямой реакции . Равновесие смещается вправо, в сторону продукта реакции, то есть в сторону аммиака NH 3 .

N 2 +3H 2 → 2NH 3

Этот же вывод можно сделать, анализируя вы­ражение для константы равновесия. При увеличе­нии концентрации азота и водорода знаменатель увеличивается, а так как K равн. - величина постоянная, должен увеличиваться числитель. Таким образом, в реакционной смеси увеличится количе­ство продукта реакции NH 3 .

Увеличение же концентрации продукта реак­ции аммиака NH 3 приведет к смещению равно­весия влево, в сторону образования исходных ве­ществ. Этот вывод можно сделать на основании аналогичных рассуждений.

Влияние изменения давления

Изменение давления оказывает влияние только на те системы, где хотя бы одно из веществ нахо­дится в газообразном состоянии. При увеличении давления уменьшается объем газов, а значит, уве­личивается их концентрация.

Предположим, что давление в замкнутой си­стеме повысили, например, в 2 раза. Это значит, что концентрации всех газообразных веществ (N 2 , H 2 , NH 3) в рассматриваемой реакции возрастут в 2 раза. В этом случае числитель в выражении для К равн увеличится в 4 раза, а знаменатель - в 16 раз, т. е. равновесие нарушится. Для его вос­становления должна увеличиться концентрация аммиака и должны уменьшиться концентрации азота и водорода. Равновесие сместится вправо. Изменение давления практически не сказывается на объеме жидких и твердых тел, т. е. не изме­няет их концентрацию. Следовательно, состояние химического равновесия реакций, в которых не участвуют газы, не зависит от давления .

Влияние изменения температуры

При повышении темпера­туры скорости всех реакций (экзо- и эндотермических) увеличиваются. Причем по­вышение температуры боль­ше сказывается на скорости тех реакций, которые имеют большую энергию активации, а значит, эндотермических .

Таким образом, скорость обратной реакции (эндотермической) увеличивается сильнее, чем скорость прямой. Равновесие сместится в сторо­ну процесса, сопровождающегося поглощением энергии.

Направление смещения равновесия можно предсказать, пользуясь принципом Ле Шателье :

Если на систему, находящуюся в равновесии, оказывается внешнее воздействие (изменяется концентрация, давление, температура), то равновесие смещается в ту сторону, которая осла­бляет данное воздействие.

Таким образом:

При увеличении концентрации реагирующих ве­ществ химическое равновесие системы смещает­ся в сторону образования продуктов реакции;

При увеличении концентрации продуктов реак­ции химическое равновесие системы смещается в сторону образования исходных веществ;

При увеличении давления химическое равнове­сие системы смещается в сторону той реакции, при которой объем образующихся газообразных веществ меньше;

При повышении температуры химическое рав­новесие системы смещается в сторону эндотер­мической реакции;

При понижении температуры - в сторону экзо­термического процесса.

Принцип Ле Шателье применим не только к хи­мическим реакциям, но и ко многим другим про­цессам: к испарению, конденсации, плавлению, кри­сталлизации и др. При производстве важнейших химических продуктов принцип Ле Шателье и рас­четы, вытекающие из закона действующих масс, дают возможность находить такие условия для про­ведения химических процессов, которые обеспечи­вают максимальный выход желаемого вещества.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Очень часто химические реакции протекают так, что первичные реагирующие вещества полностью преобразуются в продукты реакции. К примеру, если в соляную кислоту положить гранулу цинка, то при определенном (достаточном) количестве кислоты реакция будет протекать до полного растворения цинка согласно уравнению: 2HCL + ZN = ZnCl 2 + H 2 .

Если провести данную реакцию в обратном направлении, другими словами – пропустить водород через раствор хлорида цинка, то металлический цинкне образуется – данная реакция не может протекать в обратном направлении, поэтому она необратима.

Химическая реакция, в результате которой первичные вещества практически полностью преобразуются в конечные продукты, называется необратимой.

К подобным реакциям имеют отношение как гетерогенные, так и гомогенные реакции. К примеру, реакции горения простых веществ – метана CH4, сероуглерода CS2. Как мы уже знаем, реакции горения относятся к экзотермическим реакциям. В большинстве случаев к экзотермическим реакциям относятся реакции соединения, к примеру, реакция гашения извести: CaO + H 2 O = Ca(OH) 2 + Q (выделяется теплота).

Будет логично предполагать что, к эндотермическим реакциям принадлежат обратные реакции, т.е. реакция разложения. К примеру, реакция обжига известняка: CaCo 3 = CaO + CO 2 – Q (теплота поглощается).

Необходимо помнить, что число необратимых реакций является не таким уж и большим.

Гомогенные реакции (между растворами веществ) являются необратимыми, если проходят с образованием нерастворимого, газообразного продукта или воды. Данное правило получило название " правило Бертолле". Проведем опыт. Возьмем три пробирки и нальем в них по 2мл раствора соляной кислоты. В первый сосуд добавим 1 мл окрашенный фенолфталеином малиновый раствор щелочи, он потеряет цвет в следствие реакции: HCl + NaOH = NaCl + H 2 O.

Во вторую пробирку добавим 1 мл раствора карбоната натрия – мы увидим бурную реакцию кипения, которая обусловлена выделением углекислого газа: Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 .

В третью пробирку добавим немного капель нитрата серебра и увидим, как в ней образовался беловатый осадок хлорида серебра: HCl + AgNO 3 = AgCl↓ + HNO 3 .

Большинство реакций являются обратимыми. Необратимых реакций не особенно много.

Химические реакции, которые могут проходить одновременно в двух противоположных направлениях – прямом и обратном, – называются обратимыми.

Нальем в пробирку 3 мл воды и добавим несколько кусочков лакмуса, а потом начнем пропускать через нее с помощью газоотводной трубки выходящий из другого сосуда углекислый газ, который образуется из-за взаимодействия мрамора и соляной кислоты. Спустя некоторое время мы увидим, как фиолетовый лакмус станет красным, это свидетельствует о наличии кислоты. Мы получили непрочную угольную кислоту, которая образовалась путем связи углекислого газа и воды: CO 2 + H 2 O = H 2 CO 3 .

Оставим данный раствор в штативе. Спустя некоторое время мы обратим внимание на то, что раствор опять стал фиолетовым. Кислота разложилась на исходные составляющие: H 2 CO 3 = H 2 O + CO 2 .

Данный процесс будет происходить намного быстрее, если мы подогреем раствор угольной кислоты. Таким образом, мы выяснили, что реакция получения угольной кислоты может протекать как в прямом, так и в обратном направлении, а значит, она является обратимой. Обратимость реакции обозначается на письме двумя противоположно направленными стрелками: CO 2 + H 2 O ↔ H 2 CO 3 .

Среди обратимых реакций, которые лежат в основе получения важныххимических продуктов, приведем в качестве примера реакцию синтеза оксида серы (VI) из оксида серы (IV) и кислорода: 2SO 2 + O 2 ↔ 2SO 3 + Q.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.