Бунин

Эволюция звезд большой массы. Эволюция звезд с точки зрения точной науки и теории относительности. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность

Внутренняя жизнь звезды регулируется воздействием двух сил: силы притяжения, которая противодействует звезде, удерживает ее, и силы, освобождающейся при происходящих в ядре ядерных реакциях. Она, наоборот, стремится “вытолкнуть” звезду в дальнее пространство. Во время стадий формирования плотная и сжатая звезда находится под сильным воздействием гравитации. В результате происходит сильное нагревание, температура достигает 10-20 миллионов градусов. Этого достаточно для начала ядерных реакций, в результате которых водород превращается в гелий.

Затем в течении длительного периода две силы уравновешивают друг друга, звезда находится в стабильном состоянии. Когда ядерное горючее ядра понемногу иссякает, звезда вступает в фазу нестабильности, две силы противоборствуют. Для звезды наступает критический момент, в действие вступают самые разные факторы – температура, плотность, химический состав. На первое место выступает масса звезды, именно от нее зависит будущее этого небесного тела – или звезда вспыхнет, как сверхновая, или превратится в белого карлика, нейтронную звезду или в черную дыру.

Как иссякает водород

Только очень крупные среди небесных тел (примерно в 80 раз превышающие массу Юпитера) становятся звездами, меньшие (примерно в 17 раз меньше Юпитера) становятся планетами. Есть и тела средней массы, они слишком крупные, чтобы относиться к классу планет, и слишком маленькие и холодные для того, что бы в их недрах происходили ядерные реакции, характерные для звезд.

Эти небесные тела темного цвета обладают слабой светимостью, их довольно сложно различить на небе. Они получили название “коричневые карлики”.

Итак, звезда формируется из облаков, состоящих из межзвездного газа. Как уже отмечалось, довольно длительное время звезда пребывает в уравновешенном состоянии. Затем наступает период нестабильности. Дальнейшая судьба звезды зависит от различных факторов. Рассмотрим гипотетическую звезду небольшого размера, масса которой составляет от 0,1 до 4 солнечных масс. Характерной чертой звезд, имеющих малую массу, является отсутствие конвекции во внутренних слоях, т.е. вещества, входящие в состав звезды, не смешиваются, как это происходит у звезд, обладающих большой массой.

Это означает, что, когда водород в ядре заканчивается, новых запасов этого элемента во внешних слоях нет. Водород, сгорая, превращается в гелий. Понемногу ядро разогревается, поверхностные слои дестабилизируют собственную структуру, и звезда, как можно видеть по диаграмме Г-Р, медленно выходит из фазы Главной последовательности. В новой фазе плотность материи внутри звезды повышается, состав ядра “дегенерирует”, в результате появляется особая консистенция. Она отличается от нормальной материи.

Видоизменение материи

Когда материя видоизменяется, давление зависит только от плотности газов, а не от температуры.

На диаграмме Герцшпрунга – Ресселла звезда сдвигается вправо, а затем вверх, приближаясь к области красных гигантов. Ее размеры значительно увеличиваются, и из-за этого температура внешних слоев падает. Диаметр красного гиганта может достигать сотни миллионов километров. Когда наше войдёт в эту фазу, оно “проглотит” или и Венеру, а если не сможет захватить и Землю, то разогреет её до такой степени, что жизнь на нашей планете перестанет существовать.

За время эволюции звезды температура ее ядра повышается. Сначала происходят ядерные реакции, затем по достижении оптимальной температуры начинается плавление гелия. Когда это происходит, внезапное повышение температуры ядра вызывает вспышку, и звезда быстро перемещается в левую часть диаграммы Г-Р. Это так называемый “helium flash”. В это время ядро, содержащее гелий, сгорает вместе с водородом, который входит в состав оболочки, окружающей ядро. На диаграмме Г-Р эта стадия фиксируется продвижением вправо по горизонтальной линии.

Последние фазы эволюции

При трансформации гелия в углерод ядро видоизменяется. Его температура повышается до тех пор (если звезда крупная), пока углерод не начнет гореть. Происходит новая вспышка. В любом случае во время последних фаз эволюции звезды отмечается значительная потеря ее массы. Это может происходить постепенно или резко, во время вспышки, когда внешние слои звезды лопаются, как большой пузырь. В последнем случае образуется планетарная туманность – оболочка сферической формы, распространяющаяся в космическом пространстве со скоростью в несколько десятков или даже сотен км/сек.

Конечная судьба звезды зависит от массы, оставшейся после всего происходящего в ней. Если она во время всех превращений и вспышек выбросила много материи и ее масса не превышает 1,44 солнечной массы, звезда превращается в белого карлика. Эта цифра носит название “лимит Чандра - секара” в честь пакистанского астрофизика Субрахманьяна Чандрасекара. Это максимальная масса звезды, при которой катастрофический конец может не состоятся из-за давления электронов в ядре.

После вспышки внешних слоев ядро звезды остается, и его поверхностная температура очень высока – порядка 100 000 °К. Звезда двигается к левому краю диаграммы Г-Р и спускается вниз. Ее светимость уменьшается, так как уменьшаются размеры.

Звезда медленно доходит до зоны белых карликов. Это звезды небольшого диаметра (как наша ), но отличающиеся очень высокой плотностью, в полтора миллиона раз больше плотности воды. Кубический сантиметр вещества, из которого состоит белый карлик, на Земле весил бы около одной тонны!

Белый карлик представляет собой конечную стадию эволюции звезды, без вспышек. Она понемногу остывает.

Ученые полагают, что конец белого карлика проходит очень медленно, во всяком случае, с начала существования Вселенной, похоже, ни один белый карлик не пострадал от “термической смерти”.

Если же звезда крупная, и ее масса больше Солнца, она вспыхнет, как сверхновая. Во время вспышки звезда может разрушиться полностью или частично. В первом случае от нее останется облако газа с остаточными веществами звезды. Во втором – остается небесное тело высочайшей плотности – нейтронная звезда или черная дыра.

Термоядерный синтез в недрах звёзд

В это время для звёзд массой больше, чем 0.8 масс Солнца, ядро становится прозрачным для излучения, и возобладает лучистый перенос энергии в ядре, а наверху оболочка остается конвективной. Какими прибывают на главную последовательность звёзды меньшей массы, достоверно никто не знает, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной. Все наши представления об эволюции этих звёзд держатся на численных расчетах.

По мере сжатия звезды, начинает увеличиваться давление вырожденного электронного газа и на каком-то радиусе звезды это давление останавливает рост центральной температуры, а затем начинает ее понижать. И для звёзд меньше 0.08 это оказывается фатальным: выделяющейся энергии в ходе ядерных реакций никогда не хватит, чтобы покрыть расходы на излучение. Такие недо-звёзды получили название коричневые карлики , и их судьба - это постоянное сжатие, пока давление вырожденного газа не остановит его, а затем - постепенное остывание с остановкой всех ядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического ядра, звезда успела проскочить все промежуточные стадии и разогреть ядерные реакции до такой степени, чтоб они компенсировали потери на излучение. У данных звёзд истечения массы и светимость настолько велика, что не просто останавливает коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100-200 массы Солнца.

Середина жизненного цикла звезды

Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,08 до более чем 200 солнечных масс. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все, новые звезды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

То, что происходит в дальнейшем, вновь зависит от массы звезды.

Поздние годы и гибель звёзд

Старые звёзды с малой массой

На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные солнечные ветры . В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик .

Но звезда с массой менее 0,5 солнечной никогда не будет в состоянии синтезировать гелий даже после того, как в ядре прекратятся реакции с участием водорода. Звёздная оболочка у них недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта , её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия . Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных солнечных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа , OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров .

Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточно кинетической энергии , чтобы быть выброшенными и превратиться в планетарную туманность . В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли .

Белые карлики

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звезд более массивных, чем Солнце , давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны , упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант , ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы , из кремния синтезируется железо -56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа -56 обладает максимальным дефектом массы и образование более тяжёлых ядер невыгодно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну . Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также стоит под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами , образуют нейтроны . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звезды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского . После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности . Согласно ОТО материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика делает возможным исключения из этого правила.

Остаётся ряд открытых вопросов. Главный среди них: «А есть ли черные дыры вообще?» Ведь чтобы сказать точно, что данный объект это черная дыра необходимо наблюдать его горизонт событий. Все попытки это сделать оканчивались провалом. Но надежда пока есть, так как некоторые объекты нельзя объяснить без привлечения аккреции , причем аккреции на объект без твердой поверхности, но само существование черных дыр это не доказывает.

Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

Примечания

См. также

Ссылки

  • Эволюция звёзд (Физическая энциклопедия)

Wikimedia Foundation . 2010 .

Смотреть что такое "Эволюция звёзд" в других словарях:

    - (от лат. evolutio развёртывание), в широком смысле синоним развития; процессы изменения (лреим. необратимого), протекающие в живой и неживой природе, а также в социальных системах. Э. может вести к усложнению, дифференциации, повышению… … Философская энциклопедия

Вглядываясь в глубины Вселенной, астрономы исследуют столкновение различных космических сил. Смерть звезды приоткрыла нам завесу пределов времени и пространства. Современная астрономия позволила увидеть совершенно иную Вселенную: кипящую и неукротимую. Зрелище сопровождаемое предсмертной агонией гигантской звезды. Поверхность ее похожа на бушующее море огня, покрытого всплесками раскаленного газа. Вздымающиеся волны образуют цунами высотой в тысячу метров. В атмосферу взмывают огромные газовые шлейфы, которые больше . В глубинах звезды начался процесс разрушения. Это приводит к взрыву и рождению сверхновой. На ее месте остаются лишь цветные нити и светящиеся облака газов.

Удивительно то, что гибель одной звезды, порождает целое поколение новых звезд. Подобная смена гибели и рождения, определяет всю историю нашей галактики – Млечного пути и миллиарды таких же галактик во .

Наше представление о космосе сформировано редкими взрывами звезд, достаточно яркими, чтобы увидеть их невооруженным взглядом.

В 1054 году, звездочеты Северной Америки обнаружили сверхновую, наблюдая за полумесяцем. Это же событие наблюдали в Китае, Корее, на Ближнем Востоке.

Астроном Тихо Браги, наблюдал подобное явление в 1572 году. Он писал об этом: «Я был настолько поражен этим зрелищем, что не постыдился подвергнуть сомнению то, что видели мои собственные глаза»

Следующий случай, в 1604 году, описал Иоганн Кеплер. Галилей на этом сделал обоснование для нового подхода к , взяв за идею изменение как фундаментальную составляющую космоса.

Чтобы понять, как звезды формируют Вселенную, ученые используют целый арсенал новейших . От гигантских телескопов, расположенных высоко в горах, до целой армады спутников в космосе. Глядя на звезды в телескопы, мы видим . Но это лишь маленькая толика того, что известно, как электромагнитный спектр.

На одном конце спектра находится короткое высокоэнергетичные рентгеновское и гамма излучение. На другом, длинные, низкоэнергетичные радиоволны, ультракороткие волны. Для сбора сигналов, испускаемых звездами в отдаленных уголках галактики, используется несметное количество радиотелескопов. Они помогают ученым рассмотреть объекты сквозь толщу туманностей и газовых скоплений.

На другом конце спектра располагаются ультрафиолетовые рентгеновские и гамма лучи. Коротковолновое рентгеновское излучение позволяет врачам просветить наши тела и увидеть переломы костей. Астрономы же ищут его в космосе, как свидетельства самых бурно протекающих процессов.

Крабовидная туманность – это оболочка сверхновой, которую наблюдали в разных местах в 1054 году. Ученые сосредоточили свое внимание на глубинной части пульсара. Они зафиксировали всплески радиации, которые оставили круглые следы в окружающем газовом облаке. Некоторые погибающие звезды ожидает крайне странная судьба. Вселенная рождает монстров.

Альберт Эйнштейн предположил, что есть звезды с такой гравитацией, которая не позволяет прорваться даже свету. Но он отклонил эту идею, как невозможную. Что когда-то было за гранью понимания – сейчас определяет границу . Астрономы считают, что когда врывается большая звезда, в ее ядро проникает столько материи, что она может покинуть Вселенную. Но последнее слово за гравитацией.

Пользуясь преимуществами земли, мы можем охарактеризовать Вселенную по известным нам критериям, включая формы света электромагнитного спектра. Однако с этим не согласны. Как можно определить объект, который не дает света?

Астрономы нашли ответ во вспышке гамма излучения, направленного в центр нашей галактики. Радиотелескопы сконцентрировались на источники и обнаружили потоки материи в двух направлениях. И вот что они увидели.

Черная дыра, испускающая потоки газа с внешних слоев звезды. Они образуют вращающийся диск. Он формирует магнитные поля, которые вращаясь, образуют два высокоэнергетичных луча, или потока, из, проходящих сквозь них, материи.

Астрономы знают, что черные дыры способны сконцентрировать в этих потоках огромное количество энергии в мгновение ока. Одна из них, известная под названием «GROJ 1655-40», несется сквозь Вселенную на скорости 400 тысяч километров в час. В четыре раза быстрее, чем другие звезды. Это подобно выстрелу из пушки, произведенному одной из Сверхновых.

Черные дыры, благодаря способности мобилизовать огромное количество энергии, интересуют нас не только из любопытства. Есть категория дыр, существующих с незапамятных . С тех пор, когда первые звезды только зарождались. Когда те первородные гиганты погибали, они рождали черные дыры.

Гравитация подпитывала черные дыры космическим веществом и газом. Вещество превратилось впервые галактики, которые переросли в крупные. Некоторые из них достигли массы, в миллиарды раз превышающие массу Солнца.

Испуская энергетические потоки, они разогревали окружение галактик. Это останавливало струю газа в центральной галактике, замедляя ее рост, и, провоцируя рост периферийных галактик. Но на этом воздействие черных дыр не заканчивалось.

Галактическое скопление, называемое «Гидра А», окружено раскаленными впадинами, испускающими рентгеновское излучение. Из центральной галактики вырывается поток, видимый в радиоволновом спектре. Газ по краям этого потока содержит большое количество ионов железа, и других металлов, рожденных взрывом сверхновой. Выталкивая эти металлы на края Вселенной, черные дыры насыщают отдаленные галактики элементами, необходимыми для формирования звезд и планетарных систем, подобных нашей.

Исполинские черные дыры наблюдаются почти во всех галактиках во Вселенной. Так же отмечается и рост числа мощных энергетических потоков.

Нам досталось роль наблюдателей за тернистым жизненным циклом звезд. Находясь на колоссальном удалении от них во времени и пространстве, нам очень многое непонятно.

Запуск в 1977 году, заметно сократил это расстояние. После обследования самых далеких планет Солнечной системы и их спутников, эти аппараты направляются к внешним пределам нашей системы, на десятки миллиардов километров от Земли. Двигаясь со скоростью 16 километров в секунду, Вояджер2 покроет расстояние в четыре световых года и достигнет одной из ближайших к нам звезд – Сириуса, через 290 тысяч лет.

Наблюдая из нашего тихого уголка в галактике, мы поняли, что звезды не только освещают Вселенную, но и насыщают ее материей, необходимой для жизни. Наблюдая за гибелью звезды во взрыве, мы приобретаем понимание той силы, которая образует Вселенную и меняет миры, подобные нашему собственному миру.

Звёздная эволюция в астрономии – последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. в течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см 3 . Молекулярное облако же имеет плотность около миллиона молекул на см 3 . Масса такого облака превышает массу Солнца в 100 000–10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому – столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

В ходе протекания этого процесса неоднородности молекулярного облака будут сжиматься под действием собственного тяготения и постепенно принимать форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает.

Когда температура в центре достигает 15–20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой.

Последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть ее химический состав.

Первая стадия жизни звезды подобна солнечной – в ней доминируют реакции водородного цикла.

В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Расселла , пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст вселенной составляет 13,8 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Согласно теоретическим представлениям, некоторые из легких звезд, теряя свое вещество (звездный ветер), будут постепенно испаряться, становясь все меньше и меньше. Другие – красные карлики, будут медленно остывать миллиарды лет, продолжая слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет.

Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Без давления, возникавшего в ходе термоядерных реакций и уравновешивавшего внутреннюю гравитацию, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования.

Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня.

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия, в ходе которых происходит превращение гелия в более тяжёлые элементы (гелий – в углерод, углерод – в кислород, кислород – в кремний, и наконец – кремний в железо).

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз.

Звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет.

То, что происходит далее также зависит от массы звезды.

У звезд средней величины реакция термоядерного сжигания гелия может приводить к взрывному сбросу внешних слоев звезды с образованием из них планетарной туманности . Ядро звезды, в котором прекращаются термоядерные реакции, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли.

Для массивных и сверхмассивных звезд (с массой от пяти Солнечных масс и более) происходящие в их ядре процессы по мере нарастания гравитационного сжатия приводят к взрыву сверхновой звезды с выделением огромной энергии. Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство. Это вещество в дальнейшем участвует в образовании новых звёзд, планет или спутников. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности, химически эволюционирует. Оставшееся после взрыва ядро звезды может закончить свою эволюцию как нейтронная звезда (пульсар), если масса звезды на поздних стадиях превышает предел Чандрасекара (1,44 Солнечной массы), либо как чёрная дыра , если масса звезды превышает предел Оппенгеймера – Волкова (оценочные значения 2,5-3 Солнечных масс).

Процесс звездной эволюции во Вселенной непрерывен и цикличен – угасают старые звезды, на смену им зажигаются новые.

По современным научным представлениям, из звездного вещества образовались элементы, необходимые для возникновения планет и жизни на Земле. Хотя единой общепринятой точки зрения на то, как возникла жизнь, пока нет.

ЭВОЛЮЦИЯ ЗВЁЗД - изменение со временем физ. параметров и наблюдаемых характеристик звёзд в результате. протекания ядерных реакций, энергии и потери массы. Для звёзд в тесных двойных системах существ, роль играет обмен веществом между компаньонами. Об эволюции таких звёзд см. в ст. Тесные двойные звёзды .

Осн. наблюдаемыми характеристиками звезды являются её светимость L (при известном расстоянии) и темп-ра Г, поверхности звезды, определяемая по распределению энергии в спектре. Приближённо Т s равна эффективной температуре T э . Э. з. представляется в виде линии (трека) на плоскости lg L , lg T э (т. е. на Герцшпрунга - Pесселлa диаграмме , ГРД).

Введение

Звёзды рождаются из плотных межзвёздных облаков, в к-рых развиваются тепловые и гидродинамич. неустойчивости (см. Звездообразование) . Следствием этих неустой-чивостей является гидродинамич. коллапс части облака, заканчивающийся образованием гравитационно связанного объекта - протозвезды. Коллапс происходит неоднородно. Быстрое сжатие центр, части приводит к образованию гидростатически равновесного ядра массой (для полной массы коллапсирующего облака масса Солнца), а затем следует длительная стадия аккреции на него оставшейся части облака (оболочки). Время образования протозвезды от начала коллапса составляет 10 -10 6 лет. Протозвезды светят за счёт выделения гра-витац. энергии при сжатии. Нек-рый вклад в светимость дают также с участием
, малые кол-ва к-рых образовались на оолее ранних этапах эволюции Вселенной (см. Нуклеосинтез ).По мере увеличения массы и сжатия темп-pa центр. областей ядра протозвезды растёт. Когда она достигает значений ~ 10 7 К (что возможно для звёзд с массой, превышающей начинается горение водорода (термоядерные реакции превращения водорода в гелий). Потери энергии на излучение компенсируются энергией, выделяющейся при горении водорода. Звезда выходит на гл. последовательность (ГП) ГРД. Подробнее о нач. этапе Э. з. см. в ст. Протозвезды .
Образование звёзд сопровождается истечением вещества оболочки, так что масса звезды на ГП меньше нач. массы коллапсирующего облака. Наблюдения показывают, что на стадии протозвезды скорость потери массы у звёзд ссоставляет(звёзды типа T Тельца). За время прихода на ГП (от 6*10 6 лет для до 2·10 7 лет длямасса звезды уменьшится наСветимость звёзд быстро растёт с увеличением их массы (см. Масса - светимость зависимость) . У звёзд с светимость на стадии аккреции оказывается столь большой, что вызывает мощное истечение вещества, и масса рождающейся звезды M оказывается значительно меньше нач. массы M 0 коллапсирующего облака:для

Звезда, излучающая за счёт выделения ядерной энергии, медленно эволюционирует по мере изменения её хим. состава. Наиб. время звезда проводит на стадии, когда в её центр. области горит водород. Эта стадия наз. ГП на ГРД. Б. ч. наблюдаемых звёзд расположена вблизи ГП. Большая длительность этой стадии связана, во-первых, с тем, что водород является самым калорийным ядерным топливом. При образовании одного ядра гелия (альфа-частицы) из 4 ядер водорода выделяетсяа при образовании углерода 12 C из 3 альфа-частиц выделяется всего , т. е. выделение энергии на единицу массы в 10 раз меньше. Во-вторых, звёзды на ГП значительно меньше излучают, чем на последующих стадиях эволюции, и в итоге оказывается, что время жизни на ГП на два - три порядка больше, чем время всей последующей эволюции. Соответственно кол-во звёзд на ГП существенно превышает число более ярких звёзд.

После выгорания водорода в центре звезды и образования гелиевого ядра выделение ядерной энергии в нём прекращается и ядро начинает интенсивно сжиматься. Водород продолжает гореть в тонкой оболочке, окружающей гелиевое ядро (т. н. слоевой источник). Оболочка при этом расширяется, светимость звезды растёт, поверхностная темп-pa уменьшается, и звезда становится красным гигантом (в случае менее массивных звёзд) или сверхгигантом (красным или жёлтым) в случае более массивных звёзд (см. Красные гиганты и сверхгиганты) . Процесс последующей эволюции определяется в основном массой звезды M .

В звёздах сядерное горение заканчивается после образования углеродного (12 C) с примесью кислорода звёздного ядра массой ок. 1. После сброса всей оболочки, окружающей это ядро, оно превращается в "мёртвую" звезду - белый карлик .
Массивные звёздыпроходят эволюц. путь горения вплоть до образования звёздного ядра из самого стабильного (макс. энергия связи на нуклон) элемента 56 Fe. В таком ядре выделение ядерной энергии невозможно, рост давления не компенсирует рост сил тяготения при росте и медленное квазистатич. сжатие сменяется быстрым коллапсом - происходит потеря гидродинамич. устойчивости и взрыв сверхновой звезды . При быстром сжатии до плотности r, близкой к плотности вещества в атомном ядре, выделяется огромное кол-во гравитац. энергии -в раз больше, чем за всё время ядерной эволюции, длящейся десятки млн. лет. Подавляющая часть этой энергии уносится нейтрино. После взрыва и сброса оболочки образуется остаток в виде нейтронной звезды - второй тип "мёртвых" звёзд.
В звёздах промежуточной массыобразуется вырожденное углеродно-кислородное ядро, масса к-рого столь велика, что оно уже не может существовать в виде белого карлика, а продолжает сжиматься до тех пор, пока рост темп-ры и плотности не приведёт к быстрому (взрывному) сгоранию углерода (углеродная вспышка) и полному разлёту всей звезды. Этот разлёт также наблюдается как взрыв сверхновой, на месте к-рого не остаётся никакого остатка.

Наконец для самых массивных звёзд коллапс может не остановиться на стадии нейтронной звезды, а продолжиться дальше, образуя релятивистский объект - чёрную дыру . Наблюдат. проявления процесса образования чёрной дыры пока не известны. Возможно, рост светимости здесь столь незначителен, что такой коллапс трудно обнаружить ("беззвучный" коллапс). Однако даже в этом случае коллапс должен сопровождаться мощным всплеском нейтринного излучения, почти как при образовании нейтронной звезды, и, кроме того, исчезнет (погаснет) звезда, существовавшая до начала коллапса.

На протяжении практически всей эволюции звезда устойчива относительно разл. типов возмущений. Наиб. важны два типа возмущений: гидродинамические и тепловые. Гидродинамич. возмущения связаны со случайными возмущениями плотности и размера звезды. Устойчивость относительно таких возмущений обеспечивается тем, что при сжатии (расширении) силы давления P растут (падают) быстрее сил тяготения. Это приводит к тому, что при случайном сжатии или расширении возникает сила, возвращающая звезду к её равновесному состоянию. Изменение давления при быстрых процессах происходит почти адиабатически, поэтому устойчивость определяется показателем адиабаты к-рый должен быть больше 4/3 (S - уд. энтропия; см. в ст. Гравитационный коллапс) . T. к. давление вещества в звезде определяется смесью идеального газа с излучением,и, как правило, звёзды гидродинамически устойчивы. Примером неустойчивой звезды может служить предсверхновая с железным ядром, в к-ром рост давления при сжатии недостаточен. Значит, часть энергии тратится на фоторасщепление железа с образованием нейтронов, протонов и альфа-частиц, а g существенно уменьшается и может приближаться к единице.

Устойчивость относительно тепловых возмущений обеспечивается отрицательной теплоёмкостью звезды. Отрицат. теплоёмкость можно объяснить на основе теоремы вириала. В применении к звёздам, к-рые описываются ур-нием состояния с показателем адиабаты 5/3, эта теорема гласит, что в равновесии тепловая энергия звезды составляет половину абс. величины её гравитац. энергии (отрицательной), т. е. полная энергия звезды отрицательна и равна половине гравитационной.

Любое случайное выделение энергии увеличивает полную энергию звезды, т. е. уменьшает её абс. величину. Поэтому в новом положении равновесия звезда должна расшириться, чтобы уменьшить по абс. величине значение гравитац. энергии. В соответствии с этим значение тепловой энергии звезды (а значит, и темп-ры) в новом состоянии уменьшится, т. к. она составляет половину абс. величины гравитац. энергии. T. о., выделение энергии приводит к уменьшению темп-ры, что и наз. отрицат. теплоёмкостью. При отрицат. теплоёмкости случайное выделение тепла уменьшит темп-ру, а значит, и уменьшит выделение тепла в ядерных реакциях, скорость к-рых быстро падает с уменьшением темп-ры. Наоборот, случайная потеря энергии будет скомпенсирована сжатием и ростом скорости тепловыделения.

На нек-рых критич. стадиях теплоёмкость звезды становится положительной. Тогда развивается тепловая неустойчивость и происходит тепловая вспышка. Наиб, очевиден механизм развития тепловой неустойчивости при наличии вырожденного ядра, где давление и внутр. энергия вещества практически не зависят от темп-ры. В этом случае тепловыделение приводит к росту темп-ры, к-рый не влияет на рост давления и потому не сопровождается расширением. T. к. скорость ядерных реакций быстро растёт с ростом темп-ры, происходят самоускоряющееся выделение ядерной энергии и тепловая вспышка (ядерный взрыв).

Процессы, определяющие Э. з., протекают с разными характерными временами, из к-рых отметим гидродинамическоетепловоеи ядерное Гидродинамич. время характеризует скорость изменения параметров звезды при движениях вещества со скоростями, сравнимыми со скоростью звука u зв . По порядку величиныгде R - характерный размер звезды. Для равновесной звезды Гидродинамич. время порядка времени свободного падения:
Тепловое время определяет скорость охлаждения или нагрева звезды. При охлаждении в отсутствие ядерного горения поскольку запас энергии порядка гравитац. энергии звезды; в этом случае t th часто наз. временем Кельвина - Гельмгольца. В случае быстрого ядерного горения в отсутствие Гидродинамич. движений, когдавремя нагревагде-скорость энерговыделения, а С v -теплоёмкость при пост, объёме.

Ядерное времяопределяет скорость изменения хим. состава (концентраций элементов) при ядерном горении. Обычно используют концентрацию (содержание) по массе X i - долю массы единицы объёма, приходящуюся на данный элемент i . Ядерное время очень резко (экспоненциально) зависит от темп-ры. В нормальных звёздах, где поддерживается гидростатич. равновесие, это время, как правило, много больше др. характерных времён. При быстром ядерном горении t n связано с тепловым временем:


где q -калорийность ядерного топлива (энергия, выделяющаяся при сгорании единицы массы топлива
На протяжении почти всей Э. з.- начиная от стадии молодой сжимающейся звезды до поздних стадий - время является минимальным. из всех характерных времён. Только в предсверхновых, где имеет место ядерное равновесие (равновесие относительно реакций сильного взаимодействия), времяявляется наименьшим. Обычно в звезде сохраняется приблизит, равновесие относительно быстрых процессов (напр., гидростатич. равновесие), а время эволюции определяется одним из медленных процессов.

На стадии гравитац. сжатия выполняется неравенство Звезда находится в гидростатич. равновесии, эволюция определяется потерей энергии (с характерным временема осн. ядерные реакции практически не протекают.

На ГП это неравенство сохраняется, но эволюция определяется ядерными реакциямии имеет место гидроста-тич. и тепловое равновесие.
После образования гелиевого ядра, сжатия центральных областей и расширения оболочки скорость ядерных реакций в центре звезды возрастает настолько, что t n становится порядкаПри этом осн. отклонения от теплового равновесия происходят в массивной оболочке вокруг гелиевого ядра. Гидродинамич. время остаётся минимальным, и гидростатич. равновесие звезды не нарушается.

При вспышке в углеродно-кислородном ядре, приводящей к полному разлёту звезды, кактак иоказываются много меньше t h , что и приводит к нарушению гидростатич. равновесия и взрыву.

В ядрах массивных предсверхновых, где имеет место ядерное равновесие, значениеминимально и Э. з. определяется скоростью потери энергиикак в молодых сжимающихся звёздах. Она заканчивается потерей гидро-динамич. устойчивости и быстрым коллапсом. Гидродинамич. неустойчивость связана не с изменениема с изменением структуры равновесного состояния звезды. Развитие тепловой неустойчивости связано с быстрым уменьшениеми заканчивается взрывом, когда эти времена становятся меньше

Итак, если исключить неск. критич. моментов, звёзды в своей массе глобально устойчивы относительно механич. и тепловых возмущений. Разнообразие свойств вещества звёзд, в частности наличие зон перем. , тонких слоев горения, протяжённых оболочек, приводит к развитию локальных неустойчивостей, к-рые не ведут к разрушению звезды, т. к. обычно стабилизируются нелинейными эффектами при достижении конечных амплитуд возмущений. Существование нек-рых типов переменных звёзд связано с развитием подобных локальных неустойчивостей.

Осн. фактором, определяющим распределение темп-ры в звезде, является скорость потери энергии (светимость), зависящая от непрозрачности звёздных недр. Скорость Э. з. без источников энергии определяется запасами тепловой и гравитац. энергии и скоростью остывания, а "включение" ядерных реакций эквивалентно увеличению запасов тепловой энергии и уменьшению скорости эволюции. Фак-тич. светимость звезды определяется её структурой и не зависит от скорости протекания ядерных реакций. Рассмотрим, напр., переход от стадии гравитац. сжатия к стадии ГП звезды с Если бы звезда излучала только за счёт запаса гравитац. энергии, то характерное время её жизни (время Э. з.) составляло былет. По мере излучения энергии и сжатия темп-pa в центре звезды растёт и ядерное тепловыделение увеличивается до тех пор, пока не уравновесит потери на излучение (светимость). Начиная с этого момента гравитац. сжатие прекращается и звезда "застывает" на ГП, пока не выгорит водород и не образуется гелиевое ядро. Для такой звезды за счёт горения водорода время жизни увеличивается почти на три порядка, достигая ~ 10 10 лет. Аналогично горение очередного ядерного горючего "замораживает" звезду в нек-ром др. состоянии. Точку (на ГРД). в к-рой происходит "замораживание" звезды, определяет зависимость скорости ядерных реакций данного горючего от темп-ры. Чем больше ядра горючего, тем большая темп-ра требуется для обеспечения данной скорости тепловыделения (из-за роста высоты кулоновского барьера ядра горючего). Однако при росте темп-ры и плотности светимость звезды, являющаяся ф-цией состояния, также возрастает. Поэтому по мере эволюции и образования всё более тяжёлых элементов в центр. ядре светимость растёт почти монотонно.

При высокой темп-ре всё большую роль в охлаждении звезды играют нейтринные потери. На поздних стадиях нейтринные потери на несколько порядков превышают потери на излучение фотонов и соответственно ускоряют Э. з.

Уравнения эволюции звёзд

Обычно (для упрощения расчётов) звезда считается невращающейся и сферически-симметричной. В процессе эволюции осн. масса звезды находится в состоянии гидростатич. равновесия, определяемого ур-нием

где-масса, содержащаяся внутри радиуса r ,

Плотность,-давление, определяемое ур-нием состояния

Здесь первый член - давление газа, второй - излучения, - газовая постоянная, а - постоянная плотности излучения.Для звёзд массойна ГП играют роль поправки к ур-нию состояния, связанные с неидеальностью вещества. Распределение темп-ры определяется ур-нием энергии

(E -внутр. энергия единицы массы,-скорость потери энергии единицей массы вещества за счёт нейтринного излучения), ур-ниями переноса тепла

В зоне лучистого равновесия (к - непрозрачность),

в конвективной зоне и

в конвективном ядре с пост. энтропией S . Конвективный поток энергии F c в оболочке рассчитывается по приближённой теории пути перемешивания (см. Конвективная неустойчивость) .

Ур-ния равновесия решаются для граничных условий в центре (r = 0, L = 0 при т = 0) и на уровне фотосферы , где оптическая толщина


при m = M . Последнее условие усложняется для звёзд на стадии красных сверхгигантов и гигантов, когда звезда имеет протяжённую оболочку небольшой плотности и большую светимость.

В процессе ядерного горения происходят медленное изменение хим. состава звезды и, как следствие, изменения всех её параметров. Осн. ур-ниями, описывающими эволюцию хим. состава, являются:


Здесь: т p , m a , и m 12C - массы протона, a-частицы и углеродаи-содержания (по массе) водорода, гелия и-скорость энерговыделения и энерге-тич. выход для соответствующих цепочек ядерных реакций (см. ниже). При расчётах поздних стадий эволюции массивных звёзд учитывают горение более тяжёлых элементов. У звёзд с массой меньше и центр, темп-рой

Т с меньше ~ 1,5-10 7 К осн. источником ядерной энергии являются реакции водородного цикла (рр-цикл). При больших массах и центр, темп-pax звёзд водород горит преим. в углеродно-азотном цикле (CNO-цикл). Cp. кол-во энергии, выделяющееся при синтезе одного ядра 4 He (за вычетом энергии, уносимой нейтрино): в рр-цикле 26,2 МэВ, а в CNO-цикле МэВ. Соответствующие скорости энерговыделения:

(T 9 - темп-pa в млрд. К, r в г/см 3). Появление конвективного ядра у звёзд сна ГП связано с переходом от рр- к CNO-циклу, обладающему более резкой зависимостью скорости горения от темп-ры. Горение гелия протекает в т. н. За-реакции - реакции слияния трёх ядер Не:

Зa-реакция сопровождается реакцией к-рой соответствует

Выделение тепла при образовании одного ядра 12 C и 16 O соответственно равно
Построение модели звезды (см. также Моделирование звёзд )в момент требует знания её состояния на предыдущем временном шаге численной модели t n-1 для нахождения скорости выделения гравитац. энергии

и определения хим. состава

где-правые части ур-ний (7),Наряду с явной схемой шага по времени, приведённой выше, используют неявную, когда F i , Р/ r 2 вычисляются в момент t n или представляют собой линейную комбинацию значений, взятых в моменты Решение системы обыкновенных дифференц. ур-ний (1) - (6) осложняется наличием особых точек в центре звезды и приПоэтому интегрирование ведётся навстречу из центра и с поверхности со сшивкой в к--л. промежуточной точке [метод Шварцшильда (M. Schwarzschild) ]. Из условий сшивки находят центр, значения r с, T с, а также L и T э . Др. способ решения состоит в разбиении звезды на N сферич. слоев и замене дифференц. ур-ний разностными [метод Хеньи (L. Непуеу)]. Последний метод лучше приспособлен для использования ЭВМ. Для построения гидростатич. моделей применяют также метод, основанный на решении гидродинамич. нестационарных ур-ний с вязкостью.

Ядерная эволюция звёзд

Расчёты Э. з. представляются в виде треков на ГРД. Как уже отмечалось, б. ч. времени жизни звёзды проводят на ГП.
Время жизни такой звезды на ГП (точка А на рис. 1) ок. 10 10 лет, а её строение аналогично строению Солнца . На протяжении этой стадии в центр, областях звезды водород "перегорает" в гелий. Когда масса гелиевого ядра достигает ~ 10% массы звезды, становится заметным отход от ГП (точка В) . Небольшое увеличение светимости на участке AB связано с уменьшением непрозрачности из-за уменьшения числа электронов при синтезе гелия из водорода. После выгорания водорода в центре звезды и образования гелиевого ядра отвод энергии из него может компенсироваться только энергией, выделяющейся при сжатии. Это приводит к сжатию и нагреву оболочки, сохранившей водород, к-рый загорается в тонком слое, окружающем гелиевое ядро (слоевой источник).

Энергия, выделяющаяся при сжатии гелиевого ядра и в водородном слоевом источнике, выходит наружу. Частично она поглощается водородной оболочкой, к-рая постепенно раздувается, уменьшая эфф. темп-ру при пост, светимости (участок BC).


По мере расширения оболочки и роста массы гелиевого ядра определяющую роль в поведении звезды начинают играть два фактора: конвекция, развивающаяся в оболочке, и вырождение, возникающее в ядре. Расширение оболочки и падение в ней темп-ры способствуют расширению внеш. конвективной зоны, к-рая имелась у звезды на ГП. Развитие конвекции приводит к улучшению теплоотвода, что, благодаря отрицат. теплоёмкости звезды, вызывает её сжатие, рост темп-ры, тепловыделения и светимости. Рост светимости способствует росту лучистого градиента темп-ры, что ещё больше усиливает конвекцию. T. о. возникает положительная обратная связь и конвекция захватывает значит, часть массы звезды, приближаясь к слоевому источнику. Светимость растёт, и звезда движется на ГРД от точки С к точке D (область красных гигантов).

По мере движения звезды к точке D происходит ускоренное горение водорода, масса изотермич. гелиевого ядра возрастает, что при условии равновесия приводит к росту его плотности. T. к. темп-pa ядра при этом близка к темп-ре водородного слоевого источника и увеличивается слабо, рост плотности приводит к вырождению ядра. Давление в нём практически перестаёт зависеть от темп-ры. В этих условиях небольшое увеличение темп-ры ядра, связанное с возгоранием гелия, почти не влияет на давление, звезда приобретает положит, теплоёмкость, к-рая обусловливает резкое увеличение скорости горения гелия (гелиевую вспышку) . Действительно, пока энерговыделение при горении гелия мало, звезда располагается на ГРД вблизи точки D и рост темп-ры и плотности приводит к росту энерговыделения, что в свою очередь увеличивает темп-ру. Возникает положительная обратная связь, приводящая к тепловой гелиевой вспышке в ядре. Развитие вспышки продолжается до тех пор, пока рост темп-ры не снимет вырождение в ядре, звезда приобретёт "нормальную" отрицат. теплоёмкость и дальнейшее горение гелия продолжится спокойно в невырожденном ядре. Особенностью гелиевой вспышки является то, что она запрятана в глубине звезды и внеш. проявления её почти отсутствуют. После образования невырожденного ядра звезда спускается вниз от точки D и поворачивает налево к линии EF (горизонтальная ветвь гигантов), где находится до тех пор, пока гелий в ядре превращается в углерод. Вновь образованное углеродное ядро становится вырожденным, возгорание гелия в слоевом источнике и образование двухслойного гелий-водородного горящего слоя приводят к развитию конвекции в оболочке, и вновь повторяется та же схема развития, причём звезда возвращается почти вдоль той же линии к точке D .

В отличие от водородных слоевых источников, где горение идёт спокойно, гелиевые слоевые источники неустойчивы относительно развития тепловой вспышки. Природа этой вспышки, так же, как и вспышки в гелиевом ядре, связана с положит. теплоёмкостью, ведущей к положительной обратной связи. Однако в слое положит, теплоёмкость обусловлена не вырождением (гелий здесь не вырожден), а геометрией области горения (тонкий слой) и быстрым ростом скорости энерговыделения с увеличением темп-ры при горении гелия. Механизм неустойчивости слоевого горения не столь очевиден, как в случае вспышки в вырожденном ядре, и требует для своего обоснования детальных расчётов.

T. о., в окрестности точки D располагаются спокойные звёзды с гелиевыми ядрами и вспыхивающие - с углеродными. Вспышки способствуют истечению вещества, поэтому по мере роста углеродного ядра полная масса звезды уменьшается. После неск. сотен вспышек (цифра примерная, т. к. никому не удалось последовательно просчитать столь много вспышек) в результате быстрого истечения вещества и роста ядра масса над гелиево-водородным слоевым источником уменьшается настолько, что при той же светимости начинаются быстрое оседание оболочки на ядро, рост эфф. темп-ры и. следовательно, движение звезды влево. После исчерпания горючего в слоевых источниках (точка G) светимость поддерживается только за счёт теплоёмкости ядра, к-рое быстро остывает, звезда движется по ГРД вниз и превращается в белый карлик (точка H) . На этой стадии звезда находится вплоть до полного остывания. Наблюдения свидетельствуют о том, что истечение вещества вблизи точки D происходит неравномерно и значит, доля массы сбрасывается непосредственно перед началом движения звезды влево, образуя планетарную туманность .

Звёзды с . У звёзд свремя жизни на ГП превышает космологич. время (2*10 10 лет), и все они либо находятся на ГП, либо движутся к ней. В звёздах свыгорание водорода сопровождается ростом плотности в центре звезды и приближением ядра к вырожденному состоянию. Пригелиевое ядро, образующееся после выгорания водорода, становится вырожденным, а оболочка сильно раздувается, приводя к росту светимости и уменьшению поверхностной темп-ры (рис. 2). Звезда становится красным гигантом. Вырожденное ядро неустойчиво относительно гелиевой вспышки. Гелиевая вспышка в ядре приводит к его расширению и снятию вырождения; при этом сгорает не более 1% гелия.

Рис. 2. Эволюционные треки звёзд [с начальным химическим составомX z (содержание элементов тяжелее гелия) - = 0,03] от главной последовательности до гелиевой вспышки (для М = 0,8 и 1,5) или до возгорания углерода в центре (для Цифры указывают массу звезды вточки соответствуют главной последовательности и моментам возгорания гелия и углерода в ядре.


Звёзды небольшой массы с невырожденным гелиевым ядром и водородной оболочкой после гелиевой вспышки располагаются на ГРД вблизи горизонтальной ветви гигантов (ГВГ, рис. 3). На этой ветви звёзды представляют собой гелиевые ядра массой окружённые водородными оболочками разл. массы. После выгорания гелия в ядре начинается его быстрое сжатие до загорания гелиевого слоевого источника. Звезда на ГРД движется вверх и направо к линии, называемой асимптотич. ветвью гигантов (АВГ). На этой линии звезда состоит из вырожденного углеродно-кислородного ядра и двух слоевых источников (гелиевого и водородного), расположенных очень близко друг от друга. Над ними располагается водородная оболочка, масса к-рой может достигать Удивительным свойством звёзд на АВГ является то, что их положение на ГРД зависит только от массы углеродного ядра и практически не зависит от массы водородной оболочки. Светимость L звезды на АВГ определяется ф-лой


где М сo - масса углеродно-кислородного ядра. С ростом MCO звезда движется на ГРД вверх по АВГ. Это движение не является спокойным.


Рис. 3. Огрублённые эволюционные треки звёзд с начальными массами M = 1. 5, 25 Жирные линии соответствуют основным стадиям горения в ядре (рядом указаны соответствующие реакции). Для М<2 . 3происходит гелиевая вспышка в ядре (ГВЯ), далее начинается спокойное горение 4 He в ядре. После выгорания 4 He в ядре звезда переходит на раннюю асимптотическую ветвь гигантов (РАНГ). Когда ядро, в котором выгорел 4 He, достигает массы начинаются тепловые вспышки (ТВ) в гелиевом слоевом источнике. На стадии АВГ происходит потеря массы, которая заканчивается быстрым сбросом остатка водородной оболочки в виде планетарной туманности (ПТ). СО-ядро массой превращается в белый карлик. Эволюция более массивных звёзд сна стадии АВГ и дальше происходит аналогично. Кружком с лучами отмечено начало свечения планетарной туманности, когда T , звезды достигает 3 · 10 4 К и начинается ионизация газа в ПТ.


Рис. 4. Эволюционный трек звезды, превращающейся в белый карлик, с начиная от РАВГ; начальный состав:
. Точками даны положения звезды перед очередной тепловой вспышкой, указан её номер. OM - огибающая минимумов светимости при вспышках. Показаны треки звезды в области минимумов вспышек № 7, 9 и 10. Заштрихованы участки на ГП и в области горения гелия в ядре (ГТЯ), где даны приближённые эволюционные треки звёзд с Штриховая линия слева соответствует звезде постоянного радиуса

Малая толщина слоевых источников приводит к тепловым вспышкам (ТВ). Кол-во вспышек при движении по АВГ растёт с ростом массы водородной оболочки и может превышать неск. тысяч. Время между вспышкамитакже зависит в основном от массы ядра и определяется выражением


В годах), а светимость звезды в максимуме вспышки


Характерным свойством звёзд на АВГ является интенсивная потеря массы. Считается, что звёзды стеряют всю водородную оболочку и превращаются в белый карлик массойМеханизм потери массы не вполне ясен, но считается (гл. обр. на основе данных наблюдений), что б. ч. массы теряется в виде спокойного истечения, а оставшаяся часть (неск. десятых долейсбрасывается быстро в виде сферич. оболочки, наблюдаемой как планетарная туманность. Эволюц. трек ядра планетарной туманности с, превращающегося в белый карлик, приведён на рис. 4 (схематически такие треки показаны на рис. 3). Времена на штриховых отметках t i и соответствующие массы водородных оболочек M об, равны


Звёзды с массой . У таких звёзд масса ядра достигает. При сжатии ядра в нём зажигается углерод. Горение углерода в вырожденном ядре звезды с неустойчиво, реакция приводит к взрыву и полному разлёту звезды. Возможно, подобные взрывы вызывают наблюдаемые вспышки сверхновых звёзд первого типа. В ядрах звёзд с нач. массами, превышающими(вплоть доуглеродное ядро не вырождено. Вырождение наступает на стадии образования ядра из Для

Вырожденное ядро сжимается в результате нейтронизацш вещества 24 Mg, сжатие переходит в гравитац. коллапс. При этом ядро разогревается за счёт неравновесной нейтронизации. В звёздах массой в вырожденном ядре развивается тепловая неустойчивость, к-рая, как и при гелиевой вспышке, ведёт к снятию вырождения и переходу в режим спокойного горения вплоть до появления 56 Fe в центре звезды. Судьба такой звезды схожа с судьбой более массивных звёзд.

Эволюция массивных звёзд . Горение в центр, областях этих звёзд проходит в отсутствие вырождения вплоть до образования железного ядра. Расчётные эволюц. треки массивных звёзд после образования гелиевого ядра чувствительны к физ. предположениям, методу расчёта и очень разнообразны. Это проявляется в разл. форме петель на ГРД (аналогичных петлям для на рис. 2), а также в значениях эфф. темп-ры звезды на стадии горения гелия. Различие физ. предположений состоит в выборе критерия конвективной неустойчивости, к-рый учитывает [критерий П. Леду (P. Ledoux)] или не учитывает [критерий К. Шварцшильда (К. Schwarzschild) ] стабилизирующую роль градиента хим. состава. С этим связано поведение т. н. полуконвективной зоны, к-рая появляется над конвективным ядром у звёзд сна стадии горения водорода и имеет очень небольшое превышение градиента темп-ры над адиабатическим. В моделях, учитывающих градиент хим. состава, зона полуконвекции отделена от конвективного ядра лучистым слоем, что препятствует перемешиванию. Если же использовать критерий Шварцшильда, то возникает частичное перемешивание и условия эволюции существенно меняются. Горение гелия происходит в области голубых сверхгигантов приа в случае критерия Леду гелий выгорает в области красных сверхгигантов с
С ростом массы растёт величинагде критич. светимость

При L = Lc сила светового давления на электроны уравновешивает силу гравитац. притяжения атомных ядер. В процессе движения звезды на ГРД направо в область красных сверхгигантов после образования гелиевого ядра в оболочке, где возникают зоны неполной ионизации гелия и водорода, резко возрастает непрозрачность и L/L c становится больше единицы. На этой стадии возможно резкое увеличение скорости потери массы звездой, так что может потеряться вся водородная оболочка. Наблюдения показывают существование очень ярких гелиевых звёзд типа Вольфа - Райе (WR, см. Вольфа - Райе звёзды у ),к-рых происходит мощное истечение вещества с потоком массыНа стадии образования WR-звёзд поток массы мог быть значительно больше.

Расчёт эволюции массивных звёзд требует самосогласованного учёта потери массы, так чтобы величина M получалась в расчётах однозначно, как L, R, T э ,. T. к. время потери массы M/M много больше гидродинамич. времени звездызвезда на стадии истечения может быть представлена в виде статич. ядра и стационарно истекающей оболочки, масса к-рой внутри критич. радиуса потока много меньше массы звезды; на критич. радиусе r к скорость v к равна (см. Звёздный ветер ).Скорость потока быстро падает по мере перехода к плотным внутр. слоям звезды, и оболочка плавно переходит в статич. ядро. Сделаны лишь предварит, расчёты эволюции с самосогласованным учётом потери массы, хотя имеется много эволюц. расчётов с феноменологич. учётом потери массы, типа зависимостей

(L, R, M в единицах


Рис. 5. Эволюционные треки звёзд с массами 15 и 25BB" и BC -области горения гелия в ядре; CD - горение в двойном (H - Не) слоевом источнике; DE -горение углерода. Расчёты доведены до точки потери устойчивости (указана крестом в кружке), штриховые треки соответствуют не вполне уверенным расчётам.

Расчёт эволюции двух звёзд с пост, массами (M= 15 и вплоть до образования железного ядра в состоянии предсверхновой представлен на рис. 5. После возгорания углерода эволюция ядра идёт очень быстро, ввиду роста скорости нейтринных потерь, так что состояние оболочки почти не меняется и звезда мало движется по ГРД вплоть до начала коллапса. Наблюдения сверхновой 1987А в Большом Магеллановом Облаке показали, что предсверхновая здесь представляла собой голубой, а не красный сверхгигант, как показано на рис. 5. Это может быть связано с тем, что либо произошёл сброс значит, части водородной оболочки, либо звезда эволюционировала на треке вдоль петель, заходящих в голубую область. Если углерод загорелся в тот момент, когда звезда находилась в голубой области, её видимое положение на ГРД оставалось почти неизменным вплоть до потери устойчивости и вспышки сверхновой. Сравнение разл. расчётов показывает, что появление петель носит стохастич. характер, поэтому можно говорить лишь о вероятности расположения звезды в области голубых, жёлтых или красных сверхгигантов в состоянии предсверхновой.

Звёзды, превратившиеся в красные и жёлтые гиганты и сверхгиганты, после образования гелиевого ядра становятся в определ. области неустойчивыми относительно раскачки механич. и наблюдаются как переменные звёзды с регулярными колебаниями блеска (цефеиды и звёзды типа RR Лиры). Осн. причиной возбуждения колебаний в этих звёздах является аномальное поведение непрозрачности в зоне неполной ионизации гелия, толщина к-рой растёт с ростом темп-ры (см. Пульсации звёзд ).Вне ГП расположены и др. типы переменных звёзд с регулярной, полурегулярной и нерегулярной переменностью. Причиной переменности регулярных переменных, находящихся на стадиях Э. з. до и после ГП, является наличие мощных конвективных оболочек, приводящих к генерации ударных волн при звёздных вспышках, аналогичных вспышкам на Солнце , но на много порядков более мощных.

Предсверхновые и сверхновые

Сверхновые второго типа (с линиями водорода в спектрах и остатками в виде пульсаров )являются продуктом эволюции массивных звёзд сЯдра этих звёзд теряют устойчивость и коллапсируют после увеличения центр, темп-ры настолько, что начинается диссоциация ядер 56 Fe и адиабатич. показательстановится меньше 4/3. Значение g, усреднённое по звездеопределяет её гидродинамич. устойчивость. Неустойчивость имеет место при


В выражении член справа связан с эффектами общей теории относительности и равен нулю в ньютоновской теории, в к-ройотделяет устойчивые состояния от неустойчивых. Согласно результатам расчётов, представленным на рис. 5. ядра звёзд в точке вскоре после потери устойчивости характеризуются параметрами:


Здесь M , - масса ядра; Т с и r c - центральные темп-ра и плотность,-нейтринная светимость,-фотонная светимость,-радиус фотосферы; цифры в скобках указывают порядок величины. У звёзд массой ок. 8 образуется вырожденное углеродно-кислородное ядро массой 1,39, к-рое перед тепловой вспышкой характеризуется след, параметрами: (r я, - радиус ядра). Тепловые вспышки звёздных ядер, ведущие к полному разлёту звезды и выделению энергии ~ 10 51 эрг, связывают с наблюдаемыми вспышками сверхновых типа I, в спектрах к-рых водород не наблюдается, а в остатках взрыва не найдены пульсары. Вспышки сверхновых типапромежуточных между типами I и II (линии водорода почти не видны, но нейтронные звёзды могут образоваться), связаны, видимо, с потерей устойчивости в ядрах звёзд промежуточной массы или с вхождением этих звёзд в двойные системы.

Расчёты гидродинамич. коллапса ядер массивных звёзд показали, что подавляющая частьвыделяющейся гравитац. энергииэрг) уносится нейтрино. Внутр.части звезды оказываются непрозрачными для рождающихся там нейтрино, внутри звезды формируется нейтринная фотосфера. Нейтринный нагрев падающей оболочки, выгорание в ней оставшегося ядерного горючего во время коллапса, а также отскок падающей оболочки от поверхности образовавшейся нейтронной звезды оказываются недостаточными для того, чтобы выбросить вещество с ки-нетич. энергией эрг (характерной для сверхновых). Осн. причины этого заключаются в том, что нейтринный поток тормозит падение оболочки, а образующаяся при отскоке оболочки ударная волна дополнительно ослабляется из-за затраты большей части её энергии на диссоциацию в оболочке атомных ядер железного пика (т. е. ядер с массовыми числами, близкими к 56). Быстрые потери энергии за счёт испускания нейтрино из области нейтринной фотосферы приводят к увеличению градиента темп-ры и развитию конвекции. Это может существенно увеличить энергию каждого вылетающего нейтрино и соответственно сечение его взаимодействия с веществом, что способствует взрыву.

Энергия взрыва сверхновой может черпаться из энергии вращения образующейся нейтронной звезды, к-рая достигает 10 53 эрг. Важнейшую роль в трансформации энергии вращения в энергию взрыва играет магн. поле. Поэтому такой взрыв носит назв. магниторотационного. В дифференциально вращающейся оболочке вокруг нейтронной звезды происходит линейное по времени усиление азимутального магн. поля за счёт наматывания силовых линий. Когда магн. давление достаточно возрастёт, формируется , к-рая усиливается при распространении в среде со спадающей плотностью и за счёт работы магн. поршня. Расчёты показывают, что ~3-5% энергии вращения может быть преобразовано в кинетич. энергию выброса. Этого достаточно для объяснения наблюдаемых сверхновых. В отличие от механизмов взрыва сферически-симметричных звёзд, где энергия выделяется в доли секунды, при магниторотационном взрыве выделение энергии может затянуться на неск. часов; при этом период вращения образующейся нейтронной звезды может превышать 10 миллисекунд (скорость вращения будет <~ 1/10 предельной, совместимой с устойчивостью нейтронной звезды).

Последние стадии эволюции звёзд

Звезда, у к-рой отсутствуют источники энергии, светит за счёт остывания, а равновесие в ней поддерживается давлением вырожденных электронов или нейтронов. Фун-дам. фактом является наличие предела массы у холодных звёзд, связанного с тем, что с ростом плотности наступает релятивистское вырождение электронов , а затем и нейтронов. Поэтому достаточно массивные звёзды теряют устойчивость и переходят в состояние релятивистского коллапса с образованием чёрной дыры. При плотностях г/см 3 вещество состоит из электронов и ядер. электроновуже при г/см 3 (m z - число нуклонов на электрон), поэтому можно использовать ур-ние состояния релятивистского вырожденного электронного газа

Для баротропного ур-ния состояния Р = Р(р )равновесие звезды определяется ур-ниями (1) и (2). В случае политропыиз (1) и (2) следует ур-ние равновесия:


масса звезды


Из ур-ния (9) следует, что примасса звезды независит от r с. Для ур-ния состояния (8) масса

Рис. 6. Зависимость массы от центральной плотности для равновесных холодных звёзд. Верхняя штриховая линия соответствует уравнению состояния для "чистых" нейтронов, нижняя-с учётом гиперонов.


Масса звёзд, у к-рых давление определяется вырожденными электронами, не может превысить (Чандрасекара предел) . Звёзды, в к-рых преобладает давление вырожденных электронов, наз. белыми карликами за их небольшие размеры и горячую поверхность. На графике для холодных звёзд (рис. 6) белые карлики расположены левее первого максимума. Для железного состава = 28/13; с учётом нейтронизации и кулоновских поправок к ур-нию состояния макс, масса железного белого карлика равна примерно когда центр, плотность ~1,4x При большей плотности m z растёт из-за нейтронизации и равновесная масса падает. При этом равновесные модели неустойчивы, а устойчивость восстанавливается, когда осн. вклад в давление начинают давать нерелятивистские вырожденные нейтроны (минимум на рис. 6, гдеПри столь высоких плотностях важную роль играет ядерное взаимодействие, поэтому в устойчивых нейтронных звёздах (между минимумом и вторым максимумом) нейтронный газ не является идеальным. Релятивистское вырождение нейтронов и эффекты ОТО приводят к потере устойчивости. В результате предельная масса нейтронной звезды (для реалистич. ур-ний состояния)

Звёзды с нач. массойтеряют вещество в процессе эволюции на АВГ и превращаются в белые карлики. Более массивные звёзды, не успевшие потерять массу и теряющие устойчивость, либо разлетаются в результате взрывного горения углерода, либо превращаются в нейтронные звёзды разл. типов. Если излишек массы не сбрасывается при коллапсе, то происходит релятивистский коллапс ядра си образование чёрной дыры. Предшественниками чёрных дыр являются наиб, массивные звёзды с нач. массами

Лит.: Франк-Каменецкий Д. А., Физические процессы внутри звезд, M., 1959; Шварцшильд М., Строение и эволюция звезд, пер. с англ., M., 1961; Внутреннее строение звезд, под ред. Л. Аллера. Д. M. Мак-Лафлина, пер. с англ., M., 1970; Масевич А. Г., Тутуков А. В., Эволюция звезд; теория и наблюдения, M., 1988; Бисноватый-Коган Г. С., Физические вопросы теории звездной эволюции. M.. 1989. Г . С. Бисноватый-Коган .