Бунин

Аппроксимация функции секанс. Интерполяционная формула Лагранжа. Исходные данные для выполнения курсовой работы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВПО «ВГТУ», ВГТУ)

Факультет радиотехники и электроники

Кафедра высшей математики и физико-математического моделирования


КУРСОВАЯ РАБОТА

по дисциплине: Математика

Тема: «Методы аппроксимации функций»


Разработал студент группы КП-121

И.С. Кононученко

Руководитель Кострюков С.А


ЗАДАНИЕ на курсовую работу


Тема: «Методы аппроксимации функций».

Студент группы КП-121 Кононученко Илья Сергеевич

1. Методы аппроксимации функций.

1.1. Непрерывная аппроксимация.

2. Точечная аппроксимация.

3. Интерполяционный полином Лагранжа.

4. Интерполяционный полином Ньютона.

5. Погрешность глобальной интерполяции.

6. Метод наименьших квадратов.

7. Подбор эмпирических формул.

8. Кусочно-постоянная интерполяция

9. Кусочно-линейная интерполяция.

2. Практическая часть.

2.1. Построить интерполяционный многочлен для функции f(x)=lnx- по узлам х=2; 4; 6; 8; 10; 12. Вычислить приближенное значение логарифма от 5,75. Получить оценку погрешности остаточного члена.

2.2. Функцию f(x), заданную таблицей, аппроксимировать линейной зависимостью ??(х)=Ах2+Вх+С. Найти х, для которого f(x)=10.



1. Методы аппроксимации функций

1.1 Непрерывная аппроксимация

1.2 Точечная аппроксимация

4 Интерполяционный полином Ньютона

8 Кусочно-постоянная интерполяция

9 Кусочно-линейная интерполяция

Практическая часть

2.1 Построить интерполяционный многочлен для функции f(x)=lnx-по узлам х=2; 4; 6; 8; 10; 12. Вычислить приближенное значение логарифма от 5,75. Получить оценку погрешности остаточного члена

2.2 Функцию f(x), заданную таблицей, аппроксимировать линейной зависимостью ?(х)=Ах+В, квадратичной зависимостью ?(х)=Ах2+Вх+С. Найти х, для которого f(x)=10

Список литературы


1.МЕТОДЫ АППРОКСИМАЦИИ ФУНКЦИЙ


1.1Непрерывная аппроксимация


Если исходная функция f(x) задана аналитическим выражением, то при построении аппроксимирующей функции возможно требовать минимальности отклонения одной функции от другой на некотором непрерывном множестве точек, например, на отрезке. Такой вид аппроксимации называется непрерывным или интегральным.

Теоретически для наилучшего приближения целесообразно требовать, чтобы во всех точках некоторого отрезка отклонения аппроксимирующей функции от функции f(x) было по абсолютной величине меньше заданной величины:

В этом случае говорят, что функция равномерно приближает функцию f(x) с точностью e на интервале. Практическое получение равномерного приближения представляет большие трудности, и поэтому этот способ применяется главным образом в теоретических исследованиях.

Наиболее употребительным является так называемое среднеквадратичное приближение, для которого наименьшее значение имеет величина

Потребовав обращения в нуль частных производных от М по параметрам, определяющим функцию, получают уравнения, позволяющие найти наилучшие значения этих параметров.


2 Точечная аппроксимация


Аппроксимация, при которой приближение строится на заданном дискретном множестве точек, называется точечной.

Для получения точечного среднеквадратичного приближения функции y=f(x), заданной таблично, аппроксимирующую функцию строят из условия минимума величины

где yi - значения функции f(x) в точках xi.

Основная сфера применения среднеквадратичного приближения - обработка экспериментальных данных (построение эмпирических формул).

Другим видом точечной аппроксимации является интерполирование, при котором аппроксимирующая функция принимает в заданных точках xi, те же значения yi , что и функция f(x), т.е. .


Рисунок 1

В этом случае, близость интерполирующей функции к заданной функции состоит в том, что их значения совпадают на заданной системе точек.

На рис. 1 показаны качественные графики интерполяционной функции (сплошная линия) и результаты среднеквадратичного приближения (пунктирная линия). Точками отмечены табличные значения функции f(x).


3 Интерполяционный полином Лагранжа


Лагранж предложил строить интерполяционный полином в виде разложения



где li(x) - базисные функции.

Для того, чтобы полином удовлетворял условиям Лагранжа, т.е. был бы интерполяционным, базисные функции li(x) должны обладать следующими свойствами:

) быть полином степени n

) удовлетворять условию

Лагранж показал, что функции, обладающие указанными свойствами, должны иметь следующий вид


С учетом этого выражения интерполяционный полином Лагранжа может быть записан в виде

В отличие от интерполяционного полинома в канонической форме для вычисления значений полинома Лагранжа не требуется предварительно определять коэффициенты полинома путем решения системы уравнений. Однако для каждого значения аргумента x полином Лагранжа приходится пересчитывать вновь, коэффициенты же канонического полинома вычисляются только один раз. Поэтому практическое применение полинома Лагранжа оправдано только в том случае, когда интерполяционная функция вычисляется в сравнительно небольшом количестве точек x.

Интерполяционный полином Лагранжа оказывается очень удобным для приближенного вычисления определенных интегралов. Если, например, некоторую функцию заменить интерполяционным полином Лагранжа, то определенный интеграл от нее может быть вычислен следующим образом



Значения интегралов от не зависят от f(x) и могут быть легко вычислены аналитически.


1.4 Интерполяционный полином Ньютона


Рассмотрим еще одну форму записи интерполяционного полинома


Требования совпадения значений полинома с заданными значения функции в узловых точках Ni(xi)=yi, i=0,1,…,n приводит к системе линейных уравнений с треугольной матрицей для неизвестных коэффициентов:



решить которую не составляет труда.

Интерполяционный полином называется полиномом Ньютона. Интересная особенность полинома Ньютона состоит в том, что каждая частичная сумма его первых (m+1) слагаемых представляет собой интерполяционный полином степени m, построенный по первым (m+1) табличным данным.


5 Погрешность глобальной интерполяции


Ошибка приближения функции f(x) интерполяционным полиномом n-й степени Ln(x) в точке x определяется разностью



Можно показать, что погрешность Rn(x) определяется следующим выражением


Здесь - производная (n+1) порядка функции f(x) в некоторой точке, а функция определена как

Если максимальное значение производной f (n+1)(x) равно



то для погрешности интерполяции следует оценка



Конкретная величина погрешности в точке x зависит, очевидно, от значения функции в этой точке. Качественный характер зависимости показан на рис. 2.


Рисунок 2

Вследствие описанного поведения погрешности, глобальная интерполяция в некоторых случаях может давать совершенно неудовлетворительный результат. Из рисунка видно, что погрешность интерполяции тем выше, чем ближе точка x лежит к концам отрезка. За пределами отрезка интерполяции (т.е. при экстраполяции) быстро растет, поэтому погрешность возрастает существенно.


1.6 Метод наименьших квадратов


Пусть для исходных данных xi, fi, i=1,…,N (нумерацию лучше начинать с единицы), выбран вид эмпирической зависимости: y=?(a0,a1,…,am) с неизвестными коэффициентами a0,a1,…,am . Запишем сумму квадратов отклонений между вычисленными по эмпирической формуле и заданными опытными данными:


S(a0,a1,…,am)=(?(x1,a0,a1,…,am)-fi)2


Параметры a0,a1,…,am будем находить из условия минимума функции S(a0,a1,…,am). В этом состоит метод наименьших квадратов (МНК).

Известно, что в точке минимума все частные производные от S по равны нулю:

Рассмотрим применение МНК для частного случая, широко используемого на практике. В качестве эмпирической функции рассмотрим полином

?(x)=a0+a1x+a2x2+…+amxm


Формула (1) для определения суммы квадратов отклонений примет вид:

S(a0,a1,…,am)=(a0+a1x+a2x2+…+amxm-fi)2 (2)


Вычислим производные

Приравнивая эти выражения к нулю и собирая коэффициенты при неизвестных a0,a1,…,am , получим следующую систему линейных уравнений

Данная система уравнений называется нормальной. Решая эту систему линейных уравнений, получаем коэффициенты.

В случае полинома первого порядка m=1, т.е. , система нормальных уравнений примет вид


При m=2 имеем:

Как правило, выбирают несколько эмпирических зависимостей. По МНК находят коэффициенты этих зависимостей и среди них находят наилучшую по минимальной сумме отклонений.


1.7 Подбор эмпирических формул


При интерполировании функций мы использовали условие равенства значений интерполяционного полинома и данной функции в узлах интерполяции. Если же исходные данные получены в результате опытных измерений, то требование точного совпадения не нужно, так как данные не получены точно. В этих случаях можно требовать лишь приближенного выполнения условий интерполяции. Это условие означает, что интерполирующая функция F(x) проходит не точно через заданные точки, а в некоторой их окрестности, так, например, как это показано на рис.

аппроксимация полином интерполяция формула

Рисунок 3


Тогда говорят о подборе эмпирических формул. Построение эмпирической формулы состоит из двух этапов подбора вида этой формулы, содержащей неизвестные параметры a0,a1,…,am, и определение наилучших в некотором смысле этих параметров. Вид формулы иногда известен из физических соображений (для упругой среды связь между напряжением и деформацией) или выбираются из геометрических соображений: экспериментальные точки наносятся на график и примерно угадывается общий вид зависимости путем сравнения полученной кривой с графиками известных функций. Успех здесь в значительной степени определяется опытом и интуицией исследователя.

Для практики важен случай аппроксимации функции многочленами, т.е. F(x)=a0+a1x+a2x2+…+amxm .

После того, как выбран вид эмпирической зависимости степень близости к эмпирическим данным определяется, используя минимум суммы квадратов отклонений вычисленных и экспериментальных данных.


1.8 Кусочно-постоянная интерполяция


На каждом отрезке интерполяционный многочлен равен константе, а именно левому или правому значению функции.

Для левой кусочно-линейной интерполяции

F(x)= fi-1, если xi-1 ?x

Для правой кусочно-линейной интерполяции F(x)= fi-1, если xi-1

Легко понять, что условия интерполяция выполняются. Построенная функция является разрывной, что ограничивает ее применение. Для левой кусочно-линейной интерполяции имеем графическое представление


Рисунок 4


1.9 Кусочно-линейная интерполяция


На каждом интервале функция является линейной Fi(x)=kix+li. Значения коэффициентов находятся из выполнения условий интерполяции в концах отрезка: Fi(xi-1)=fi-1, Fi(xi-1)=fi . Получаем систему уравнений: kixi-1+ li= fi-1, kixi+ li= fi , откуда находим ki=li= fi- kixi .

Следовательно, функцию F(x) можно записать в виде:


F(x)= x+ fi- kixi , если, т.е.

Или F(x)=ki ·(x-xi-1)+fi-1, ki = (fi - fi-1) / (xi - xi-1), xi-1 ? x ? xi, i=1,2,...,N-1


При использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение x, а затем подставить его в формулу.

Итоговая функция будет непрерывной, но производная будет разрывной в каждом узле интерполяции. Погрешность такой интерполяции будет меньше, чем в случае кусочно-постоянной интерполяции. Иллюстрация кусочно-линейной интерполяции приведена на рисунке


Рисунок 5


2. ПРАКТИЧЕСКАЯ ЧАСТЬ


2.1 Построим интерполяционный многочлен для функции


f(x)=lnx- по узлам х=2; 4; 6; 8; 10; 12.


Формула для вычисления данного многочлена выглядит следующим образом:



где n- количество узлов.

Рассчитаем значения базисных полиномов.

Формула для расчета базисных полиномов:



Запишем значения узлов функции:

Вычислим значения функций f(x) в соответствующих узлах:

f(x0)==0.6931471805599453-1.5=-0.8068528194400547(x1)= =1.386294361119891-1.25=0.136294361119891(x2)= =1.791759469228055-1.1666666666666667=0.625092802561388(x3)= =2,079441541679835-1.125=0.954441541679835(x4)= =2.302585092994045-1.1=1.202585092994045(x5)= =2.484906649788-1.083333333333333=1.401573316454667


Рассчитаем значения соответствующих базисных полиномов:



Запишем формулу вычисления многочлена f(x)=lnx- по полученным данным:

L(x)=f(x0)·l0(x)+ f(x1)·l1(x)+ f(x2)·l2(x)+ f(x3)·l3(x)+ f(x4)·l4(x)+ f(x5)·l5(x).

Подставим в формулу полученные значения:

L(x)=((- 0.8068528194400547) ·(x-4)(x-6)(x-8)(x-10)(x-12)+ +0.136294361119891·5(x-2)(x-6)(x-8)(x-10)(x-12)- 0.625092802561388·10·

· (x-2)(x-4)(x-8)(x-10)(x-12)+ 0.954441541679835·10(x-2)(x-4)(x-6)(x-10)(x-12)-1.202585092994045·5(x-2)(x-4)(x-6)(x-8)(x-12)+ 1.401573316454667·

·(x-2)(x-4)(x-6)(x-8)(x-10)=0,000443792912875·x5-0.001895922201567·x4+

032520620421826·x3-0.289410042490318·x2+1.50294940468648·x-2.886362165898854

Рисунок 6

L(x)= 0.000443792912875·x5-0.001895922201567·x4+

032520620421826·x3-0.289410042490318·x2+

50294940468648·x-2.886362165898854

Из рисунка видно, что графики функций совпадают.

Вычислим приближенное значение логарифма от 5,75 с точностью до 0,001.

Воспользуемся разложением



Пользуясь формулой



посчитаем приближенное значение логарифма:

Получим оценку погрешности остаточного члена:

Формула нахождения остаточного члена в других точках:

Rn(x)=f(x)-Ln(x).

Подставим значения и вычислим остаточный член:

Rn(x)= -0.234721044665224-(-0.149875603361276)= 0.0122

Для абсолютной погрешности интерполяционной формулы Лагранжа можно получить следующую оценку:


0122374?9.9512361


Из оценки следует, что выбирая достаточно большое число точек разбиения можно получить результат с необходимой точностью.

Функцию f(x), заданную таблицей аппроксимируем линейной зависимостью ?(х)=Ах+В, квадратичной зависимостью ?(х)=Ах2+Вх+С.


x10151720f(x)371117Решение:

Для решения этой задачи воспользуемся методом наименьших квадратов.

Система нормальных уравнений для линейной зависимости (x)=Ax+B:

Учитывая, что n=4: ;

Решаем систему линейных уравнений:

Следовательно, линейная зависимость будет иметь вид:

Рассмотрим квадратичную зависимость?(х)=Ах2+Вх+С. Система нормальных уравнений имеет вид:


Найдем не подсчитанные суммы:

Следовательно, квадратичная зависимость будет иметь вид:


Рисунок 7

Функция, заданная таблицей.

Линейная зависимость

Квадратичная зависимость


По графику найдем значение х, для которого f(x)=10.

Список литературы


1. Кириллова С.Ю. Вычислительная математика/Кириллова С.Ю. Изд-во Владим. гос. ун-та, 2009. -102с.

2. Справочное пособие по приближенным методам решения задач высшей математики/ Л.И. Бородич, А.И. Герасимович, Н.П. Кеда и др.; под ред. Л.И. Бородич.- М.: Высшая школа, 1986. -189с.

3. Тюканов, А.С. Основы численных методов: учеб. пособие для студентов. Изд-во РГПУ им. А.И. Герцена, 2007. -226с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Аппроксимацией (приближением) функции называется нахождение такой функции (аппроксимирующей функции ) , которая была бы близка заданной. Критерии близости функций и могут быть различные.

Основная задача аппроксимации - построение приближенной (аппроксимирующей) функции, в целом наиболее близко проходящей около данных точек или около данной непрерывной функции. Такая задача возникает при наличии погрешности в исходных данных (в этом случае нецелесообразно проводить функцию точно через все точки, как в интерполяций) или при желании получить упрощенное математическое описание сложной или неизвестной зависимости.

Рис. 3.6 Метод Лагранжа

Концепция аппроксимации

Близость исходной и аппроксимирующей функций определяется числовой мерой

- критерием аппроксимации (близости). Наибольшее распространение получил квадратичный критерий, равный сумме квадратов отклонений расчетных значений от "экспериментальных" (т.е. заданных), - критерий близости в заданных точках:

Здесь у i - заданные табличные значения функции; у i расч - расчетные значения по аппроксимирующей функции; b i - весовые коэффициенты, учитывающие относительную важность i -и точки (увеличение b ,. приводит при стремлении уменьшить R к уменьшению, прежде всего отклонения в i - й точке, так как это отклонение искусственно увеличено за счет относительно большого значения весового коэффициента).

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

Другим распространенным критерием близости является следующий:

Этот критерий менее распространен в связи с аналитическими и вычислительными трудностями, связанными с отсутствием гладкости функции и ее дифференцируемости.

Выделяют две основные задачи:

1) получение аппроксимирующей функции, описывающей имеющиеся данные, с погрешностью не хуже заданной;

2) получение аппроксимирующей функции заданной структуры с наилучшей возможной погрешностью.

Чаще всего первая задача сводится ко второй перебором различных аппроксимирующих функций и последующим выбором наилучшей.

Метод наименьших квадратов

Метод базируется на применении в качестве критерия близости суммы квадратов отклонений заданных и расчетных значений. При заданной структуре аппроксимирующей функции у i расч (х) необходимо таким образом подобрать параметры этой функции, чтобы получить наименьшее значение критерия близости, т.е. наилучшую аппроксимацию. Рассмотрим путь нахождения этих параметров на примере полиномиальной функции одной переменной:

Запишем выражение критерия аппроксимации при b i =1 (i =1, 2,…, n ) для полиномиального у i расч (х):

Искомые переменные а j можно найти из необходимого условия минимума R по этим переменным, т.е. dR / d а р = 0 (для р =0, 1,2,…,k). Продифференцируем по а р (р - текущий индекс):

После очевидных преобразований (сокращение на два, раскрытие скобок, изменение порядка суммирования) получим

Перепишем последние равенства

Получилась система n +1 уравнений с таким же количеством неизвестных а j , причем линейная относительно этих переменных. Эта система называется системой нормальных уравнений. Из ее решения находятся параметры а j аппроксимирующей функции, обеспечивающие minR , т.е. наилучшее возможное квадратичное приближение. Зная коэффициенты, можно (если нужно) вычислить и величину R (например, для сравнения различных аппроксимирующих функций). Следует помнить, что при изменении даже одного значения исходных данных (или пары значений х i , у i , или одного из них) все коэффициенты изменят в общем случае свои значения, так как они полностью определяются исходными данными. Поэтому при повторении аппроксимации с несколько изменившимися данными (например, вследствие погрешностей измерения, помех, влияния неучтенных факторов и т.п.) получится другая аппроксимирующая функция, отличающаяся коэффициентами. Обратим внимание на то, что коэффициенты а j полинома находятся из решения системы уравнений, т.е. они связаны между собой. Это приводит к тому, что если какой-то коэффициент вследствие его малости захочется отбросить, придется пересчитывать заново оставшиеся. Можно рассчитать количественные оценки тесноты связи коэффициентов. Существует специальная теория планирования экспериментов, которая

позволяет обосновать и рассчитать значения х i , используемые для аппроксимации, чтобы получить заданные свойства коэффициентов (несвязанность, минимальная дисперсия коэффициентов и т.д.) или аппроксимирующей функции (равная точность описания реальной зависимости в различных направлениях, минимальная дисперсия предсказания значения функции и т.д.).

Рис. 3.7 Влияние степени аппроксимирующего полинома М на точность аппроксимации

В случае постановки другой задачи - найти аппроксимирующую функцию, обеспечивающую погрешность не хуже заданной, - необходимо подбирать и структуру этой функции. Эта задача значительно сложнее предыдущей (найти параметры аппроксимирующей функции заданной структуры, обеспечивающей наилучшую возможную погрешность) и решается в основном путем перебора различных функций и сравнения получающихся мер близости. Для примера на рис. 3.7 приведены для визуального сравнения исходная и аппроксимирующие функции с различной степенью полинома, т.е. функции с различной структурой. Не следует забывать, что с повышением точности аппроксимации растет и сложность функции (при полиномиальных аппроксимирующих функциях), что делает ее менее удобной при использовании.

Рассмотрим решение задачи аппроксимации и интерполяции с шумом в

программе MathCAD (рисунок 3.8).

Пример 3.1. В ходе проведения эксперимента были получены данные, представленные в таблице 3.1. Необходимо способом наименьших квадратов подобрать для заданных значений x и y квадратичную функцию . Построить на одной координатной плоскости экспериментальные данные и аппроксимирующую функцию.

Таблица 3.1 Данные эксперимента

Решение. Для определения коэффициентов квадратичной функции построим дополнительную таблицу 3.2.

Таблица 3.2 Дополнительная таблица

Строим систему уравнений

В нашем случае она будет иметь вид:

Из полученной системы уравнений находим

Искомая зависимость

Строим график экспериментальных данных и найденной зависимости.

Рис.3.8 Аппроксимация и интерполяция в задаче с помехами

Если требуется построить зависимость в виде показательной функции , то необходимо составить систему:

(3.7)

Для этого строится таблица

Пусть y является функцией аргумента х. Это означает, что любому значению х из области определения поставлено в соответствие значение x. На практике иногда невозможно записать зависимость y(x) в явном виде. Вместе с тем, нередко эта зависимость задается в табличном виде. Это означает, что дискретному множеству значений {xi) поставлено в соответствие множество значений {yi), 0 < i < m. Эти значения — либо результаты расчета, либо набор экспериментальных данных.

В часто требуется найти некоторую аналитическую функцию, которая приближенно описывает заданную табличную зависимость. Кроме того, иногда требуется определить значения функции в других точках, отличных от узловых. Этой цели служит задача о приближении (аппроксимации ). В этом случае находят некоторую функцию f(х), такую, чтобы отклонения ее от заданной табличной функции было наименьшим. Функция f(х) называется аппроксимирующей.

Вид аппроксимирующей функции

существенным образом зависит от исходной табличной функции. В разных случаях функцию f(х) выбирают в виде экспоненциальной, логарифмической, степенной, синусоидальной и т.д. В каждом конкретном случае подбирают соответствующие параметры таким образом, чтобы достичь максимальной близости аппроксимирующей и табличной функций. Чаще всего, однако, функцию представляют в виде полинома по степеням х. Запишем общий вид полинома n-й степени:

Коэффициенты aj подбираются таким образом, чтобы достичь наименьшего отклонения полинома от заданной функции.

Таким образом, аппроксимация — замена одной функции другой, близкой к первой и достаточно просто вычисляемой.

Иногда возникает необходимость аппроксимации данной функции другими функциям, которые легче вычислить. В частности, рассматривается задача о наилучшем приближении в нормированном пространстве Н, когда заданную функцию f требуется заменить линейной комбинацией заданных элементов из Н так, чтобы отклонение ||f - || было минимальным.

Метод наименьших квадратов

Mетод наименьших квадратов был предложен Гауссом и Лежандром в конце XVIII - начале XIX веков в связи с проблемой обработки экспериментальных данных. В этом случае задача построения функции непрерывного аргумента по дискретной информации, характеризуется двумя особенностями:

  • 1. Число точек, в которых проводятся измерения, обычно бывает достаточно большим.
  • 2. Значения функции в точках сетки определяются приближенно в связи с неизбежными ошибками измерения.

С учетом этих обстоятельств строить функцию в виде суммы большого числа слагаемых и добиваться ее точного равенства в точках сетки величинам, как это делалось при интерполировании, становится нецелесообразным.

В методе наименьших квадратов аппроксимирующая функция ищется в виде суммы, аналогичной, но содержащей сравнительно небольшое число слагаемых

погрешность уравнение интерполяция

в частности, возможен вариант.

Предположим, что мы каким-то образом выбрали коэффициенты, тогда в каждой точке сетки, можно подсчитать погрешность

Сумма квадратов этих величин называется суммарной квадратичной погрешностью

Она дает количественную оценку того, насколько близки значения функции в точках сетки к величинам.

Меняя значения коэффициентов, мы будем менять погрешность, которая является их функцией. В результате естественно возникает задача:

Найти такой, набор коэффициентов, при которых суммарная квадратичная погрешность оказывается минимальной.

Функцию с набором коэффициентов, удовлетворяющих этому требованию, называют наилучшим приближением по методу наименьших квадратов.

Построение наилучшего приближения сводится к классической задаче математического анализа об экстремуме функции нескольких переменных. Метод решения этой задачи известен.

Необходимым условием экстремума является равенство нулю в экстремальном точке всех первых частных производных рассматриваемой функции. В случае это дает

Оставим члены, содержащие, слева и поменяем в них порядок суммирования по индексам и. Члены, содержащие, перенесем направо. В результате уравнения примут вид

Мы получили систему линейных алгебраических уравнений, в которой роль неизвестных играют искомые коэффициенты разложения. Число уравнении и число неизвестных в этой системе совпадает и равно. Матрица коэффициентов системы Г состоит из элементов, которые определяются формулой. Ее называют матрицей Грама для системы функций на сетке. Отметим, что матрица Грама является симметричной: для ее элементов, согласно, справедливо равенство. Числа, стоящие в правой части уравнений, вычисляются по формуле через значения сеточной функции.

Предположим, что функции выбраны такими, что определитель матрицы Грама, отличен от нуля:

В этом случае при любой правой части система имеет единственное решение

Рассмотрим наряду с набором коэффициентов, полученных в результате решения системы, любой другой набор коэффициентов. Представим числа в виде

и сравним значения суммарной квадратичной погрешности для функций, построенных с помощью коэффициентов и.


Квадрат погрешности и точке для функции с коэффициентами можно записать в виде

Здесь в среднем слагаемом мы заменили в одной из сумм индекс суммирования на, чтобы не использовать один и тот же индекс в двух разных суммах и иметь возможность перемножить их почленно.

Чтобы получить суммарную квадратичную погрешность, нужно просуммировать выражения для по индексу Первые слагаемые не содержат. Их сумма дает погрешность, вычисленную для функции с коэффициентами.

Рассмотрим теперь сумму вторых слагаемых, которые зависят от линейно:

Здесь мы поменяли местами порядок суммирования и воспользовались тем, что коэффициенты, удовлетворяют системе уравнений.


С учетом будем иметь

Формула показывает, что функция с коэффициентами, полученными в результате решения уравнений, действительно минимизирует суммарную квадратичную погрешность. Если мы возьмем любой другой набор коэффициентов, отличный от, то согласно формуле к погрешности добавится положительное слагаемое и она увеличится.

Итак, чтобы построить наилучшее приближение сеточной функции, по методу наименьших квадратов, нужно взять в качестве коэффициентов разложения решение системы линейных уравнений.

6.7.3. Технология решения задач аппроксимации функций средствами математических пакетов

6.7.3.1. Технология решения задач аппроксимации средствами MathCad

6.7.3.2. Технология решения задач аппроксимации функций в среде MatLab

6.7.4. Тестовые задания по теме «Аппроксимация функций»

Постановка задачи аппроксимации

Задача аппроксимации (приближения) функции заключается в замене некоторой функции y=f(x) другой функцией g(x, a 0 , a 1 , ..., a n) таким образом, чтобы отклонение
g(x, a0, a1, ..., an) от f(x) удовлетворяло в некоторой области (на множестве Х) определённому условию. Если множество Х дискретно (состоит из отдельных точек), то приближение называется точечным, если же Х есть отрезок , то приближение называется интегральным.

Если функция f(x)задана таблично, то аппроксимирующая функция
g(x, a 0 , a 1 , ..., a n) должна удовлетворять определённому критерию соответствия ее значений табличным данным.

Подбор эмпирических формул состоит из двух этапов – выбора вида формулы и определения содержащихся в ней коэффициентов.

Если неизвестен вид аппроксимирующей зависимости, то в качестве эмпирической формулы обычно выбирают один из известных видов функций: алгебраический многочлен, показательную, логарифмическую или другую функцию в зависимости от свойств аппроксимируемой функции. Поскольку аппроксимирующая функция, полученная эмпирическим путем, в ходе последующих исследований, как правило, подвергается преобразованиям, то стараются выбирать наиболее простую формулу, удовлетворяющую требованиям точности. Часто в качестве эмпирической формулы выбирают зависимость, описываемую алгебраическим многочленом невысокого порядка.

Наиболее распространен способ выбора функции в виде многочлена:

где φ(x,a 0 ,a 1 ,...,a n)=a 0 φ 0 (x)+a 1 φ 1 (x)+...+a m φ m (x), а

φ 0 (x), φ 1 (x), ..., φ m (x) – базисные функции (m-степень аппроксимирующего полинома).

Один из возможных базисов – степенной: φ 0 (x)=1, φ 1 (x)=х, ..., φ m (x)=х m .

Обычно степень аппроксимирующего полинома m<e , то количество базисных функций выбирается так, чтобы . Здесь S – численное значение критерия близости аппроксимирующей функции φ(x, a 0 , a 1 , ..., a n) и табличных данных. Отклонения между опытными данными и значениями эмпирической функции

e i = φ(x i , a 0 , a 1 , ..., a m) – y i , i = 0,1,2,...,n.

Методы определения коэффициентов выбранной эмпирической функции различаются критерием минимизации отклонений.

Метод наименьших квадратов

Одним из способов определения параметров эмпирической формулы является метод наименьших квадратов. В этом методе параметры a 0 , a 1 , ..., a n определяются из условия минимума суммы квадратов отклонений аппроксимирующей функции от табличных данных.

Вектор коэффициентов a T определяют из условия минимизации

где (n+1) – количество узловых точек.

Условие минимума функции Е приводит к системе линейных уравнений относительно параметров a 0 , a 1 , ..., a m . Эта система называется системой нормальных уравнений, её матрица – матрица Грама . Элементами матрицы Грама являются суммы скалярных произведений базисных функций

Для получения искомых значений параметров следует составить и решить систему (m+1) уравнения

Пусть в качестве аппроксимирующей функции выбрана линейная зависимость y= a 0 +a 1 x . Тогда

Условия минимума:

Тогда первое уравнение имеет вид

Раскрывая скобки и разделив на постоянный коэффициент, получим

.

Первое уравнение принимает следующий окончательный вид:

.

Для получения второго уравнения,приравняем нулю частную производную по а1:

.

.

Система линейных уравнений для нахождения коэффициентов многочлена (линейная аппроксимация):

Введем следующие обозначения - средние значения исходных данных. Во введенных обозначениях решениями системы являются

.

В случае применения метода наименьших квадратов для определения коэффициентов аппроксимирующего многочлена второй степени y=a 0 +a 1 x+а 2 х 2 критерий минимизации имеет вид

.

Из условия получим следующую систему уравнений:

Решение этой системы уравнений относительно а 0 , а 1 , а 2 позволяет найти коэффициенты эмпирической формулы - аппроксимирующего многочлена 2-го порядка. При решении системы линейных уравнений могут быть применены численные методы.

В случае степенного базиса (степень аппроксимирующего полинома равна m) матрица Грама системы нормальных уравнений G и столбец правых частей системы нормальных уравнений имеют вид

G =

В матричной форме система нормальных уравнений примет вид:

Решение системы нормальных уравнений

найдется из выражения

В качестве меры уклонения заданных значений функции y 0 , y 1 , ..., y n от многочлена степени m - φ(x)=a 0 φ 0 (x)+a 1 φ 1 (x)+...+a m φ m (x) ,

принимается величина

(n+1) – количество узлов, m – степень аппроксимирующего многочлена, n+1>=m.

На рис.6.7.2-1 приведена укрупненная схема алгоритма метода наименьших квадратов.

Рис. 6.7.2-1. Укрупненная схема алгоритма метода наименьших квадратов

Данная схема алгоритма метода наименьших квадратов является укрупненной и отражает основные процессы метода, где n+1 – количество точек, в которых известны значения х i , y i ; i=0,1,…, n.

Блок вычисления коэффициентов предполагает вычисление коэффициентов при неизвестных с 0 , с 1 , …, с m и свободных членов системы из m+1 линейных уравнений.

Следующий блок – блок решения системы уравнений – предполагает вычисление коэффициентов аппроксимирующей функции с 0 , с 1 , …, с m .

Пример 6.7.2-1. Аппроксимировать следующие данные многочленом второй степени, используя метод наименьших квадратов.

x 0.78 1.56 2.34 3.12 3.81
y 2.50 1.20 1.12 2.25 4.28

Запишем в следующую таблицу элементы матрицы Грамма и столбец свободных членов:

i x x 2 x 3 x 4 y xy x 2 y
0.78 0.608 0.475 0.370 2.50 1.950 1.520
1.56 2.434 3.796 5.922 1.20 1.872 2.920
2.34 5.476 12.813 29.982 1.12 2.621 6.133
3.12 9.734 30.371 94.759 2.25 7.020 21.902
3.81 14.516 55.306 210.72 4.28 16.307 62.129
11.61 32.768 102.76 341.75 11.35 29.770 94.604

Система нормальных уравнений выглядит следующим образом

Решением этой системы являются:

а0 = 5.022; а1 =-4.014; а2=1.002.

Искомая аппроксимирующая функция

Сравним исходные значения yсо значениями аппроксимирующего многочлена, вычисленными в тех же точках:

Вычислим среднеквадратическое отклонение (невязку)

.


Пример 6.7.3-1. Получить аппроксимирующие полиномы первой и второй степени методом наименьших квадратов для функции, заданной таблично.

Пример 6.7.3-2. Осуществить аппроксимацию таблично заданной функции многочленом 1-й, 2-й и 3-й степени.

В этом примере рассмотрено использование функции linfit(x,y,f), где x,y- соответственно векторы значений аргументов и функции, а f – символьный вектор базисных функций. Использование этой функции позволяет определить вектор коэффициентов аппроксимации методом наименьших квадратов и далее невязку - среднеквадратическую погрешность приближения исходных точек к аппроксимирующей функции (сkо). Степень аппроксимирующего многочлена задается при описании символьного вектора f. В примере представлена аппроксимация таблично заданной функции многочленом 1-й, 2-й и 3-й степени. Вектор s представляет собой набор аппроксимирующих коэффициентов, что позволяет получить аппроксимирующую функцию в явном виде.

В Mathcad имеется также большое количество встроенных функций, предназначенных для получения аналитического выражения функции регрессии. Однако в этом случае необходимо знать форму аналитического выражения. Ниже приведены встроенные функции, различающиеся видом регрессии, позволяющие (при заданных начальных приближениях) определить аналитическую зависимость функции, то есть возвращающие набор аппроксимирующих коэффициентов:

expfit(X,Y,g) Решение ОДУ 2-го порядка вида у”=F(x, y, z), где z=y’ также может быть получено методом Рунге-Кутты 4-го порядка. Ниже приведены формулы для решения ОДУ:

В этих функциях: х – вектор аргументов, элементы которого расположены в порядке возрастания; y – вектор значений функции; g – вектор начальных приближений коэффициентов a, b и с; t - значение аргумента, при котором определяется функция.

В приведенных ниже примерах для оценки связи между массивами данных и значениями аппроксимирующей функции подсчитывается коэффициент корреляции corr(). Если табличные данные неплохо аппроксимируется каким-либо видом регрессии, то коэффициент корреляции близок к единице. Чем меньше коэффициент, тем хуже связь между значениями этих функций.

Пример 6.7.3-3. Найти аппроксимирующие полиномы первой, второй, третьей и четвертой степени и вычислить коэффициенты корреляции.

Помимо вычисления значений функций в пределах интервала данных все рассмотренные ранее функции могут осуществлять экстраполяцию (прогнозирование поведения функции за пределами интервала заданных точек) с помощью зависимости, основанной на анализе расположения нескольких исходных точек на границе интервала данных. В Mathcad имеется и специальная функция предсказания predict(Y, m, n), где Y – вектор заданных значений функции, обязательно взятых через равные интервалы аргумента, а m – число последовательных значений Y, на основании которых функция predict возвращает n значений Y.

Значений аргумента для данных не требуется, поскольку по определению функция действует на данных, идущих друг за другом с одинаковым шагом. Функция использует линейный алгоритм предсказания, который точен, когда экстраполируемая функция гладкая. Функция может быть полезна, когда требуется экстраполировать данные на небольшие расстояния. Вдали от исходных данных результат чаще всего оказывается неудовлетворительным.

Пример 6.7.3-4. Аппроксимировать функцию, заданную таблично, многочленом по МНК.

В этом примере рассмотрено использование функции p=polyfit(x,y,n), где x,y – соответственно векторы значений аргументов и функции, n – порядок аппроксимирующего полинома, а p – полученный в результате вектор коэффициентов аппроксимирующего полинома длинной n+1.

>> x=; >> x x = 1.2000 1.4000 1.6000 1.8000 2.0000 >> y=[-1.15,-0.506,0.236,0.88,1.256]; >> y y = -1.1500 -0.5060 0.2360 0.8800 1.2560 >> % >> % >> p1=polyfit(x,y,1); >> p1 p1 = 3.0990 -4.8152 >> y1=polyval(p1,x); >> y1 y1 = -1.0964 -0.4766 0.1432 0.7630 1.3828 >> cko1=sqrt(1/5*sum((y-y1).^2)); >> cko1 cko1 = 0.0918 >> plot(x,y,"ko",x,y1,"r-") >> p2=polyfit(x,y,2); >> p2 p2 = -1.1321 6.7219 -7.6229 >> y2=polyval(p2,x); >> y2 y2 = -1.1870 -0.4313 0.2338 0.8083 1.2922 >> cko2=sqrt(1/5*sum((y-y2).^2)); >> cko2 cko2 = 0.0518 >> plot(x,y,"ko",x,y2,"r-")

Пример 6.7.3-5. Аппроксимировать функцию, заданную таблично, многочленом по МНК.

Пример 6.7.3-5. Аппроксимировать функцию, заданную таблично, полиномами различной степени по МНК.


6.7.4. Тестовые задания по теме
«Аппроксимация функций»

Аппроксимация – это

1) получение функции более простого вида, описывающей исходную с достаточной степенью точности

2) частный случай интерполяции

3) замена исходной функции функцией другого вида

4) в списке нет правильного ответа

Тема 6.7. Аппроксимация функций

6.7.1. Постановка задачи аппроксимации

6.7.2. Метод наименьших квадратов