Бунин

Объемный угол. Телесный угол. Сила излучения

Телесный угол

Телесный угол

Теле́сный у́гол - часть пространства, которая является объединением всех лучей , выходящих из данной точки (вершины угла) и пересекающих некоторую поверхность (которая называется поверхностью, стягивающей данный телесный угол). Частными случаями телесного угла являются трёхгранные и многогранные углы. Границей телесного угла является некоторая коническая поверхность.

Телесный угол измеряется отношением площади той части сферы с центром в вершине угла, которая вырезается этим телесным углом, к квадрату радиуса сферы:

Очевидно, телесные углы измеряются отвлечёнными (безразмерными) величинами. Единицей измерения телесного угла в системе СИ является стерадиан , равный телесному углу, вырезающему из сферы радиуса поверхность с площадью . Полная сфера образует телесный угол, равный стерадиан (полный телесный угол ), для вершины, расположенной внутри сферы, в частности, для центра сферы; таким же является телесный угол, под которым видна любая замкнутая поверхность из точки, полностью охватываемой этой поверхностью, но не принадлежащей ей. Кроме стерадианов, телесный угол может измеряться в квадратных градусах, квадратных минутах и квадратных секундах, а также в долях полного телесного угла.

Телесный угол имеет нулевую физическую размерность .

Обозначается телесный угол обычно буквой .

Двойственный телесный угол к данному телесному углу определяется как угол, состоящий из лучей, образующих с любым лучом угла неострый угол.

Коэффициенты пересчёта единиц телесного угла.

Стерадиан Кв. градус Кв. минута Кв. секунда Полный угол
1 стерадиан = 1 (180/π)² ≈
≈ 3282,806 кв. градусов
(180×60/π)² ≈
≈ 1,1818103·10 7 кв. минут
(180×60×60/π)² ≈
≈ 4,254517·10 10 кв. секунд
1/4π ≈
≈ 0,07957747 полного угла
1 кв. градус = (π/180)² ≈
≈ 3,0461742·10 −4 стерадиан
1 60² =
= 3600 кв. минут
(60×60)² =
= 12 960 000 кв. секунд
π/(2×180)² ≈
≈ 2,424068·10 −5 полного угла
1 кв. минута = (π/(180×60))² ≈
≈ 8,461595·10 −8 стерадиан
1/60² ≈
≈ 2,7777778·10 −4 кв. градусов
1 60² =
= 3600 кв. секунд
π/(2×180×60)² ≈
≈ 6,73352335·10 −9 полного угла
1 кв. секунда = (π/(180×60×60))² ≈
≈ 2,35044305·10 −11 стерадиан
1/(60×60)² ≈
≈ 7,71604938·10 −8 кв. градусов
1/60² ≈
≈ 2,7777778·10 −4 кв. минут
1 π/(2×180×60×60)² ≈
≈ 1,87042315·10 −12 полного угла
Полный угол = 4π ≈
≈ 12,5663706 стерадиан
(2×180)²/π ≈
≈ 41252,96125 кв. градусов
(2×180×60)²/π ≈
≈ 1,48511066·10 8 кв. минут
(2×180×60×60)²/π ≈
≈ 5,34638378·10 11 кв. секунд
1

Вычисление телесных углов

Для произвольной стягивающей поверхности телесный угол , под которым она видна из начала координат, равен

где - сферические координаты элемента поверхности - его радиус-вектор, - единичный вектор, нормальный к

Свойства телесных углов

Величины некоторых телесных углов

где - смешанное произведение данных векторов, - скалярные произведения соответствующих векторов, полужирным шрифтом обозначены векторы, нормальным шрифтом - их длины. Используя эту формулу, можно вычислять телесные углы, стянутые произвольными многоугольниками с известными координатами вершин (для этого достаточно разбить многоугольник на непересекающиеся треугольники).

  • Телесный угол двугранного угла в стерадианах равен удвоенному значению двугранного угла в радианах:
, где - полупериметр. Через двугранные углы телесный угол выражается, как:

См. также

  • Многогранный угол

Wikimedia Foundation . 2010 .

Смотреть что такое "Телесный угол" в других словарях:

    ТЕЛЕСНЫЙ УГОЛ - часть пространства, ограниченная конической поверхностью. Телесный угол измеряют площадью вырезаемой им части сферы единичного радиуса с центром в вершине угла. Единицей телесного угла в СИ является (см.) … Большая политехническая энциклопедия

    телесный угол - пространственный угол — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы пространственный угол EN solid angle … Справочник технического переводчика

    ТЕЛЕСНЫЙ УГОЛ, пространственный угол, образованный в центре сферы ВЕРШИНОЙ КОНУСА, основание которого находится на поверхности сферы. Телесные углы измеряются в стерадианах и определяются как отношение поверхности, занимаемой основанием конуса, к … Научно-технический энциклопедический словарь

    Часть пространства, ограниченная некоторой конической поверхностью, в частности трехгранный и многогранный углы ограничены соответственно тремя и многими плоскими гранями, сходящимися в вершине телесного угла. Единицу измерения телесного угла… … Большой Энциклопедический словарь

    телесный угол, - 3.36 телесный угол, (ср) (solid angle): Телесный угол с его вершиной в центре сферы радиуса r есть отношение площади А, вырезаемой этим углом на поверхности сферы, на квадрат радиуса (см. рисунок 3) Ω = A/r2. Полный телесный угол равен 4p ср.… … Словарь-справочник терминов нормативно-технической документации

    Часть пространства, ограниченная некоторой конической поверхностью (рис., 1); частными случаями Т. у. являются трёхгранные и многогранные углы. Т. у. измеряется отношением площади S той части сферы с центром в вершине конической… … Большая советская энциклопедия

    Часть пространства, огранич. нек рой коннч. поверхностью (см. рис.), в частности 3 гранный и многогранный углы части пространства, огранич. тремя или более плоскостями, проходящими через одну точку (вершину Т. у.). Значение Т. у. равно отношению… … Большой энциклопедический политехнический словарь

    телесный угол - erdvinis kampas statusas T sritis fizika atitikmenys: angl. solid angle; space angle; spatial angle vok. körperlicher Winkel, m; Raumwinkel, m rus. пространственный угол, m; телесный угол, m pranc. angle solide, m … Fizikos terminų žodynas

    Часть пространства, ограниченная некоторой конической поверхностью (рис. 1); в частности, трёхгранный (рис. 2) и многогранный (рис. 3) углы ограничены соответственно тремя и многими плоскими гранями, сходящимися в вершине телесного угла. Единицу… … Энциклопедический словарь

Описание поля излучения основано на представлении об интенсивности, как энергии, протекающей перпендикулярно плоской поверхности единичной площади за единицу времени в заданном направлении в избранном интервале частот. Полное определение интенсивности требует предварительного введения некоторых понятий.

1.1Контрольнаяплощадка

Назовём контрольной площадкой плоскую поверхность S небольших размеров, через которую проходит излучение. Обозначим через D S её площадь, а n - перпендикулярный ей единичный вектор. Под направлением площадки, как обычно, будем понимать направление вектора n . Контрольная площадка может иметь физическую границу, как участок поверхности планеты. Но её можно вообразить мысленно, например, внутри атмосферы некоторой звезды. Площадка может быть заполнена веществом, которое поглощает падающее на него излучение и переизлучает его в другом направлении. Но её можно представить и совершенно прозрачной, даже лишённой вещества. Важно только, что через площадку проходит излучение. Направление излучения характеризуется двумя величинами: вектором k и телесным углом D W вокруг него.

1.2 Телесный угол

Опишем сферу радиуса R вокруг точки О , в которой расположен наблюдатель. На поверхности сферы выделим участок S площадью S . Отношение

называется телесным углом, под которым видна поверхность S из точки О . Диапазон D W является необходимым элементом определения интенсивности. Дело в том, что количество энергии, протекающей в любом точно фиксированном направлении (D W =0), равно нулю.

Правда, есть одно исключение - точечные источники. В астрономии понятие точечного источника является весьма важным: к ним принадлежат все звёзды, кроме Солнца, а также некоторые другие источники излучения. К точечным источникам мы относим все объекты, угловые размеры которых меньше разрешения применяемой аппаратуры. Поэтому для малых телескопов протяжённый объект может выглядеть как точечный. Вернёмся к определению интенсивности. Величина D W должна быть настолько мала, чтобы излучение не менялось заметным образом внутри выделенного телесного угла. Если это условие выполнено, то энергия D E, прошедшая сквозь контрольную площадку в заданном направлении, пропорциональна . Иногда говорят просто об излучении в определённом направлении, неявно подразумевая некоторую величину телесного угла.


1.3 Интенсивность

Определение интенсивности содержит несколько моментов, каждый из которых полезно изложить отдельно. Сначала развернём площадку вдоль вектора k , затем рассмотрим произвольное направление и, наконец, обсудим соглашение о знаке проходящей через площадку энергии.

Интенсивность в направлении контрольной площадки

Излучение на рис.3 проходит в направлении вектора n . Величину D S положим настолько малой, что излучение можно считать однородным вдоль площадки. Будем вести наблюдение в течение столь короткого промежутка времени, что никакие его характеристики не успевают измениться. В таких условиях количество энергии, протекшей через площадку, пропорционально произведению D S × D W × D t . поэтому отношение

не зависит от размеров контрольной площадки, продолжительности измерения и выбранного угла раствора. Иными словами, оно характеризует именно поле излучения в направлении вектора n .

Интенсивность в произвольном направлении

Обозначим посредством q угол между векторами k и n . В силу произвольности их относительного расположения, он может принимать любое значение между нулём и p . Рассуждения предыдущего раздела отвечают случаю q =0. Мы исключаем ситуацию, когда векторы k и n перпендикулярны (q =p /2), так как вопрос о протекании энергии вдоль ребра площадки лишён смысла. Таким образом, мы приходим к диапазону

Величина энергии, протекшей сквозь площадку при фиксированном поле, пропорциональна площади её проекции на плоскость волнового фронта:

На рис.4 образующая горизонтального цилиндра направлена вдоль вектора k . Строго говоря, мы должны были нарисовать не цилиндр, а усечённый конус с некоторым телесным углом D W , но для иллюстрации формулы (3.2) это не имеет значения. Контрольные площадки представляют собой сечения цилиндра наклонными плоскостями. Все площадки мы видим с ребра. Стрелками обозначено направление вектора n каждой площадки. Внутри цилиндра протекает одна и та же энергия, независимо от направления площадок. Величина D E пропорциональна вертикальному сечению цилиндра. Следовательно, отношение

уже не зависит от направления контрольной площадки и может быть принято в качестве характеристики поля излучения в данном направлении.

Интенсивностью называется предел отношения (3.3), когда D t , D S и D W стремятся к нулю:

Ниже, в десятом разделе этой главы мы уточним последнее определение, включив зависимость интенсивности от частоты или от длины волны излучения.

Интенсивность может зависеть от времени, от положения точки в пространстве и от направления. Если поле излучения не меняется во времени, то оно называется стационарным. В этом случае интенсивность от времени не зависит. Аналогично, интенсивность не зависит от пространственных координат в случае однородного поля излучения и не зависит от направления, если поле излучения изотропно.

Соглашение о знаке энергии

Интенсивность всегда считается положительной величиной, то есть D E cosq  >  0. В то же время cosq может принимать как положительные, так и отрицательные значения. Это заставляет нас приписывать определённый знак проходящей через площадку энергии:

.

Если θ - острый угол, то говорят об "исходящем" из площадки излучении (ΔE > 0). В противном случае считают, что излучение "входит" в неё. Этой терминологии мы будем придерживаться в дальнейшем. Правда, нужно помнить, что она условна, так как определяется выбором знака направления вектора n. Сменив направление n на противоположное, мы превращаем "входящее" излучение в "исходящее" и наоборот.

1.4 Поток

Поток является мерой полной энергии, протекающей через контрольную площадку. Разобьём полный телесный угол 4π на N участков малого размера:

с учётом соглашения (3.5) о знаке ΔE i . В пределе (4.1) превращается в интеграл

по всем направлениям с учётом знака dE . Во время суммирования по углам мы полагали величины D S и D t настолько малыми, что энергия D E пропорциональна произведению D S × D t .

Потоком F называется предел отношения

при стремящемся к нулю знаменателе:

Сопоставляя определения интенсивности (3.4) и потока (4.2), приходим к важной формуле

выражающей поток через интенсивность.

Отметим отличие интенсивности от потока. Хотя понятие интенсивности мы ввели с помощью контрольной площадки, тем не менее, интенсивность является характеристикой только поля излучения и никак не зависит от измерительного прибора. Мы говорим об интенсивности излучения в произвольно выбранном направлении, не уточняя, как именно расположен измерительный прибор. Наоборот, бессмысленно говорить о «потоке в некотором направлении», так как при его вычислении выполняется суммирование по всем углам. Правда, величина потока зависит от направления контрольной площадки. Но мы всегда будем предполагать, что контрольная площадка S направлена вдоль луча зрения на источник света.

1.5 Поле излучения источника малых угловых размеров

В астрономических приложениях часто нужно знать интенсивность и поток излучения, создаваемого источником, угловой размер которого мал. Например, радиус Солнца равен 15΄ = 4.36∙10 -3 рад. Характеристики излучения изотропного и однородного источника малых угловых размеров могут быть найдены сравнительно простым путём. На рис. 5 источник света, линейный радиус которого равен R , расположен на большом расстоянии r >>R от наблюдателя. При малых угловых размерах справедливо

и угловой радиус источника равен

Последняя формула справедлива, если мы пренебрегаем различием длин дуги и стягивающей её хорды. Площадь, занимаемая источником на сфере, в том же приближении можно оценить как p R 2 , откуда стягиваемый им телесный угол W 0 , согласно определению (1.1), получается равным

.

Светимость источника обозначим L . Через поверхность сферы радиуса r , центр которой совпадает с источником излучения, за единицу времени проходит количество энергии, равное L , а через единицу поверхности, соответственно, L / r 2 . Согласно приведённому выше определению, эта величина и есть поток излучения F :

.

При выводе этой формулы мы воспользовались предположением об изотропии источника излучения.

Перейдём к вычислению интенсивности. Согласно предположению об однородности, с любого участка единичной площади, расположенного на поверхности источника в единицу времени исходит одна и та же энергия, которую мы обозначим I 0 . Вне диска источника излучения нет. В силу его малых угловых размеров, мы можем полагать величину cos θ равной единице при θ < θ 0 . В этом случае (4.3) сводится к

.

Из (5.1) – (5.3) получаем явное выражение для I 0:

.

Теперь мы можем записать окончательную формулу для интенсивности как функции направления:

,

где I 0 даётся формулой (5.4).

Интенсивность и поток по‑разному описывают изменение поля излучения по мере удаления источника. Как следует из (5.2), поток уменьшается обратно пропорционально квадрату расстояния r . Амплитуда интенсивности I 0 , согласно (5.4), от расстояния не зависит, но уменьшается диапазон углов θ 0 , в котором интенсивность отлична от нуля.

Точечный источник излучения

Чтобы перейти к случаю точечного источника, надо радиус R устремить к нулю. В результате амплитуда I 0 из (5.4) становится неограниченно большой, а область, в которой интенсивность отлична от нуля, согласно (5.5), стягивается в точку. Таким образом, для описания точечного источника интенсивность оказывается неудобным инструментом, и ею следует пользоваться только для протяжённых источников.

Понятие потока лишено такого недостатка. В формулу (5.2) входит только одна характеристика источника - светимость L . Поток не зависит от радиуса объекта, поэтому он применим равно как для протяжённых, так и для точечных источников излучения.

Итак, в случае протяжённого источника мы можем измерить интенсивность и поток излучения, а в случае точечного - только поток.

1.6 Средняя интенсивность и плотность энергии

Средняя интенсивность J определяется как делённый на 4π интеграл от интенсивности по всем направлениям:

В случае изотропного поля излучения интенсивность как постоянную величину можно вынести за знак интеграла. Учитывая, что телесный угол полной сферы равен 4π, получим

Средняя интенсивность, в отличие от потока, не зависит от направления контрольной площадки, так как мы суммируем именно интенсивность, а не прошедшую через площадку энергию.

Важной характеристикой излучения является плотность энергии U . По своему смыслу она не зависит от направления. Но для её вычисления введём промежуточную величину U Ω -плотность энергии квантов летящих в направлении k внутри конуса с телесным углом ΔΩ. За время D t через площадку D S , расположенную перпендикулярно рассматриваемому направлению, проходит количество энергии, равное произведению UΩ на объём параллелепипеда площадью D S и высотой c D t , где с - скорость света. Воспользовавшись (3.4 ), получим

Проинтегрировав последнее выражение по всем направлениям, приходим к окончательному результату:

Таким образом, средняя интенсивность связана с плотностью энергии излучения.

1.7 Интегрирование по угловым переменным.

В разделе 1.5 мы нашли связь между интенсивностью и потоком, не выполняя вычислений интегралов по направлениям. Нам это удалось сделать в силу единственной причины: источник излучения предполагался настолько малым, что мы могли принять sinθ ≈ θ и cos θ ≈ 1. Но в случае источника произвольных размеров необходимо развить математический аппарат, позволяющий нам фактически выполнить интегрирование в (4.3) и других подобных выражениях.

Сферическая система координат

Рис. 6 .

Сферическая система координат.

Вычисление интеграла типа (4.3) требует введения системы координат на сфере. Отсчёт углов производится от большого круга PQ , называемого «нулевым меридианом», и от точки P на нём, называемой «полюсом». На рис.6 изображена сфера с центром в точке О, полюсом Р и нулевым меридианом. Большой круг E означает экватор. Плоскость экватора проходит через центр сферы перпендикулярно радиусу OP . Экватор пересекает нулевой меридиан в точке Q .

Пусть M - произвольная точка на сфере. Проведём через P и M меридиан (большой круг) и обозначим как R его точку пересечения с экватором, а θ - угол между OP и OM . Использование той же буквы, что и для угла между введёнными выше векторами k и n является традиционным и не приводит к путанице. Более того, в проводимых ниже расчётах мы будем выбирать систему отсчёта таким образом, что OP и OM действительно будут иметь смысл n и k . Плоскость экватора при этом совпадает с контрольной площадкой.Угол θ принимает значения из диапазона

Если точка M находится в верхней полусфере (как на рис.6), то θ<π/2, а если в нижней, то θ>π/2. Положению M на экваторе отвечает θ=π/2, на «северном» (P ) полюсе θ=0, а на «южном» θ=π.

Направление нулевого меридиана PM определяется углом φ, отсчитываемом в плоскости экватора между OQ и OT :

Итак, положение любой точки на сфере можно задать с помощью углов θ и φ, изменяющихся в диапазоне (7.1).

Элемент телесного угла

Выразим элемент телесного угла ΔΩ через интервалы линейных углов Δθ и Δφ. На рис.7 сферический прямоугольник ABCD образован пересечением двух меридианов сферы радиуса R с двумя параллелями - малыми кругами, параллельными экватору. Будем считать его размеры AB и BC настолько малыми, что по форме он близок к плоскому прямоугольнику, следовательно, его площадь ΔS приблизительно равна произведению прилежащих сторон a =AB и b = BC . Введём обозначение Δθ для угла между радиусами OA и OB . Длина дуги AB равна R ∙ Δθ . Обозначим посредством F точку пересечения малого круга BC и оси OP . Радиус R θ параллели BC равен

,

где Δφ - угол между FB и FC . Таким образом,

Устремив Δθ и Δφ к нулю и следуя определению телесного угла, окончательно получим

.

Во всех решаемых нами задачах мы ограничимся изотропными источниками. Их поле излучения обладает достаточно высокой степенью симметрии. По крайней мере, оно всегда цилиндрически симметрично, если полюс P сферической системы координат направлен в центр источника.Направление нулевого меридиана можно выбирать произвольно, так как при таком выборе системы координат интенсивность не зависит от азимутального угла j .Поэтому интегрирование по j в данном случае сводится просто к умножению на 2p . В дальнейшем мы будем считать, что система отсчёта выбрана именно таким образом. Следовательно, интенсивность зависит только от азимутального угла q , а при интегрировании по телесному углу справедливо равенство

.

Ниже мы будем всегда пользоваться простой формулой (7.3), предполагая выполненными условия её применимости.

1.8. Поток - мера анизотропии интенсивности

Излучение, как уже говорилось выше, называется изотропным, если его интенсивность не зависит от направления:

где I 0 - некоторое число.

Поток изотропного излучения через любую площадку равен нулю. Это утверждение станет очевидным, если мы выберем следующий способ суммирования энергии в (4.1). Для каждого направления сложим количество энергии, протекающей в положительную и отрицательную стороны. По предположению, они одинаковы, следовательно, их сумма равна нулю. Таким образом, мы разбили сумму (4.1) на нулевые слагаемые, значит, и полный поток равен нулю.

В равенстве нулю полного потока излучения можно убедиться и путём прямого вычисления по формуле (7.3). Вынося константу I 0 за знак интеграла, получим

.

Равенство нулю потока является необходимым, но не достаточным условием изотропии излучения. Рассмотрим, например, функцию

.

Она описывает анизотропное излучение. Однако поток равен нулю:

.

Это произошло в силу следующей причины. Мы подобрали направление контрольной площадки таким образом, что интенсивность в обоих направлениях вдоль вектора n одинакова:

.

При любом другом выборе n поток будет отличен от нуля. Следовательно, заключение о степени изотропии излучения можно сделать только после измерения потока при всех возможных направлениях контрольной площадки.

1.9 Граница изотропного источника и астрофизический поток

Рис. 8 . Граница изотропного источника.

Пусть источник представляет собой полупространство, ограниченное плоскостью G . Будем считать, что внутри источника поле излучения является изотропным, а входящее в него справа излучение отсутствует. Таким образом, справа от границы G излучение является анизотропным. Направим вектор n перпендикулярно границе G , как на рис.8, и запишем интенсивность как функцию угла θ:

.

Такая модель лежит в основе теории звёздных атмосфер. Вычисление потока проводим по формуле (7.3):

.

Формула, связывающая поток и амплитуду интенсивности для границы плоскопараллельной атмосферы

,
часто используется в другой форме. Ведём величину

Её принято называть «астрофизическим потоком». Формула (9.2) теперь принимает совсем простой вид:

.

Подчеркнём, что (9.2) и (9.4) ни в коем случае не есть связь между интенсивностью и потоком. Это следует хотя бы из того, что поток - это число, а интенсивность - функция угла. Равенство числа и функции возможно только в том случае, если функция сводится к постоянной величине. Но интенсивности, равной I 0 во всех направлениях, соответствует поток, равный нулю. Соотношения (9.2) и (9.4) между потоком и амплитудой анизотропной интенсивности справедливы именно для функции I (θ) из (9.1). Для краткости иногда пишут, что «астрофизический поток на границе излучающего тела равен интенсивности», подразумевая сказанное выше.

1.10 Спектральные характеристики излучения

Перейдём к изучению интенсивность как функции частоты. Для этого вернёмся к определению (3.3). Помимо всех указанных там характеристик, будем полагать, что проходящая через контрольную площадку энергия ΔE сосредоточена в некотором интервале частот Δν, настолько узком, что величина ΔE пропорциональна Δν. Коэффициент пропорциональности I ν называется интенсивностью, рассчитанной на единичный интервал частот:

Аналогично можно ввести I λ - интенсивность в единичном интервале длин волн:

В области

Максимума I n .

На достаточно большом спектральном интервале функции I λ и I ν зависят от частоты (или от длины волны) немонотонно: они возрастают в области малых частот, проходят через максимум и далее убывают. Нелинейность связи между частотой и длиной волны приводит к тому, что положения максимумов I λ и I ν различаются. Покажем это двумя способами, выбрав сначала более наглядный. На рис.9 диапазон частот вблизи максимума I ν разбит на равные промежутки Δν. В этой области спектра величина I ν почти не меняется от интервала к интервалу. Но в силу нелинейной связи (10.3) одинаковым частотным интервалам соответствуют уменьшающиеся с частотой промежутки длин волн Δλ. В самом деле, согласно (10.4) имеем:

Итак, уменьшение интервала длин волн в области максимума I ν сопровождается увеличением I λ . Следовательно, максимум I λ приходится на бόльшие частоты, чем максимум I ν .

Тот же самый результат можно получить путём дифференцирования (10.5):

Из соотношения (10.3) между частотой и длиной волны вытекают следующие неравенства:

.

Поэтому в точке максимума I ν , где

производная dI λ /d ν оказывается положительной. Следовательно, её максимум лежит на более высоких частотах.

Из (10.7) ясно видно, что различие частот максимумов I ν и I λ обусловлено именно нелинейностью функции ν(λ). При линейной связи второе слагаемое справа было бы равно нулю, что означает совпадение максимумов.


Звёздная величина

Звёздная величина определяется потоком излучения от источника F λ и спектральной чувствительностью приёмника W (λ):

.

Здесь A - некоторая константа, численное значение которой может быть выбрано любым. Напомним, что в силу (10.5) тот же результат получится, если в качестве переменной интегрирования выбрать частоту и заменить F λ на F n .

Отметим важное отличие звёздной величины от потока. Поток излучения через фиксированную площадку остаётся одним и тем же, каким бы прибором его не измеряли, в то время как звёздная величина зависит от спектральной чувствительности приёмника. Измерив звёздную величину одного и того же источника излучения с помощью разных приборов, мы получим, вообще говоря, разные результаты. Понятие звёздной величины не имеет смысла, если не указаны функция W (λ) и константа A , или, как принято говорить, не установлена фотометрическая система.

В настоящее время есть несколько фотометрических систем; причём самой распространённой из них является система UBV , или система Джонсона. Она состоит из нескольких фильтров, кривые реакции трёх из них приведены на рис.10. Звёздные величины в системе Джонсона определяются следующим образом

Здесь введено обозначение

Интегралы ΔB и ΔV вычисляются аналогично, только в подынтегральных функциях вместо кривой пропускания W U (λ) надо писать, соответственно, W B (λ) и W V (λ). Источник излучения в системе UBV характеризуется показателями цвета U - B и B - V :

Численные значения констант A в правой части (10.9) системы Джонсона выбраны таким образом, чтобы показатели цвета U - B и B - V оказались равными нулю для звёзд спектрального класса А0.

Рассмотрим точечный источник света S , излучающий во всех направлениях (см. рис. 30.3). Практически это источник света, размеры которого малы по сравнению с расстоянием до места, в котором изучается действие света. Выделим элементарный телесный угол . Телесный угол – это часть пространства, ограниченная прямыми, проведенными из одной точки (вершины) ко всем токам какой-либо замкнутой кривой. В нашем случае вершиной телесного угла является точечный источник света. Единицей измерения телесного угла является стерадиан (ср). Телесный угол в стерадианах определяется как отношение площади поверхности, вырезаемой телесным углом на поверхности сферы, к квадрату радиуса сферы. Таким образом, телесный угол является величиной безразмерной. Но для удобства пользования единице телесного угла присвоено название – стерадиан.

Обозначим поток излучения точечного источника в пределах телесного угла через . Отношение

называется силой излучения в данном направлении. Сила излучения численно равняется потоку излучения, приходящемуся на единичный телесный угол. Единица измерения силы излучения – Вт/ср. Если точечный источник является изотропным, т. е. поток излучения испускается источником равномерно во всех направлениях, то

где – полный поток излучения, испускаемый точечным источником во всех направлениях, т. е. в пределах полного телесного угла .

Сила света

Энергетическими фотометрическими величинами пользуются преимущественно для измерения характеристик лазерного излучения. Это связано с тем, что излучение многих лазеров лежит в инфракрасном диапазоне и не воспринимается глазом. Для характеристики света, даваемого осветительными приборами (лампы накаливания, люминесцентные лампы и пр.), а также солнечного света пользуются световыми фотометрическими величинами.



Энергетической фотометрической величине сила излучения соответствует световая фотометрическая величина – сила света . Основной фотометрической единицей системы СИ является единица измерения силы света кандела (кд). Кандела равняется силе света в заданном направлении источника, испускающего монохроматический свет частотой 540 ТГц (), сила излучения которого в этом направлении составляет .

Световой поток. Связь между энергетическими и световыми величинами

Определения фотометрических величин светового ряда и математические соотношения между ними аналогичны соответствующим величинам и соотношениям энергетического ряда. Поэтому световой поток , распространяющийся в пределах телесного угла , равняется . Единица измерения светового потока (люмен ). Для монохроматического света связь между энергетическими и световыми величинами дается формулами:

где – константа, называемая механическим эквивалентом света .

Световой поток, приходящийся на интервал длин волн от l до ,

, (30.8)

где j – функция распределения энергии по длинам волн (см. рис. 30.1). Тогда полный световой поток, переносимый всеми волнами спектра,

. (30.9)

Освещенность

Световой поток может исходить и от тел, которые сами не светятся, а отражают или рассеивают падающий на них свет. В таких случаях важно знать, какой световой поток падает на тот или иной участок поверхности тела. Для этого служит физическая величина, называемая освещенностью

. (30.10)

Освещенность численно равняется отношению полного светового потока , падающего на элемент поверхности, к площади этого элемента (см. рис. 30.4). Для равномерного светового потока

Единица измерения освещенности (люкс). Люкс равняется освещенности поверхности площадью 1 м 2 , когда на неё падает световой поток 1 лм. Аналогично определяется энергетическая освещенность

Единица энергетической освещенности .

Яркость

Для многих светотехнических расчетов некоторые источники можно рассматривать как точечные. Однако, в большинстве случаев источники света размещены достаточно близко, чтобы можно было различить их форму, иначе говоря, угловые размеры источника лежат в пределах способности глаза или оптического инструмента отличить протяженный предмет от точки. Для таких источников вводится физическая величина, называемая яркостью. Понятие яркости неприменимо к источникам, угловые размеры которых меньше разрешающей способности глаза или оптического инструмента (например, к звездам). Яркость характеризует излучение светящейся поверхности в определенном направлении. Источник может светиться собственным или отраженным светом.

Выделим световой поток , распространяющийся в определенном направлении в телесном угле от участка светящейся поверхности . Ось пучка образует с нормалью к поверхности угол (см. рис. 30.5).

Проекция участка светящейся поверхности на площадку, перпендикулярную к выбранному направлению,

(30.14)

называется видимой поверхностью элемента площадки источника (см. рис. 30.6).

Значение светового потока зависит от площади видимой поверхности, от угла и от телесного угла :

Коэффициент пропорциональности называется яркостью, Он зависит от оптических свойств излучающей поверхности и может быть разным для различных направлений. Из (30.5) яркость

. (30.16)

Таким образом, яркость определяется световым потоком, испускаемым в определенном направлении единицей видимой поверхности в единичный телесный угол. Или иначе: яркость в определенном направлении численно равняется силе света, создаваемой единицей площади видимой поверхности источника.

В общем случае яркость зависит от направления, но существуют источники света, для которых яркость от направления не зависит. Такие источники называются ламбертовскими или косинусными , потому что для них справедлив закон Ламберта: сила света в некотором направлении пропорциональна косинусу угла между нормалью к поверхности источника и этим направлением:

где – сила света в направлении нормали к поверхности, – угол между нормалью к поверхности и выделенным направлением. Для обеспечения одинаковой яркости во всех направлениях технические светильники снабжают оболочками из молочного стекла. К ламбертовським источникам, испускающим рассеянный свет, относятся поверхность, покрытая оксидом магния, неглазированный фарфор, чертежная бумага, свежевыпавший снег.

Единица яркости (нит). Приведем значения яркости некоторых источников света:

Луна – 2,5 кнт,

люминесцентная лампа – 7 кнт,

нить накала электрической лампочки – 5 Мнт,

поверхность Солнца – 1,5 Гнт.

Наименьшая яркость, воспринимаемая глазом человека, – около 1 мкнт, а яркость, превышающая 100 кнт, вызывает болевое ощущение в глазу и может повредить зрение. Яркость листа белой бумаги при чтении и письме должна быть не меньшей 10 нт.

Аналогично определяется энергетическая яркость

. (30.18)

Единица измерения энергетической яркости .

Светимость

Рассмотрим источник света конечных размеров (светящий собственным или отраженным светом). Светимостью источника называется поверхностная плотность светового потока, испускаемого поверхностью во всех направлениях в пределах телесного угла . Если элемент поверхности испускает световой поток , то

Для равномерной светимости можно записать:

Единица измерения светимости .

Аналогично определяется энергетическая светимость

Единица энергетической светимости .

Законы освещенности

Фотометрические измерения базируются на двух законах освещенности.

1. Освещенность поверхности точечным источником света изменяется обратно пропорционально квадрату расстояния источника от освещаемой поверхности. Рассмотрим точечный источник (см. рис. 30.7), испускающий свет во всех направлениях. Опишем вокруг источника концентрические с источником сферы радиусами и . Очевидно, что световой поток через участки поверхностей и одинаков, так как он распространяется в одном телесном угле . Тогда освещенность участков и составит, соответственно, и . Выразив элементы сферических поверхностей через телесный угол , получаем:

. (30.22)

2. Освещенность, создаваемая на элементарном участке поверхности световым потоком, падающим на него под некоторым углом, пропорциональна косинусу угла между направлением лучей и нормалью к поверхности. Рассмотрим параллельный пучок лучей (см. рис. 29.8), падающих на участки поверхностей и . На поверхность лучи падают по нормали, а на поверхность – под углом к нормали. Через оба участка проходит одинаковый световой поток . Освещенность первого и второго участков составит, соответственно, и . Но , поэтому,

Объединив эти два закона, можно сформулировать основной закон освещенности : освещенность поверхности точечным источником прямо пропорциональна силе света источника, косинусу угла падения лучей и обратно пропорциональна квадрату расстояния от источника до поверхности

. (30.24)

Расчеты по этой формуле дают достаточно точный результат, если линейные размеры источника не превышают 1/10 расстояния до освещаемой поверхности. Если источником является диск диаметром 50 см, то в точке на нормали к центру диска относительная погрешность в расчетах для расстояния 50 см достигает 25%, для расстояния 2 м она не превышает 1,5%, а для расстояния 5 м уменьшается до 0,25%.

Если источников несколько, то результирующая освещенность равняется сумме освещенностей, создаваемых каждым отдельным источником. Если источник нельзя рассматривать как точечный, его поверхность делят на элементарные участки и, определив освещенность, создаваемую каждым из них, по закону , интегрируют затем по всей поверхности источника.

Существуют нормы освещенности для рабочих мест и помещений. На столах учебных помещений освещенность должна быть не меньше 150 лк, для чтения книг нужна освещенность , а для черчения – 200 лк. Для коридоров достаточной считается освещенность , для улиц – .

Важнейший для всего живого на Земле источник света – Солнце создает на верхней границе атмосферы энергетическую освещенность, называемую солнечной постоянной – и освещенность 137 клк. Энергетическая освещенность, создаваемая на поверхности Земли прямыми лучами летом в два раза меньше. Освещенность, создаваемая прямыми солнечными лучами в полдень на средней широте местности, составляет 100 клк. Смена времен года на Земле объясняется изменением угла падения солнечных лучей на её поверхность. В северном полушарии наибольшим угол падения лучей на поверхность Земли бывает зимой, а наименьшим – летом. Освещенность на открытом месте при облачном небе составляет 1000 лк. Освещенность в светлой комнате вблизи окна – 100 лк. Для сравнения приведем освещенность от полной Луны – 0,2 лк и от ночного неба в безлунную ночь – 0,3 млк. Расстояние от Солнца до Земли составляет 150 миллионов километров, но благодаря тому, что сила солнечного света равняется , освещенность, создаваемая Солнцем на поверхности Земли, так велика.

Для источников, сила света которых зависит от направления, иногда пользуются средней сферической силой света , где – полный световой поток лампы. Отношение светового потока электрической лампы к её электрической мощности называют световой отдачей лампы: . Например, лампа накаливания мощностью 100 Вт имеет среднюю сферическую силу света около 100 кд. Полный световой поток такой лампы 4×3,14×100 кд = 1260 лм, а световая отдача равняется 12,6 лм/Вт. Световая отдача ламп дневного света в несколько раз больше, чем у ламп накаливания, и достигает 80 лм/Вт. К тому же срок службы люминесцентных ламп превышает 10 тыс. часов, тогда как для ламп накаливания он меньше 1000 часов.

За миллионы лет эволюции человеческий глаз приспособился к солнечному свету, и поэтому желательно, чтобы спектральный состав света лампы был как можно ближе к спектральному составу солнечного света. Этому требованию в наибольшей степени отвечают люминесцентные лампы. Именно поэтому их называют также лампами дневного света. Яркость нити накала электрической лампочки вызывает болевое ощущение в глазу. Для предупреждения этого используют плафоны из молочного стекла и абажуры.

При всех своих преимуществах люминесцентные лампы имеют и ряд недостатков: сложность схемы включения, пульсация светового потока (с частотою 100 Гц), невозможность запуска на морозе (вследствие конденсации ртути), гудение дросселя (вследствие магнитострикции), экологическая опасность (ртуть из разбитой лампы отравляет окружающую среду).

Для того чтобы спектральный состав излучения лампы накаливания был таким, как у Солнца, нужно было бы раскалить её нить до температуры поверхности Солнца, т. е. до 6200 К. но вольфрам – наиболее тугоплавкий из металлов – плавится уже при 3660 К.

Температура, близкая к температуре поверхности Солнца, достигается в дуговом разряде в парах ртути или в ксеноне под давлением около 15 атм. Силу света дуговой лампы можно довести до 10 Мкд. Такие лампы используются в кинопроекторах и прожекторах. Лампы, заполненные парами натрия, отличаются тем, что в них значительная часть излучения (около трети) сконцентрирована в видимой области спектра (две интенсивных желтых линии 589,0 нм и 589,6 нм). Хотя излучение натриевых ламп сильно отличается от привычного для человеческого глаза солнечного света, они используются для освещения автострад, так как их преимуществом является высокая световая отдача, достигающая 140 лм/Вт.

Фотометры

Приборы, предназначенные для измерения силы света или световых потоков разных источников, называются фотометрами . По принципу регистрации фотометры бывают двух типов: субъективные (визуальные) и объективные.

Принцип действия субъективного фотометра основывается на способности глаза с достаточно большой точностью фиксировать одинаковость освещенностей (точнее, яркостей) двух смежных полей при условии, что они освещены светом одинакового цвета.

Фотометры для сравнения двух источников устроены так, что роль глаза сводится к установлению одинаковости освещенностей двух смежных полей, освещаемых сравниваемыми источниками (см. рис. 30.9). Глаз наблюдателя рассматривает белую трехгранную призму , установленную посредине зачерненной внутри трубы. Призма освещается источниками и . Изменяя расстояния и от источников до призмы, можно уравнять освещенности поверхностей и . Тогда , где и – силы света, соответственно, источников и . Если сила света одного из источников известна (эталонный источник), то можно определить силу света другого источника в выбранном направлении. Измерив силу света источника в разных направлениях, находят суммарный световой поток , освещенность и т. д. Эталонный источник представляет собой лампу накаливания, сила света которой известна.

Невозможность в очень широких пределах изменять отношение расстояний вынуждает использовать другие способы ослабления потока, такие как поглощение света фильтром переменной толщины – клином (см. рис.30.10).

Одной из разновидностей визуального метода фотометрии является метод гашения, основывающийся на использовании постоянства пороговой чувствительности глаза для каждого отдельного наблюдателя. Пороговой чувствительностью глаза называют наименьшую яркость (около 1 мкнт), на которую реагирует человеческий глаз. Определив предварительно порог чувствительности глаза, каким-нибудь способом (например, калиброванным поглощающим клином) ослабляют яркость исследуемого источника до порога чувствительности. Зная, во сколько раз ослаблена яркость, можно определить абсолютную яркость источника без эталонного источника. Этот метод отличается чрезвычайно высокой чувствительностью.

Непосредственное измерение полного светового потока источника осуществляется в интегральных фотометрах, например, в сферическом фотометре (см. рис. 30.11). Исследуемый источник подвешивается во внутренней полости побеленной внутри матовой поверхностью сферы . В результате многократных отражений света внутри сферы создается освещенность, определяемая средней силой света источника. Освещенность отверстия , защищенного от прямых лучей экраном , пропорциональна световому потоку: , где – константа прибора, зависящая от его размеров и окраски. Отверстие покрыто молочным стеклом. Яркость молочного стекла также пропорциональна световому потоку . Её измеряют описанным выше фотометром или другим способом. В технике применяются автоматизированные сферические фотометры с фотоэлементами, например для контроля ламп накаливания на конвейере электролампового завода.

Объективные методы фотометрии разделяются на фотографические и электрические. Фотографические методы основываются на том, что почернение светочувствительного слоя в широких пределах пропорционально плотности световой энергии, упавшей на слой во время его освещения, т. е. экспозиции (см. табл. 30.1). Этим методом определяют относительную интенсивность двух близко расположенных спектральных линий в одном спектре или сравнивают интенсивности одной и той же линии в двух смежных (снятых на одну фотопластинку) спектрах по почернению определенных участков фотопластинки.

Визуальные и фотографические методы постепенно вытесняются электрическими. Преимуществом последних является то, что в них достаточно просто осуществляется автоматическая регистрация и обработка результатов, вплоть до использования компьютера. Электрические фотометры дают возможность измерять интенсивность излучения и за пределами видимого спектра.


ГЛАВА 31. ТЕПЛОВОЕ ИЗЛУЧЕНИЕ

31.1. Характеристики теплового излучения

Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым (температурным) излучением . Тепловое излучение, являясь самым распространенным в природе, совершается за счет энергии теплового движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких - преимущественно длинные (инфракрасные).

Количественной характеристикой теплового излучения служит спектральная плотность энергетической светимости (излучательности) тела - мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

R v,T = , (31.1)

где - энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частотот v доv+dv.

Единица спектральной плотности энергетической светимости R v,T - джоуль на метр в квадрате (Дж/м 2).

Записанную формулу можно представить в виде функции длины волны:

= R v,T dv = R λ ,T dλ. (31.2)

Так как с =λvυ , то dλ/ dv = - с/ v 2 = - λ 2 ,

где знак минус указывает на то, что с возрастанием одной из величин (λ или v ) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать.

Таким образом,

R υ,T =R λ,T . (31.3)

С помощью формулы (31.3) можно перейти от R v,T к R λ,T и наоборот.

Зная спектральную плотность энергетической светимости, можно вычислить интегральную энергетическую светимость (интегральную излучательность ), просуммировав по всем частотам:

R T = . (31.4)

Способность тел поглощать падающее на них излучение характеризуется спектральной поглощательной способностью

А v,T = (31.5)

показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от v доv+dv , поглощается телом.

Спектральная поглощательная способность - величина безразмерная. Величины R v,T и А v,T зависят от природы тела, его термодинамической температуры и при этом различаются для излучений с различными частотами. Поэтому эти величины относят к определенным Т и v (вернее, к достаточно узкому интервалу частот от v доv+dv ).

Тело, способное поглощать полностью при любой температуре все падающее на него излучение любой частоты, называется черным. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице (А ч v,T = 1). Абсолютно черных тел в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.

Идеальной моделью черного тела является замкнутая полость с небольшим отверстием, внутренняя поверхность которой зачернена (рис.31.1). Луч света, попавший внутрь Рис.31.1.

такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0,1 диаметра полости, падающее излучение всех частот полностью поглощается. Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен.

Наряду с понятием черного тела используют понятие серого тела - тела, поглощательная способность которого меньше единицы, но одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела. Таким образом, для серого тела А с v,T < 1.

Закон Кирхгофа

Закон Кирхгофа : отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры:

= r v,T (31.6)

Для черного тела А ч v,T =1, поэтому из закона Кирхгофа вытекает, что R v,T для черного тела равна r v,T . Таким образом, универсальная функция Кирхгофа r v,T есть не что иное, как спектральная плотность энергетической светимости черного тела. Следовательно, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральной поглощательной способности равно спектральной плотности энергетической светимости черного тела при той же температуре и частоте.

Из закона Кирхгофа следует, что спектральная плотность энергетической светимости любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при тех же значеннях Т и v ), так как А v,T < 1, и поэтому R v,T < r v υ,T . Кроме того, из (31.6) вытекает, что если тело при данной температуре Т не поглощает электромагнитные волны в интервале частот от v , до v+dv , то оно их в этом интервале частот при температуре Т и не излучает, так как при А v,T =0, R v,T =0

Используя закон Кирхгофа, выражение для интегральной энергетической светимости черного тела (31.4) можно записать в виде

R T = . (31.7)

Для серого тела R с T = А T = А T R е , (31.8)

где R е = -энергетическая светимость черного тела.

Закон Кирхгофа описывает только тепловое излучение, являясь настолько характерным для него, что может служить надежным критерием для определения природы излучения. Излучение, которое закону Кирхгофа не подчиняется, не является тепловым.

Для практических целей из закона Кирхгофа следует, что тела, обладающие темной и шероховатой поверхностью, имеют коэффициент поглощения, близкий к 1. По этой причине зимой предпочитают носить темную одежду, а летом – светлую. Но тела, имеющие коэффициент поглощения, близкий к единице, обладают и соответственно большей энергетической светимостью. Если взять два одинаковых сосуда, один с темной, шероховатой поверхностью, а стенки другого будут светлыми и блестящими, и налить в них одинаковое количество кипящей воды, то быстрее остынет первый сосуд.

31.3. Законы Стефана - Больцмана и смещения Вина

Из закона Кирхгофа следует, что спектральная плотность энергетической светимости черного тела является универсальной функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения.

Стефан, анализируя экспериментальные данные, и Больцман, применяя термодинамический метод, решили эту задачу лишь частично, установив зависимость энергетической светимости R е от температуры. Согласно закону Стефана - Больцмана ,

R е = σ Т 4 , (31.9)

Т. е. энергетическая светимость черного тела пропорциональна четвертей степени его термодинамической температуры; σ - постоянная Стефана - Больцмана : ее экспериментальное значение равно 5,67×10 -8 Вт/(м 2 ×К 4).

Закон Стефана - Больцмана, определяя зависимость R е от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции r λ,T от длины волны λ (r λ,T = ´ ´ r ν,T ) при различных температурах (рис.30.2) Рис.31.2.

следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости r λ,T от λ и осью абсцисс, пропорциональна энергетической светимости R е черного тела и, следовательно, по закону Стефана - Больцмана, четвертей степени температуры.

В. Вин, опираясь на законы термо- и электродинамики, установил зависимость длины волны λ max , соответствующей максимуму функции r λ,T , от температуры Т. Согласно закону смещения Вина ,

λ max =b/Т , (31.10)

т. е. длина волны λ max соответствующая максимальному значению спектральной
плотности энергетической светимости r λ,T черного тела, обратно пропорциональна его термодинамической температуре. b - постоянная Вина ее экспериментальное значение равно 2,9×10 -3 м ×К.

Выражение (31.10) называют законом смещения Вина, оно показывает смещение положения максимума функции r λ,T по мере возрастания температуры в область коротких длин волн. Закон Вина объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла).

Формулы Рэлея-Джинса и Планка

Из рассмотрения законов Стефана-Больцмана и Вина следует, что термодинамический подход к решению задачи о нахождении универсальной функции Кирхгофа не дал желаемых результатов.

Строгая попытка теоретического вывода зависимости r λ,T принадлежит Рэлею и Джинсу, которые применили к тепловому излучению методы статистической физики, воспользовшим классическим законом равномерного распределения энергии по степеням свободы.

Формула Рэлея-Джинса для спектральной плотности энергетической светимости черного тела имеет вид:

r ν , T = <Е > = kT , (31.11)

где <Е> = kT – средняя энергия осциллятора с собственной частотой ν .

Как показал опыт выражение (31.11) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот эта формула расходится с экспериментом, а также с законом смещения Вина. И получить закон Стефана–Больцмана из этой формулы приводит к абсурду. Этот результат получил название «ультрафиолетовой катастрофы». Т.е. в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.

В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина):

r ν, T =Сν 3 А е –Аν/Т , (31.12)

где r ν, T - спектральная плотность энергетической светимости черного тела, С и А – постоянные величины. В современных обозначениях с использованием

постоянной Планка закон излучения Вина может быть записан в виде

r ν, T = . (31.13)

Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено Планком. Согласно выдвинутой квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями – квантами, причем энергия кванта пропорциональна частоте колебаний

Е 0 =hν = hс/λ ,

где h =6,625×10 -34 Дж×с – постоянная Планка.Так как излучение испускается порциями, то энергия осциллятора Е может принимать лишь определенные дискретные значения, кратные целому числу элементарных порций энергии Е 0

Е = nhν (n = 0,1,2…).

В данном случае среднюю энергию <Е > осциллятора нельзя принимать равной kT .

В приближении, что распределение осцилляторов по возможным дискретным состояниям подчиняется распределению Больцмана, средняя энергия осциллятора равна

<Е > = , (31.14)

При измерении угла между двумя лучами на плоскости удобно рассматривать данный угол как центральный угол некоторой дуги окружности единичного радиуса. Тогда длина этой дуги и дает радианную меру центрального угла. Полный угол получает при этом меру, равную . Нечто сходное приходится проделывать, когда мы хотим ввести меру объемного, телесного угла, т. е. меру, показывающую «широту раствора» конической поверхности (рис. 414), долю пространства, которое попадает внутрь такой поверхности, по сравнению с полным пространством (полным телесным углом).

При этом совсем не обязательно данный угол заключать в круговой конус: это может быть любой конус, или угол может быть многогранным (рис. 415). Для введения строгого понятия телесного угла возьмем сферу единичного радиуса с центром в вершине угла (рис. 416).

За меру телесного угла принимается площадь части поверхности сферы, лежащей внутри данного угла. Полный телесный угол измеряется всей площадью поверхности сферы, т. е. за его меру принимается Единицей телесного угла служит стерадиан.

Задача. Найти телесный угол, ограниченный конусом вращения с углом при вершине осевого сечения, равным 0 (рис. 417).

Решение. Проведем сферу единичного радиуса с центром в вершине конуса. Задача сводится к вычислению площади шапочки этой поверхности, лежащей внутри конической поверхности. Находим высоту стрелки соответствующего сегмента сферы:

Площадь искомой поверхности равна . Итак, телесный угол при вершине конуса измеряется числом

Если , то формула дает меру внешнего телесного угла. При получим полный телесный угол (внешний угол по отношению к конусу, превратившемуся в луч).

Упражнения

1. Найти объем и поверхность шара, описанного около правильного тетраэдра с ребром, равным и.

2. Отношение объема шара к объему вписанного в него цилиндра равно 16/9. Определить угол между диагональю осевого сечения цилиндра и его осью.

3. Три параллельные плоскости рассекают диаметр шара на четыре равные части. Найти объемы частей шара, на которые он разбит этими плоскостями.

4. Каким должен быть угол наклона образующей к основанию конуса, чтобы площадь поверхности вписанного в него шара делилась окружностью, по которой шар касается конуса, в отношении

Выходящих из данной точки (вершины угла) и пересекающих некоторую поверхность (которая называется поверхностью, стягивающей данный телесный угол). Частными случаями телесного угла являются трёхгранные и многогранные углы . Границей телесного угла является некоторая коническая поверхность . Обозначается телесный угол обычно буквой Ω .

Телесный угол измеряется отношением площади той части сферы с центром в вершине угла, которая вырезается этим телесным углом, к квадрату радиуса сферы:

\Omega\,=\,{S\over R^2}.

Телесные углы измеряются отвлечёнными (безразмерными) величинами. Единицей измерения телесного угла в системе СИ является стерадиан , равный телесному углу, вырезающему из сферы радиуса r поверхность с площадью r 2 . Полная сфера образует телесный угол, равный 4π стерадиан (полный телесный угол ), для вершины, расположенной внутри сферы, в частности, для центра сферы; таким же является телесный угол, под которым видна любая замкнутая поверхность из точки, полностью охватываемой этой поверхностью, но не принадлежащей ей. Кроме стерадианов, телесный угол может измеряться в квадратных градусах, квадратных минутах и квадратных секундах, а также в долях полного телесного угла.

Телесный угол имеет нулевую физическую размерность .

Двойственный телесный угол к данному телесному углу Ω определяется как угол, состоящий из лучей, образующих с любым лучом угла Ω неострый угол.

Коэффициенты пересчёта единиц телесного угла.

\Omega Стерадиан Кв. градус Кв. минута Кв. секунда Полный угол
1 стерадиан = 1 (180/π)² ≈
≈ 3282,806 кв. градусов
(180×60/π)² ≈
≈ 1,1818103·10 7 кв. минут
(180×60×60/π)² ≈
≈ 4,254517·10 10 кв. секунд
1/4π ≈
≈ 0,07957747 полного угла
1 кв. градус = (π/180)² ≈
≈ 3,0461742·10 −4 стерадиан
1 60² =
= 3600 кв. минут
(60×60)² =
= 12 960 000 кв. секунд
π/(2×180)² ≈
≈ 2,424068·10 −5 полного угла
1 кв. минута = (π/(180×60))² ≈
≈ 8,461595·10 −8 стерадиан
1/60² ≈
≈ 2,7777778·10 −4 кв. градусов
1 60² =
= 3600 кв. секунд
π/(2×180×60)² ≈
≈ 6,73352335·10 −9 полного угла
1 кв. секунда = (π/(180×60×60))² ≈
≈ 2,35044305·10 −11 стерадиан
1/(60×60)² ≈
≈ 7,71604938·10 −8 кв. градусов
1/60² ≈
≈ 2,7777778·10 −4 кв. минут
1 π/(2×180×60×60)² ≈
≈ 1,87042315·10 −12 полного угла
Полный угол = 4π ≈
≈ 12,5663706 стерадиан
(2×180)²/π ≈
≈ 41252,96125 кв. градусов
(2×180×60)²/π ≈
≈ 1,48511066·10 8 кв. минут
(2×180×60×60)²/π ≈
≈ 5,34638378·10 11 кв. секунд
1

Вычисление телесных углов

Для произвольной стягивающей поверхности S телесный угол Ω , под которым она видна из начала координат, равен

\Omega = \int\limits_S d\Omega

= \iint\limits_S \sin\vartheta \, d\varphi \, d\vartheta = \int\limits_S \frac{(\mathbf{r}/r)\cdot \mathbf{n}dS}{r^2},

где r, \vartheta, \varphi - сферические координаты элемента поверхности dS, \mathbf{r} - его радиус-вектор, \mathbf{n} - единичный вектор, нормальный к dS.

Свойства телесных углов

  1. Полный телесный угол (полная сфера) равен 4π стерадиан.
  2. Сумма всех телесных углов, двойственных к внутренним телесным углам выпуклого многогранника , равна полному углу.

Величины некоторых телесных углов

  • Треугольник с координатами вершин \mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3 виден из начала координат под телесным углом

\Omega = 2\, \mathrm{arctg}\, \frac{(\mathbf{r}_1\mathbf{r}_2\mathbf{r}_3)}{r_1r_2r_3 + (\mathbf{r}_1\cdot\mathbf{r}_2)r_3 + (\mathbf{r}_2\cdot\mathbf{r}_3)r_1 + (\mathbf{r}_3\cdot\mathbf{r}_1)r_2},

где (\mathbf{r}_1\mathbf{r}_2\mathbf{r}_3) - смешанное произведение данных векторов, (\mathbf{r}_i\cdot\mathbf{r}_j) - скалярные произведения соответствующих векторов, полужирным шрифтом обозначены векторы, нормальным шрифтом - их длины. Используя эту формулу, можно вычислять телесные углы, стянутые произвольными многоугольниками с известными координатами вершин (для этого достаточно разбить многоугольник на непересекающиеся треугольники).

  • Телесный угол при вершине прямого кругового конуса с углом раствора α равен \Omega = 2\pi (1 - \cos \frac{\alpha}{2}). Если известны радиус основания R и высота H конуса, то \Omega = 2\pi (1 - \frac{H}{\sqrt{R^2+H^2}}). Когда угол раствора конуса мал, \Omega \approx \frac{\pi \alpha^2}{4} (\alpha выражено в радианах), или \Omega \approx 0,000239 \alpha^2 (\alpha выражено в градусах). Так, телесный угол, под которым с Земли видны Луна и Солнце (их угловой диаметр примерно равен 0,5°), составляет около 6·10 −5 стерадиан, или ≈0,0005 % площади небесной сферы (то есть полного телесного угла).
  • Телесный угол двугранного угла в стерадианах равен удвоенному значению двугранного угла в радианах.
  • Телесный угол трёхгранного угла выражается по теореме Люилье через его плоские углы \theta_a, \theta_b, \theta_c при вершине, как:
\Omega = 4\,\operatorname{arctg}\sqrt{ \operatorname{tg} \left(\frac{\theta_s}{2}\right) \operatorname{tg} \left(\frac{\theta_s - \theta_a}{2}\right) \operatorname{tg} \left(\frac{\theta_s - \theta_b}{2}\right) \operatorname{tg} \left(\frac{\theta_s - \theta_c}{2}\right)} , где \theta_s = \frac{\theta_a + \theta_b + \theta_c}{2} - полупериметр. Через двугранные углы \alpha, \beta, \gamma телесный угол выражается как: \Omega = \alpha + \beta + \gamma - \pi.
  • Телесный угол при вершине куба (или любого другого прямоугольного параллелепипеда) равен \frac{1}{8} полного телесного угла, или \frac{\pi}{2} стерадиан.
  • Телесный угол, под которым видна грань правильного N -гранника из его центра, равна \frac{1}{N} полного телесного угла, или \frac{4\pi}{N} стерадиан.

См. также

Напишите отзыв о статье "Телесный угол"

Отрывок, характеризующий Телесный угол

«Le cosaque ignorant la compagnie dans laquelle il se trouvait, car la simplicite de Napoleon n"avait rien qui put reveler a une imagination orientale la presence d"un souverain, s"entretint avec la plus extreme familiarite des affaires de la guerre actuelle», [Казак, не зная того общества, в котором он находился, потому что простота Наполеона не имела ничего такого, что бы могло открыть для восточного воображения присутствие государя, разговаривал с чрезвычайной фамильярностью об обстоятельствах настоящей войны.] – говорит Тьер, рассказывая этот эпизод. Действительно, Лаврушка, напившийся пьяным и оставивший барина без обеда, был высечен накануне и отправлен в деревню за курами, где он увлекся мародерством и был взят в плен французами. Лаврушка был один из тех грубых, наглых лакеев, видавших всякие виды, которые считают долгом все делать с подлостью и хитростью, которые готовы сослужить всякую службу своему барину и которые хитро угадывают барские дурные мысли, в особенности тщеславие и мелочность.
Попав в общество Наполеона, которого личность он очень хорошо и легко признал. Лаврушка нисколько не смутился и только старался от всей души заслужить новым господам.
Он очень хорошо знал, что это сам Наполеон, и присутствие Наполеона не могло смутить его больше, чем присутствие Ростова или вахмистра с розгами, потому что не было ничего у него, чего бы не мог лишить его ни вахмистр, ни Наполеон.
Он врал все, что толковалось между денщиками. Многое из этого была правда. Но когда Наполеон спросил его, как же думают русские, победят они Бонапарта или нет, Лаврушка прищурился и задумался.
Он увидал тут тонкую хитрость, как всегда во всем видят хитрость люди, подобные Лаврушке, насупился и помолчал.
– Оно значит: коли быть сраженью, – сказал он задумчиво, – и в скорости, так это так точно. Ну, а коли пройдет три дня апосля того самого числа, тогда, значит, это самое сражение в оттяжку пойдет.
Наполеону перевели это так: «Si la bataille est donnee avant trois jours, les Francais la gagneraient, mais que si elle serait donnee plus tard, Dieu seul sait ce qui en arrivrait», [«Ежели сражение произойдет прежде трех дней, то французы выиграют его, но ежели после трех дней, то бог знает что случится».] – улыбаясь передал Lelorgne d"Ideville. Наполеон не улыбнулся, хотя он, видимо, был в самом веселом расположении духа, и велел повторить себе эти слова.
Лаврушка заметил это и, чтобы развеселить его, сказал, притворяясь, что не знает, кто он.
– Знаем, у вас есть Бонапарт, он всех в мире побил, ну да об нас другая статья… – сказал он, сам не зная, как и отчего под конец проскочил в его словах хвастливый патриотизм. Переводчик передал эти слова Наполеону без окончания, и Бонапарт улыбнулся. «Le jeune Cosaque fit sourire son puissant interlocuteur», [Молодой казак заставил улыбнуться своего могущественного собеседника.] – говорит Тьер. Проехав несколько шагов молча, Наполеон обратился к Бертье и сказал, что он хочет испытать действие, которое произведет sur cet enfant du Don [на это дитя Дона] известие о том, что тот человек, с которым говорит этот enfant du Don, есть сам император, тот самый император, который написал на пирамидах бессмертно победоносное имя.
Известие было передано.
Лаврушка (поняв, что это делалось, чтобы озадачить его, и что Наполеон думает, что он испугается), чтобы угодить новым господам, тотчас же притворился изумленным, ошеломленным, выпучил глаза и сделал такое же лицо, которое ему привычно было, когда его водили сечь. «A peine l"interprete de Napoleon, – говорит Тьер, – avait il parle, que le Cosaque, saisi d"une sorte d"ebahissement, no profera plus une parole et marcha les yeux constamment attaches sur ce conquerant, dont le nom avait penetre jusqu"a lui, a travers les steppes de l"Orient. Toute sa loquacite s"etait subitement arretee, pour faire place a un sentiment d"admiration naive et silencieuse. Napoleon, apres l"avoir recompense, lui fit donner la liberte, comme a un oiseau qu"on rend aux champs qui l"ont vu naitre». [Едва переводчик Наполеона сказал это казаку, как казак, охваченный каким то остолбенением, не произнес более ни одного слова и продолжал ехать, не спуская глаз с завоевателя, имя которого достигло до него через восточные степи. Вся его разговорчивость вдруг прекратилась и заменилась наивным и молчаливым чувством восторга. Наполеон, наградив казака, приказал дать ему свободу, как птице, которую возвращают ее родным полям.]
Наполеон поехал дальше, мечтая о той Moscou, которая так занимала его воображение, a l"oiseau qu"on rendit aux champs qui l"on vu naitre [птица, возвращенная родным полям] поскакал на аванпосты, придумывая вперед все то, чего не было и что он будет рассказывать у своих. Того же, что действительно с ним было, он не хотел рассказывать именно потому, что это казалось ему недостойным рассказа. Он выехал к казакам, расспросил, где был полк, состоявший в отряде Платова, и к вечеру же нашел своего барина Николая Ростова, стоявшего в Янкове и только что севшего верхом, чтобы с Ильиным сделать прогулку по окрестным деревням. Он дал другую лошадь Лаврушке и взял его с собой.

Княжна Марья не была в Москве и вне опасности, как думал князь Андрей.
После возвращения Алпатыча из Смоленска старый князь как бы вдруг опомнился от сна. Он велел собрать из деревень ополченцев, вооружить их и написал главнокомандующему письмо, в котором извещал его о принятом им намерении оставаться в Лысых Горах до последней крайности, защищаться, предоставляя на его усмотрение принять или не принять меры для защиты Лысых Гор, в которых будет взят в плен или убит один из старейших русских генералов, и объявил домашним, что он остается в Лысых Горах.