Биографии

Максимальная потенциальная энергия пружинного маятника. Период колебания пружинного маятника. Свободные колебания. Математический маятник

Колебания массивного тела, обусловленные действием упругой силы

Анимация

Описание

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.

Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене (рис. 1).

Пружинный маятник

Рис. 1

Прямолинейное движение тела описывают посредством зависимости его координаты от времени:

x = x (t ). (1)

Если известны все силы, действующие на рассматриваемое тело, то эту зависимость можно установить при помощи второго закона Ньютона:

md 2 x /dt 2 = S F , (2)

где m - масса тела.

Правая часть уравнения (2) есть сумма проекций на ось x всех действующих на тело сил.

В рассматриваемом случае главную роль играет упругая сила, которая является консервативной и может быть представлена в виде:

F (x ) = - dU (x )/dx , (3)

где U = U (x ) - потенциальная энергия деформированной пружины.

Пусть x есть удлинение пружины. Экспериментально установлено, что при малых значениях относительного удлинения пружины, т.е. при условии, что:

Ѕ x Ѕ << l ,

где l - длина недеформированной пружины.

Приближенно справедлива зависимость:

U (x ) = k x 2 /2, (4)

где коэффициент k называют жесткостью пружины.

Из этой формулы вытекает следующее выражение для упругой силы:

F (x ) = - kx . (5)

Эту зависимость называют законом Гука.

Кроме силы упругости на движущееся по плоскости тело может действовать сила трения, которая удовлетворительно описывается эмпирической формулой:

F тр = - r dx /dt , (6)

где r - коэффициент трения.

С учетом формул (5) и (6) уравнение (2) можно записать так:

md 2 x /dt 2 + rdx /dt + kx = F (t ), (7)

где F (t ) - внешная сила.

Если на тело действует только сила Гука (5), то свободные колебания тела будут гармоническими. Такое тело называют гармоническим пружинным маятником.

Второй закон Ньютона в этом случае приводит к уравнению:

d 2 x /dt 2 + w 0 2 x = 0, (8)

w 0 = sqrt (k /m ) (9)

Частота колебаний.

Общее решение уравнения (8) имеет вид:

x (t ) = A cos (w 0 t + a ), (10)

где амплитуда A и начальная фаза a определяются начальными условиями.

Когда на рассматриваемое тело действует только сила упругости (5), его полная механическая энергия не изменяется с течением времени:

mv 2 / 2 + k x 2 /2 = const . (11)

Это утверждение составляет содержание закона сохранения энергии гармонического пружинного маятника.

Пусть на массивное тело кроме упругой силы, возвращающей его в положение равновесия, действует сила трения. В этом случае возбужденные в некоторый момент времени свободные колебания тела будут затухать с течением времени и тело будет стремиться к положению равновесия.

В этом второй закон Ньютона (7) можно записать так:

m d 2 x /dt 2 + rdx /dt + kx = 0, (12)

где m - масса тела.

Общее решение уравнения (12) имеет вид:

x(t) = a exp(- b t )cos (w t + a ), (13)

w = sqrt(w o 2 - b 2 ) (14)

Частота колебаний,

b = r / 2 m (15)

Коэффициент затухания колебаний, амплитуда a и начальная фаза a определяются начальными условиями. Функция (13) описывает так называемые затухающие колебания.

Полная механическая энергия пружинного маятника, т.е. сумма его кинетической и потенциальной энергий

E = m v 2 /2 + kx 2 / 2 (16)

изменяется с течением времени по закону:

dE / dt = P , (17)

где P = - rv 2 - мощность силы трения, т.е. энергия, переходящая в тепло за единицу времени.

Временные характеристики

Время инициации (log to от -3 до -1);

Время существования (log tc от 1 до 15);

Время деградации (log td от -3 до 3);

Время оптимального проявления (log tk от -3 до -2).

Свойства пружинного маятника

Определение 1

Идеальный пружинный маятник представляет собой пружину, массой которой можно пренебречь, с закрепленным на ней телом с точечной массой. При этом один или оба конца пружины закреплены, а силой трения можно пренебречь.

Такую конструкцию можно рассматривать лишь как математическую модель. Примерами реальных пружинных маятников (навитых из упругой проволоки цилиндрических спиралей) могут служить всевозможные устройства, гасящие колебания: амортизаторы, подвески, рессоры и т.п. Пружинные маятники, хотя и несколько иной конструкции (в виде плоских спиралей) используются в механических часах.

Свойства пружин зависят от вещества, из которого они изготовлены (как правило, это особая пружинная сталь), диаметра проволоки, формы ее сечения, диаметра цилиндра пружины, его длины. Эти показатели в совокупности обуславливают ключевую характеристику пружины - ее жесткость.

Пружина запасает энергию при продольном растяжении или сжатии за счет упругих деформаций в кристаллической решетке своего вещества.

Замечание 1

При слишком сильном растяжении или сжатии материал пружины теряет упругие свойства. Такая деформация называется пластической или остаточной.

Формула для расчета частоты колебаний

Если пружину с закрепленной на ней грузом, подвергнуть продольной упругой деформации, а затем отпустить, она начнет совершать возвратно-поступательные гармонические колебания, в ходе которых перемещение закрепленного на ней груза описывается формулой:

$x = A \cdot \cos(\omega_0 \cdot t + \phi)$

Здесь $A$ - амплитуда колебаний, $\phi$ - начальная фаза, $\omega_0$ - собственная циклическая частота колебаний пружинного маятника, рассчитываемая как

$\omega_0 = \sqrt{\frac{k}{m}}$ > $0$,

  • $k$ - жесткость пружины,
  • $m$ - масса закрепленного на ней тела.

Циклическая частота отличается тем, что характеризует не количество полных циклов за единицу времени, а количество "пройденных" колеблющейся по гармоническому закону точкой радиан.

Период колебаний пружинного маятника вычисляется как

где k – коэффициент упругости тела, m - масса груза

Математическим маятником называется система, состоящая из материальной точки массой m, подвешенной на невесомой нерастяжимой нити, совершающей колебания под действием силы тяжести (рис.5.13,б).

Период колебаний математического маятника

где l – длина математического маятника, g – ускорение свободного падения.

Физическим маятником называется твердое тело, которое совершает колебания под действием силы тяжести вокруг горизонтальной оси подвеса, не проходящей через центр масс тела (рис.5.13,в).

,

где J – момент инерции колеблющегося тела относительно оси колебаний; d – расстояние центра масс маятника от оси колебаний; - приведенная длина физического маятника.

При сложении двух одинаково направленных гармонических колебаний одинакового периода получается гармоническое колебание того же периода с амплитудой

Результирующая начальная фаза , получаемая при сложении двух колебаний, :

, (5.50)

где A 1 и A 2 – амплитуды слагаемых колебаний, φ 1 и φ 2 – их начальные фазы.

При сложении двух взаимно перпендикулярных колебаний одинакового периода уравнение траектории результирующего движения имеет вид:

Если на материальную точку, кроме упругой силы действует сила трения, то колебания будут затухающими, и уравнение такого колебания будет иметь вид

, (5.52)

где называется коэффициентом затухания (r – коэффициент сопротивления).

Называется отношение двух амплитуд, отстоящих друг от друга по времени, равным периоду


Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины периодически меняются и сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур – цепь, состоящая из включенных последовательно катушки индуктивности L, конденсатора емкостью C и резистора сопротивлением R (рис.5.14).

Период T электромагнитных колебаний в колебательном контуре

. (5.54)

Если сопротивление колебательного контура мало, т.е. <<1/LC, то период колебаний колебательного контура определяется формулой Томсона

Если сопротивление контура R не равно нулю, то колебания будут затухающими . При этом разность потенциалов на обкладках конденсатора меняется со временем по закону

, (5.56)

где δ – коэффициент затухания, U 0 – амплитудное значение напряжения.

Коэффициент затухания колебаний в колебательном контуре

где L – индуктивность контура, R – сопротивление.

Логарифмическим декрементом затухания называется отношение двух амплитуд, отстоящих друг от друга по времени, равное периоду


Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы ω к частоте, равной или близкой собственной частоте ω 0 колебательной системы (рис.5.15.).

Условие получения резонанса :

. (5.59)

Промежуток времени, в течение которого амплитуда затухающих колебаний уменьшится в e раз, называется временем релаксации

Для характеристики затухания колебательных контуров часто пользуются величиной, называемой добротностью контура. Добротностью контура Q называется число полных колебаний N, умноженное на число π, по истечению которых амплитуда уменьшается в e раз

. (5.61)

Если коэффициент затухания равен нулю, то колебания будут незатухающими, напряжение будет меняться по закону

. (5.62)

В случае постоянного тока отношение напряжения к силе тока называют сопротивлением проводника. Подобно этому при переменном токе отношение амплитуды активной составляющей напряжения U а к амплитуде тока i 0 называется активным сопротивлением цепи X

В рассматриваемой цепи оно равно сопротивлению постоянного тока. Активное сопротивление всегда приводит к выделению тепла.

Отношение

. (5.64)

называетсяреактивным сопротивлением цепи .

Наличие реактивного сопротивления в цепи не сопровождается выделением тепла.

Полным сопротивлением называется геометрическая сумма активного и реактивного сопротивления

, (5.65)

Емкостным сопротивлением цепи переменного тока X c называется соотношение

Индуктивное сопротивление

Закон Ома для переменного тока записывается в виде

где I эф и U эф – эффективные значения силы тока и напряжения , связанные с их амплитудными значениями I 0 и U 0 соотношениями

Если цепь содержит активное сопротивление R, емкость C и индуктивность L, соединенные последовательно, тоcдвиг фаз между напряжением и силой тока определяется формулой

. (5.70)

Если активное сопротивление R и индуктивность включены параллельно в цепь переменного тока, то полное сопротивление цепи определяется формулой

, (5.71)

и сдвиг фаз между напряжением и током определяется следующим соотношением

, (5.72)

где υ – частота колебаний.

Мощность переменного тока определяется следующим соотношением

. (5.73)

Длина волны связана с периодом следующим соотношением

где c=3·10 8 м/с – скорость распространения звука.


Примеры решения задач

Задача 5.1. По отрезку прямого провода длиной l = 80 см течет ток I = 50 А. Определить магнитную индукцию B поля, создаваемого этим током, в точке А, равноудаленной от концов отрезка провода и находящейся на расстоянии r 0 = 30 см от его середины.

где dB – магнитная индукция, создаваемая элементом провода длиной dl с током I в точке, определяемой радиус-вектором r; μ 0 – магнитная постоянная, μ – магнитная проницаемость среды, в которой находится провод (в нашем случае, т.к. средой является воздух, μ = 1).

Векторы от различных элементов тока сонаправлены (рис.), поэтому выражение (1) можно переписать в скалярной форме:

где α – угол между радиус-вектором и элементом тока dl .

Подставляя выражение (4) в (3), получим

Заметим, что при симметричном расположении точки А относительно отрезка провода cos α 2 = - cos α 1 .

С учетом этого формула (7) примет вид

Подставляя формулу (9) в (8), получим


Задача 5.2. Два параллельных бесконечно длинных провода D и C, по которым текут токи в одном направлении электрические токи силой I = 60 А, расположены на расстоянии d = 10 см друг от друга. Определить магнитную индукцию поля, создаваемого проводниками с током в точке А (рис.), отстоящей от оси одного проводника на расстоянии r 1 = 5 см, от другого – r 2 = 12 см.

Модуль вектора магнитной индукции найдем по теореме косинусов:

где α – угол между векторами B 1 и B 2 .

Магнитные индукции B 1 и B 2 выражаются соответственно через силу тока I и расстояния r 1 и r 2 от проводов до точки А:

Из рисунка видно, что α = Ð DAC (как углы с соответственно перпендикулярными сторонами).

Из треугольника DAC по теореме косинусов, найдем cosα

Проверим, дает ли правая часть полученного равенства единицу индукции магнитного поля (Тл)

Вычисления:

Ответ: B = 3,08·10 -4 Тл.

Задача 5.3. По тонкому проводящему кольцу радиусом R = 10 см течет ток I = 80 А. Найти магнитную индукцию в точке А, равноудаленной от всех точек кольца на расстояние r = 20 см.

определяемой радиус-вектором .

где интегрирование ведется по всем элементам dl кольца.

Разложим вектор dB на две составляющие dB ┴ , перпендикулярную плоскости кольца, и dB || , параллельную плоскости кольца, т.е.

где и (поскольку dl перпендикулярен r и, следовательно, sinα = 1).

С учетом этого формула (3) примет вид

Проверим, дает ли правая часть равенства (5) единицу магнитной индукции

Вычисления:

Тл.

Ответ: B = 6,28·10 -5 Тл.

Задача 5.4. Длинный провод с током I = 50 А изогнут под углом α = 2π/3. Определить магнитную индукцию в точке А (рис. к задаче 5.4., а). Расстояние d = 5 см.

Вектор сонаправлен с вектором и определяется правилом правого винта. На рисунке 5.4.,б это направление отмечено крестиком в кружочке (т.е. перпендикулярно плоскости чертежа, от нас).

Вычисления:

Тл.

Ответ: B = 3,46·10 -5 Тл.


Задача 5.5. Два бесконечно длинных провода скрещены под прямым углом (рис. к задаче 5.5.,а ). По проводам текут токи I 1 = 80 А и I 2 = 60 А. Расстояние d между проводами равно 10 см. Определить магнитную индукцию B в точке А, одинаково удаленной от обоих проводов.
Дано: I 1 = 80 А I 2 = 60 А d = 10 см = 0,1 м Решение: В соответствии с принципом суперпозиции магнитных полей магнитная индукция в точке А будет равна геометрической сумме магнитных индукций и , создаваемых токами I 1 и I 2 .
Найти: B - ?

Из рисунка следует, что векторы B 1 и B 2 взаимно перпендикулярны (их направления находятся по правилу буравчика и изображены в двух проекциях на рис. к задаче 5.5.,б).

Напряженность магнитного поля, согласно (5.8), созданного бесконечно длинным прямолинейным проводником,

где μ – относительная магнитная проницаемость среды (в нашем случае μ = 1).

Подставляя формулу (2) в (3), найдем магнитные индукций B 1 и B 2 , создаваемых токами I 1 и I 2

Подставляя формулу (4) в (1), получим

Проверим, дает ли правая часть полученного равенства единицу магнитной индукции (Тл):

Вычисления:

Тл.

Ответ: B = 4·10 -6 Тл.

Задача 5.6. Бесконечно длинный провод изогнут так, как это изображено на рисунке к задаче 5.6,а . Радиус R дуги окружности равен 10 см. Определить магнитную индукцию поля, создаваемого в точке О током I = 80 A, текущим по этому проводу.

В нашем случае провод можно разбить на три части (рис. к задаче 5.6, б): два прямолинейных провода (1 и 3), одним концом, уходящие в бесконечность, и дугу полуокружности (2) радиуса R.

Учитывая, что векторы направлены в соответствии с правилом буравчика перпендикулярно плоскости чертежа от нас, то геометрическое суммирование можно заменить алгебраическим:

В нашем случае магнитное поле в точке О создается лишь половиной такого кругового тока, поэтому

В нашем случае r 0 = R, α 1 = π/2 (cos α 1 = 0), α 2 → π (cos α 2 = -1).

Проверим, дает ли правая часть полученного равенства единицу магнитной индукции (Тл):

Вычисления:

Тл.

Ответ: B = 3,31·10 -4 Тл.

Задача 5.7. По двум параллельным прямым проводам длиной l = 2,5 см каждый, находящимся на расстоянии d = 20 см друг от друга, текут одинаковые токи I = 1 кА. Вычислить силу взаимодействия токов.

Ток I 1 создает в месте расположения второго провода (с током I 2) магнитное поле. Проведем линию магнитной индукции (пунктир на рис.) через второй провод и по касательной к ней – вектор магнитной индукции B 1 .

Рисунок к задаче 5.7

Модуль магнитной индукции B 1 определяется соотношением

Так как вектор dl перпендикулярен вектору B 1 , то sin(dl ,B) = 1 и тогда

Силу F взаимодействия проводов с током найдем интегрированием:

Проверим, дает ли правая часть полученного равенства единицу силы (Н):

Вычисление:

Н.

Ответ: F = 2,5 Н.

Так как сила Лоренца перпендикулярна вектору скорости , то она сообщит частице (протону) нормальное ускорение a n .

Согласно второму закону Ньютона,

, (1)

где m – масса протона.

На рисунке совмещена траектория протона с плоскостью чертежа и дано (произвольно) направление вектора . Силу Лоренца направим перпендикулярно вектору к центру окружности (векторы a n и F л сонаправлены). Используя правило левой руки, определим направление магнитных силовых линий (направление вектора ).

Колебательным называется любое периодически повторяющееся движение. Поэтому зависимости координаты и скорости тела от времени при колебаниях описываются периодическими функциями времени. В школьном курсе физики рассматриваются такие колебания, в которых зависимости и скорости тела представляют собой тригонометрические функции , или их комбинацию, где - некоторое число. Такие колебания на-зываются гармоническими (функции и часто называют гармоническими функциями). Для решения задач на колебания, входящих в программу единого государственного экзамена по физике, нужно знать определения основных характеристик колебательного движения: амплитуды, периода, частоты, круговой (или циклической) частоты и фазы колебаний. Дадим эти определения и свяжем перечисленные величины с параметрами зависимости координаты тела от времени , которая в случае гармонических колебаний всегда может быть представлена в виде

где , и - некоторые числа.

Амплитудой колебаний называется максимальное отклонение колеблющегося тела от положения равновесия. Поскольку максимальное и минимальное значение косинуса в (11.1) равно ±1, то амплитуда колебаний тела, совершающего колебания (11.1), равна величине . Период колебаний - это минимальное время, через которое движение тела повторяется. Для зависимости (11.1) период можно установить из следующих соображений. Косинус - периодическая функция с периодом . Поэтому движение полностью повторяется через такое значение , что . Отсюда получаем

Круговой (или циклической) частотой колебаний называется число колебаний, совершаемых за единиц времени. Из формулы (11.3) заключаем, что круговой частотой является величина из формулы (11.1).

Фазой колебаний называется аргумент тригонометрической функции, описывающей зависимость координаты от времени. Из формулы (11.1) видим, что фаза колебаний тела, движение которого описывается зависимостью (11.1), равна . Значение фазы колебаний в момент времени = 0 называется начальной фазой. Для зависимости (11.1) начальная фаза колебаний равна величине . Очевидно, начальная фаза колебаний зависит от выбора начала отсчета времени (момента = 0), которое всегда является условным. Изменением начала отсчета времени начальная фаза колебаний всегда может быть «сделана» равной нулю, а синус в формуле (11.1) «превращен» в косинус или наоборот.

В программу единого государственного экзамена входит также знание формул для частоты колебаний пружинного и математического маятников. Пружинным маятником принято называть тело, которое может совершать колебания на гладкой горизонтальной поверхности под действием пружины, второй конец которой закреплен (левый рисунок). Математическим маятником называется массивное тело, размерами которого можно пренебречь, совершающее колебания на длинной, невесомой и нерастяжимой нити (правый рисунок). Название этой системы – «математический маятник» связано с тем, что она представляет собой абстрактную математическую модель реального (физического ) маятника. Необходимо помнить формулы для периода (или частоты) колебаний пружинного и математического маятников. Для пружинного маятника

где - длина нити, - ускорение свободного падения. Рассмотрим применение этих определений и законов на примере решения задач.

Чтобы найти циклическую частоту колебаний груза в задаче 11.1.1 найдем сначала период колебаний, а затем воспользуемся формулой (11.2). Поскольку 10 м 28 с - это 628 с, и за это время груз совершает 100 колебаний, период колебаний груза равен 6,28 с. Поэтому циклическая частота колебаний равна 1 c -1 (ответ 2 ). В задаче 11.1.2 груз за 600 с совершил 60 колебаний, поэтому частота колебаний - 0,1 с -1 (ответ 1 ).

Чтобы понять, какой путь пройдет груз за 2,5 периода (задача 11.1.3 ), проследим за его движением. Через период груз вернется назад в точку максимального отклонения, совершив полное колебание. Поэтому за это время груз пройдет расстояние, равное четырем амплитудам: до положения равновесия - одна амплитуда, от положения равновесия до точки максимального отклонения в другую сторону - вторая, назад в положение равновесия - третья, из положения равновесия в начальную точку - четвертая. За второй период груз снова пройдет четыре амплитуды, а за оставшиеся половину периода - две амплитуды. Поэтому пройденный путь равен десяти амплитудам (ответ 4 ).

Величина перемещения тела - расстояние от начальной точки до конечной. За 2,5 периода в задаче 11.1.4 тело успеет совершить два полных и половину полного колебания, т.е. окажется на максимальном отклонении, но с другой стороны от положения равновесия. Поэтому величина перемещения равна двум амплитудам (ответ 3 ).

По определению фаза колебаний - это аргумент тригонометрической функции, которой описывается зависимость координаты колеблющегося тела от времени. Поэтому правильный ответ в задаче 11.1.5 - 3 .

Период - это время полного колебания. Это значит, что возвращение тела назад в ту же точку, из которой тело начало движение, еще не означает, что прошел период: тело должно вернуться в ту же точку с той же скоростью. Например, тело, начав колебания из положения равновесия, за период успеет отклониться на максимальную величину в одну сторону, вернуться назад, отклонится на максимум в другую сторону и снова вернуться назад. Поэтому за период тело успеет два раза отклониться на максимальную величину от положения равновесия и вернуться обратно. Следовательно, на прохождение от положения равновесия до точки максимального отклонения (задача 11.1.6 ) тело затрачивает четвертую часть периода (ответ 3 ).

Гармоническими называются такие колебания, при которых зависимость координаты колеблющегося тела от времени описывается тригонометрической (синус или косинус) функцией времени. В задаче 11.1.7 таковыми являются функции и , несмотря на то, что входящие в них параметры обозначены как 2 и 2 . Функция же - тригонометрическая функция квадрата времени. Поэтому гармоническими являются колебания только величин и (ответ 4 ).

При гармонических колебаниях скорость тела изменяется по закону , где - амплитуда колебаний скорости (начало отсчета времени выбрано так, чтобы начальная фаза колебаний равнялась бы нулю). Отсюда находим зависимость кинетической энергии тела от времени
(задача 11.1.8 ). Используя далее известную тригонометрическую формулу, получаем

Из этой формулы следует, что кинетическая энергия тела изменяется при гармонических колебаниях также по гармоническому закону, но с удвоенной частотой (ответ 2 ).

За соотношением между кинетической энергий груза и потенциальной энергией пружины (задача 11.1.9 ) легко проследить из следующих соображений. Когда тело отклонено на максимальную величину от положения равновесия, скорость тела равна нулю, и, следовательно, потенциальная энергия пружины больше кинетической энергии груза. Напротив, когда тело проходит положение равновесия, потенциальная энергия пружины равна нулю, и, следовательно, кинетическая энергия больше потенциальной. Поэтому между прохождением положения равновесия и максимальным отклонением кинетическая и потенциальная энергия один раз сравниваются. А поскольку за период тело четыре раза проходит от положения равновесия до максимального отклонения или обратно, то за период кинетическая энергия груза и потенциальная энергия пружины сравниваются друг с другом четыре раза (ответ 2 ).

Амплитуду колебаний скорости (задача 11.1.10 ) проще всего найти по закону сохранения энергии. В точке максимального отклонения энергия колебательной системы равна потенциальной энергии пружины , где - коэффициент жесткости пружины, - амплитуда колебаний. При прохождении положения равновесия энергия тела равна кинетической энергии , где - масса тела, - скорость тела при прохождении положения равновесия, которая является максимальной скоростью тела в процессе колебаний и, следовательно, представляет собой амплитуду колебаний скорости. Приравнивая эти энергии, находим

(ответ 4 ).

Из формулы (11.5) заключаем (задача 11.2.2 ), что от массы математического маятника его период не зависит, а при увеличении длины в 4 раза период колебаний увеличивается в 2 раза (ответ 1 ).

Часы - это колебательный процесс, который используется для измерения интервалов времени (задача 11.2.3 ). Слова часы «спешат» означают, что период этого процесса меньше того, каким он должен быть. Поэтому для уточнения хода этих часов необходимо увеличить период процесса. Согласно формуле (11.5) для увеличения периода колебаний математического маятника необходимо увеличить его длину (ответ 3 ).

Чтобы найти амплитуду колебаний в задаче 11.2.4 , необходимо представить зависимость координаты тела от времени в виде одной тригонометрической функции. Для данной в условии функции это можно сделать с помощью введения дополнительного угла. Умножая и деля эту функцию на и используя формулу сложения тригонометрических функций, получим

где - такой угол, что . Из этой формулы следует, что амплитуда колебаний тела - (ответ 4 ).

Пружинный маятник представляет собой материальную точку массой , прикрепленную к абсолютно упругой невесомой пружине с жесткостью . Различают два наиболее простых случая: горизонтальный (рис.15,а ) и вертикальный (рис.15, б ) маятники.

а) Горизонтальный маятник (рис. 15,а). При смещении груза
из положения равновесия на величину на него действует в горизонтальном направлениивозвращающая упругая сила
(закон Гука).

Предполагается, что горизонтальная опора, по которой скользит груз
при своих колебаниях, абсолютно гладкая (трения нет).

б) Вертикальный маятник (рис.15, б ). Положение равновесия в этом случае характеризуется условием:

где - величина упругой силы, действующей на груз
при статическом растяжении пружины на под действием силы тяжести груза
.

а

Рис.15. Пружинный маятник: а – горизонтальный и б – вертикальный

Если растянуть пружину и отпустить груз, то он начнет совершать вертикальные колебания. Если смещение в какой-то момент времени будет
, то сила упругости запишется теперь как
.

В обоих рассмотренных случаях пружинный маятник совершает гармонические колебания с периодом

(27)

и циклической частотой

. (28)

На примере рассмотрения пружинного маятника можно сделать вывод о том, что гармонические колебания – это движение, вызванное силой, возрастающей пропорционально смещению . Таким образом, если возвращающая сила по виду напоминает закон Гука
(она получила название квазиупругой силы ), то система должна совершать гармонические колебания. В момент прохождения положения равновесия на тело не действует возвращающая сила, однако, тело по инерции проскакивает положение равновесия и возвращающая сила меняет направление на противоположное.

Математический маятник

Рис.16. Математический маятник

Математический маятник представляет собой идеализированную систему в виде материальной точки, подвешенной на невесомой нерастяжимой нити длиной , которая совершает малые колебания под действием силы тяжести (рис. 16).

Колебания такого маятника при малых углах отклонения
(не превышающих 5º) можно считать гармоническими, и циклическая частота математического маятника:

, (29)

а период:

. (30)

2.3. Энергия тела при гармонических колебаниях

Энергия, сообщенная колебательной системе при начальном толчке, будет периодически преобразовываться: потенциальная энергия деформированной пружины будет переходить в кинетическую энергию движущегося груза и обратно.

Пусть пружинный маятник совершает гармонические колебания с начальной фазой
, т.е.
(рис.17).

Рис.17. Закон сохранения механической энергии

при колебаниях пружинного маятника

При максимальном отклонении груза от положения равновесия полная механическая энергия маятника (энергия деформированной пружины с жесткостью ) равна
. При прохождении положения равновесия (
) потенциальная энергия пружины станет равной нулю, и полная механическая энергия колебательной системы определится как
.

На рис.18 представлены графики зависимостей кинетической, потенциальной и полной энергии в случаях, когда гармонические колебания описываются тригонометрическими функциями синуса (пунктирная линия) или косинуса (сплошная линия).

Рис.18. Графики временной зависимости кинетической

и потенциальной энергии при гармонических колебаниях

Из графиков (рис.18) следует, что частота изменения кинетической и потенциальной энергии в два раза выше собственной частоты гармонических колебаний.