Бунин

Реферат: Круговорот воды. Глобальные круговороты углерода и воды

Тема № 5. Глобальные круговороты основных биогенных веществ

Вопросы:

1. Глобальный и местный круговорот воды.

2. Круговорот углерода. Изменение баланса углекислого газа во времени: многолетние тренды и сезонные колебания.

3. Круговорот кислорода.

4. Круговорот азота. Роль микроорганизмов в поддержании круговорота азота: аммонифицирующие бактерии, нитрифицирующие бактерии.

5. Круговорот фосфора, его малая замкнутость. Фосфор как лимитирующий фактор.

6. Круговорот серы. Роль микроорганизмов в поддержании круговорота серы. Загрязнение водоемов сероводородом.

Цель: формирование представлений о трансграничном переносе основных биогенных веществ (вода, углерод, кислород, азот, сера, фосфор).

Солнечная энергия на Земле вызывает два круговорота веществ: большой, или геологический, наиболее ярко проявляющийся в круговороте воды и циркуляции атмосферы, и малый, биологический (биотический), развивающийся на основе большого и состоящий в непрерывном, циклическом, но неравномерном во времени и пространстве, и сопровождающийся более или менее значительными потерями закономерного перераспределения вещества, энергии и информации в пределах экологических систем различного уровня организации.

Самый значительный по переносимым массам и по затратам энергии круговорот на Земле – это планетарный гидрологический цикл – круговорот воды.

В жидком, твердом и парообразном состояниях вода присутствует во всех трех главных составных частях биосферы: атмосфере, гидросфере, литосфере. Все воды объединяются общим понятием «гидросферы». Составные части гидросферы связаны между собой постоянным обменом и взаимодействием. Вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образует малый круговорот. Когда водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. При этом часть осадков испаряется и поступает обратно в атмосферу, другая – питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоками, завершая тем самым большой круговорот.

Под биотическим (биологическим) круговоротом понимается циркуляция веществ между почвой, растениями, животными и микроорганизмами. По определению Н. П. Ремезова, Л. Е. Родина и Н. И. Базилевич, биотический (биологический) круговорот – это поступление химических элементов из почвы, воды и атмосферы в живые организмы, превращение в них поступающих элементов в новые сложные соединения и возвращение их обратно в процессе жизнедеятельности с ежегодным опадом части органического вещества или с полностью отмершими организмами, входящими в состав экосистемы.



2. Круговорот углерода. Изменение баланса углекислого газа во времени: многолетние тренды и сезонные колебания

Миграция СО 2 в биосфере протекает двумя путями.

Первый путь заключается в поглощении его в процессе фотосинтеза с образованием глюкозы и других органических веществ, из которых построены все растительные ткани. В дальнейшем они переносятся по пищевым цепям и образуют ткани всех остальных живых существ экосистемы. Следует заметить, что вероятность отдельно взятого углерода «побывать» в течение одного цикла в составе многих организмов мала, потому что при каждом переходе с одного трофического уровня на другой велика возможность, что содержащая его органическая молекула будет расщеплена в процессе клеточного дыхания для получения энергии. Атомы углерода при этом вновь поступают в окружающую среду в составе углекислого газа, таким образом, завершив один цикл и приготовившись начать следующий. В пределах суши, где имеется растительность, углекислый газ атмосферы в процессе фотосинтеза поглощается в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием СО 2 .

Атомы углерода возвращаются в атмосферу и при сжигании органического вещества. Важная и интересная особенность круговорота углерода состоит в том, что в далекие геологические эпохи, сотни миллионов лет назад, значительная часть органического вещества, созданного в процессах фотосинтеза, не использовалась ни консументами, ни редуцентами, а накапливалась в литосфере в виде ископаемого топлива: нефти, угля, горючих сланцев, торфа и др. Это ископаемое топливо добывается в огромных количествах для обеспечения энергетических потребностей нашего индустриального общества. Сжигая его, мы в определенном смысле завершаем круговорот углерода.

По второму пути миграция углерода осуществляется созданием карбонатной системы в различных водоемах, где СО 2 переходит в Н 2 СО 3 , HCO 3 , CO 2 . С помощью растворенного в воде кальция (или магния) происходит осаждение карбонатов (СаСО 3) биогенным и абиогенным путями. Образуются мощные толщи известняков. По А. Б. Ронову, отношение захороненного углерода в продуктах фотосинтеза к углероду в карбонатных породах составляет 1:4. Существует наряду большим круговоротом углерода и ряд малых его круговоротов на поверхности суши и в океане.

Глобальные круговороты углерода и воды

В глобальном масштабе биохимические круговороты воды и углекислого газа имеют, на наш взгляд, самое важное значение для человечества. Для биохимических круговоротов характерно наличие в атмосфере небольших, но подвижных фондов.

Атмосферный фонд СО 2 в круговороте, по сравнению с запасами углерода в океанах, ископаемом топливе и других резервуарах земной коры, относительно невелик.

С наступлением научно-технического прогресса сбалансированные прежде потоки углерода между атмосферой, материками и океанами начинают поступать в атмосферу в количестве, которое не полностью может связаться растениями.

Существуют разные оценки влияния деятельности человечка на обогащение атмосферы CO 2 однако все авторы сходятся во мнении, что основными накопителями углерода являются леса, так как в биомассе лесов содержится в 1,5 раза, а в гумусе, содержащемся в почве, - в 4 раза больше СО 2 , чем в атмосфере.

Растения - хороший регулятор содержания CO 2 в атмосфере Для большинства растений характерно увеличение интенсивности фотосинтеза при повышенном содержании диоксида углерода в воздухе

Фотосинтезирующий "зеленый пояс" Земли и карбонатная система моря поддерживают постоянный уровень СО 2 в атмосфере. Однако стремительное увеличение потребления горючих ископаемых, а также уменьшение поглотительной способности "зеленого пояса" приводят к тому, что содержание CO 2 в атмосфере постепенно растет. Предполагают, что если уровень СО 2 в атмосфере будет превышен вдвое (до начала активного влияния человека на окружающую среду он составлял 0,29 %), то не исключено повышение глобальной температуры на 1,5 - 4,5 °С. Это может привести к таянию ледников и как следствие - к повышению уровня Мирового океана, а также к неблагоприятным последствиям в сельском хозяйстве. В настоящее время в США существует национальная научно-исследовательская программа по ведению сельского хозяйства на случай потепления или похолодания климата.

Помимо СО 2 в атмосфере в небольших количествах присутствуют оксид углерода СО - 0,1 части на миллион и метан СН 4 - 1,6 части на миллион. Эти углеродные соединения активно включены в круговорот и поэтому имеют небольшое время пребывания в атмосфере: СО - около 0,1 года, СН 4 - 3,6 года, а СО 2 - 4 года. Оксид углерода и метан образуются при неполном или аэробном разложении органического вещества и в атмосфере окисляются до СО 2 .

Накопление СО в глобальном масштабе не представляется реальным, но в городах, где воздух застаивается, имеет место повышение концентрации этого соединения, что негативно влияет на здоровье людей.

Метан образуется при разложении органического вещества в болотистых местностях и мелководных морях. По мнению некоторых ученых, метан выполняет полезную функцию - он поддерживает стабильность озонового слоя, который предохраняет все живое на Земле от гибельного воздействия ультрафиолетового излучения.

Фонд воды в атмосфере, как показано на рисунке 11, невелик, и скорость ее оборота выше, а время пребывания меньше, чем CO 2 . Как и на круговорот CO 2 , деятельность человека оказывает влияние на круговорот воды.

С энергетической точки зрения можно выделить две части круговорота СО 2: "верхнюю", которая приводится в движение Солнцем, и "нижнюю", в которой выделяется энергия. Как уже отмечалось, около 30 % всей энергии Солнца, поступающей на поверхность Земли, затрачивается на приведение в движение круговорота воды.

В экологическом плане особое внимание следует обратить на два аспекта круговорота воды. Во-первых, море за счет испарения теряет больше воды, чем получает с осадками, то есть значительная часть осадков, поддерживающих экосистемы суши, в том числе и агроэкосистемы, состоит из воды, которая испарилась с поверхности моря. Во-вторых, в результате деятельности человека возрастает по верхностный сток и сокращается пополнение фонда грунтовых вод. Уже сейчас имеются территории, на которых используются грунтовы воды, накопившиеся в предыдущем столетии. Следовательно, в этом случае вода - невозобновимый ресурс. После истощения грунтовых вод ее будут доставлять с других территорий, что потребует вложения дополнительного количества энергии.

Круговорот азота

Азот, как и углерод, входит в состав атмосферного воздуха и присутствует в нем в виде молекул (Мд).

Он играет важную роль в жизнедеятельности организмов. Как и кислород, азот необходим для дыхания животных. Азот входит в состав многих органических соединений, прежде всего белка. В молекуле белка он образует прочные амидные связи с углеродом или соединяется.с водородом, присутствуя в виде аминных (- NH 3) или амидных (- NH 2) групп.

Образование амидных (пептидных) связей (С - N-связи) является главным механизмом синтеза белковых молекул и пептидов, составляющих сущность всего живого на Земле.

Схема, отражающая круговорот азота, приведена на рис. 6.

Рис. 6. Схема круговорота азота. Выделены основные этапы и приведены оценки количества азота, участвующего в основных потоках. Числа в скобках - тераграммы (Тг = 10 6 т) в год (по Ю. Одуму, 1986)

Источником азота для автотрофов являются нитраты (соли азотной кислоты HNO 3), а также молекулярный азот атмосферы. Азот нитратов через корневую систему растений попадает по проводящим путям в листья, где используется для синтеза растительного белка.

Второй путь, которым азот попадает в организмы - прямая фиксация азота из атмосферы. Это явление совершенно уникально и свойственно прокариотам - безъядерным микроорганизмам. До 1950 г. были известны всего три таксона микроорганизмов, способных связывать атмосферный азот:

· свободноживущие бактерии родов Azotobacter и Clostridium;

· симбиотические клубеньковые бактерии рода Rhizobium;

· сине-зеленые водоросли (цианобактерии) родов Anabaena, Nostoc, а также другие члены порядка Nostocales.

Затем были обнаружены и другие виды организмов, способных к фиксации азота из атмосферы: пурпурные бактерии рода Rhodospirillum, a также почвенные бактерии, близкие к Pseudomonas, актиномицеты из корневых клубеньков ольхи (Ainus, Ceanothus, Myrica и другие). Было так же установлено, что сине-зеленые водоросли рода Anabaena (надо подчеркнуть, что эти водоросли обладают способностью к гетеротрофному питанию и имеют другие признаки, позволяющие относить их к бактериям) могут быть симбионтами грибов, мхов, папоротников и даже семенных растений, и способность к фиксации азота является полезной для обоих участников. Эта удивительная способность служит причиной того, что при выращивании риса и бобовых на одном и том же поле в течение нескольких лет можно получать хорошие урожаи, не внося азотных удобрений.



Биохимический механизм прямой фиксации атмосферного азота осуществляется при участии фермента нитрогеназы, катализирующей расщепление молекулы азота (N 2). Процесс этот требует значительных затрат энергии на разрыв тройной связи в молекуле азота. Реакция идет с участием молекулы воды, в результате чего образуется аммиак (NH 3), например, в клубеньках бобовых. На фиксацию 1 г азота бактерии расходуют около 10 г глюкозы (около 40 ккал), синтезированной в ходе фотосинтеза, т. е. эффективность составляет всего 10 %.

Приведенный пример иллюстрирует также выгоду симбиоза как стратегии "сотрудничества", способствующей выживанию. Нетрудно прийти к идее перспективности выведения таких сортов сельскохозяйственных культур, которые, используя симбиоз с азотфиксирующими микроорганизмами, давали бы хорошие урожаи без применения удобрений.

Образующиеся в растениях азотсодержащие органические соединения по трофическим цепям попадают в организм гетеротрофов (животных), а также в почву - после отмирания растений. В почве они подвергаются распаду при участии сапрофагов, минерализуются и используются затем другими растениями. Конечным звеном разложения являются организмы-аммонификаторы, образующие аммиак (NH 3). Аммиак включается в реакции нитрификации, т. е. образования нитритов и их превращения в нитраты. Таким образом цикл круговорота азота в почве поддерживается постоянно.

В то же время часть азота возвращается в атмосферу благодаря деятельности бактерий-денитрификаторов, разлагающих нитраты до молекулярного азота (N 2). В результате бактериальной денитрификации ежегодно с 1 га почвы улетучивается до 50 - 60 кг азота.

Приостановление круговорота азота может происходить вследствие его накопления в глубоководных океанических осадках. При этом азот выключается из кругооборота на несколько миллионов лет. Потери компенсируются поступлением газообразного азота при вулканических извержениях. Ю. Одум полагает, что извержения вулканов в этом смысле полезны, и, если "блокировать все вулканы на Земле, то при этом от голода вполне может погибнуть больше людей, чем страдает сейчас от извержений" (Одум Ю. Экология. М.: Мир, 1986. Т. 1. С. 209).

Круговорот азота является примером хорошо забуференного круговорота газообразных веществ. Он является важным фактором, лимитирующим или контролирующим численность организмов.

Круговорот азота достаточно подробно изучен. Известно, в частности, что из 10 9 т азота, которые ежегодно усваиваются в биосфере, около 80 % возвращается в круговорот с суши и из воды, и лишь 20 % необходимого количества - это "новый" азот, поступающий из атмосферы с дождем и в результате азотфиксации. Напротив, из азота, поступившего на поля с удобрениями, очень небольшая часть используется повторно; большая же часть теряется с собираемым урожаем в результате выноса водой и денитрификации.

Круговорот фосфора

Фосфор также является элементом, необходимым для питания живых организмов, играет важнейшую роль в росте и развитии растений.

Резервуаром фосфора, в отличие от азота, служит не атмосфера, а горные породы и другие отложения, образовавшиеся в прошлые геологические эпохи. Минеральный фосфор входит в состав многих горных пород. Он попадает в гидросферу в ходе их эрозии, отлагается в виде осадков на мелководьях, частично осаждается в глубоководных илах.

У животных фосфор в виде органических соединений (с белками, в частности) входит в состав костей и других тканей. Он также играет роль в энергетических процессах запасания энергии клеток в виде аденозинтрифосфорной и аденозиндифосфорной кислот.

В результате разложения мертвых организмов и минерализации органических соединений фосфор в виде фосфатов (солей ортофосфорной кислоты) вновь используется растениями и тем самым снова вовлекается в круговорот.

Выведение фосфора из круговорота происходит вследствие его накопления в донных осадках. Круговорот фосфора является примером простого осадочного цикла с недостаточной "забуференностью" и нарушенными механизмами саморегуляции вследствие антропогенного воздействия на окружающую среду. Существует мнение, что механизмы возвращения фосфора в круговорот недостаточны и не возмещают потерь, связанных с техногенезом.

Деятельность человека по лову рыбы и птиц ведет к нарушению баланса фосфора. По данным Дж. Хатчинсона, на сушу в результате рыболовства возвращается всего около 60 000 т элементарного фосфора (Цит. по: Одум Ю. Экология. М.: Мир, 1986. Т. 1). Добывается на удобрения ежегодно 1-2 млн. т фосфорсодержащих пород. Причем большая часть из этого количества смывается водой и выводится из кругооборота.

В настоящее время вызывает озабоченность увеличение концентрации фосфатов в водных экосистемах, что приводит к их интенсивному зарастанию, деградации экосистем и в конечном итоге к их гибели.

Фосфор широко используется в агротехнике в виде фосфорных (минеральных) удобрений с целью повышения плодородия почвы и урожайности сельскохозяйственных культур. Таким образом, минеральный фосфор попадает в водные и наземные экосистемы - вследствие выноса растворенных фосфатов с сельскохозяйственными сточными водами и стока с полей, где применялись фосфорные удобрения, а также сброса городских и промышленных сточных вод.

По данным Дж. Хатчинсона, время оборота фосфора в воде малых озер (площадью 0,3 - 0,4 км 2 и глубиной 6 - 7 м) составляет 5,4 - 7,6 суток, а больших (площадью 2 км 2 , глубиной около 4 м)- 17 суток. Время оборота в донных осадках намного больше и составляет соответственно примерно 40 и 176 суток. Разница в величине показателя, по-видимому, объясняется тем, что в малых озерах отношение поверхности донных осадков к объему воды больше. Таким образом в больших, но не глубоководных водоемах фосфор депонируется, что сильно усложняет борьбу с их зарастанием.

В самоочищении большая роль принадлежит гидробионтам. Так, животные-фильтраторы и детритофаги вносят существенный вклад в круговорот фосфора. Например, популяция фильтрующих двустворчатых моллюсков Modiolus demissus за 2,5 дня "возвращает" из воды столько "взвешенного" фосфора, сколько его содержится в воде, т. е. время оборота "взвешенного" фосфора составляет всего 2,5 дня (Одум Ю. Экология. М.: Мир, 1986. Т. 1. С. 219).

В то же время, как уже отмечалось, фосфор жизненно необходим для растений и относится к числу факторов, лимитирующих численность растительных и других организмов, входящих в трофические цепи.

Круговорот серы

Схема круговорота серы представлена на рис. 8.

Минеральная сера попадает в почву в результате естественного разложения серного и медного колчеданов в горных породах. Она переносится с атмосферными осадками и попадает в наземные и водные экосистемы.

Для круговорота серы характерен обширный резервный фонд в почве и отложениях и меньший фонд - в атмосфере.

В быстро обменивающемся фонде серы ключевую роль играют специализированные группы микроорганизмов (сульфатокисляющих и сульфатредуцирующих).

Сера является компонентом белков и входит в состав ряда аминокислот: цистина, цистеина, метионина. Эти аминокислоты синтезируются растениями, использующими минеральную серу. В организм животных сера попадает с растительной пищей.

Рис. 8. Круговорот серы, охватывающий воздух, воду и почву.

"Кольцо" в центре схемы иллюстрирует процессы окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата (SO 4) и фондом сульфидов железа в почве и в осадках. Специализированные микроорганизмы выполняют реакции: H 2 S ®S 2 ®SO 4 - бесцветные, зеленые и пурпурные серобактерии; SO 4 ®H 2 S (анаэробное восстановление сульфата) - Desulfovibrio; H 2 S ®SO 4 (аэробное окисление сульфида) - тиобациллы; органическая S в SO 4 и H 2 S - аэробные и анаэробные гетеротрофные микроорганизмы соответственно. Первичная продукция, разумеется, обеспечивает включение сульфата в органическое вещество, а экскреция животными служит путем возвращения сульфата в круговорот. Двуокись серы (SO 2), выделяющаяся в атмосферу при сжигании горючих ископаемых, особенно угля, является одним из самых опасных компонентов промышленных выбросов (по Ю. Одуму, 1986).

Тема 2. Основные законы и принципы экологии .
  • Абиотические факторы воздушно-наземной среды .
  • Абиотические факторы почвенного покрова .
  • Абиотические факторы водной среды .
  • Биотические факторы .
  • Некоторые законы и понятия экологии .
  • Закон ограниченности природных ресурсов . (правило одного процента)
  • Понятие об экологической нише .
  • Правило обязательного заполнения экологических ниш .
  • Адаптация живых организмов к экологическим факторам .
  • Популяция, ее структура и динамика .
Тема 3. Экосистемы и их особенности .
  • Структура водной и наземной экосистем .
  • Гомеостаз и сукцессия экологической системы .
  • Законы термодинамики .
  • Антропогенные воздействия на экосистемы .
Тема 4. Круговороты веществ .
  • Круговорот воды.
  • Эвтрофикация и меры борьбы с нею .
  • Атмосферные процессы.
  • Кислотные осадки.
  • Круговорот углерода. «Парниковый» эффект
  • Круговорот азота.
  • Круговорот серы.
  • Круговорот фосфора.
  • Круговорот радионуклидов.
  • Круговорот токсичных элементов.
Тема 5. Воздействия на окружающую среду.
  • Глобальные экологические проблемы.
  • Загрязнения окружающей среды.
  • Загрязнение гидросферы.
  • Экологическая надежность и безопасность.
Заключение.
Список использованной литературы.

Круговорот воды.


Вода - прозрачная жидкость, присутствующая в трех агрегатных состояниях: твердое, жидкое и газообразное и обладающая аномальными особенностями, обусловленными ее молекулярным строением. Вся вода гидросферы находится в непрерывном круговороте: океан - атмосфера - суша - океан. Речные воды меняются 32 раза в год, подземные - один раз в 5000 лет. Из мирового океана в атмосферу испаряется ежегодно около 505 тыс. км
³ воды, из них:
  • 458 тыс. км ³ попадает в океан в виде осадков;
  • 47 тыс. км ³ переносится ветром и выпадает на поверхность континентов.
Круговорот воды на Земле представлен на рисунке 12.

Рис. 12 Схема круговорота воды.


Океаны занимают около 70% поверхности Земли, поэтому вода попадает в атмосферу главным образом, испаряясь с поверхности океана. Испарение идет также с поверхности озер, рек, почвы и других влажных поверхностей, большое количество воды в атмосферу поступает при транспирации растениями. Сочетание испарения и транспирации называют эвапотранспирацией . Водяной пар в воздухе обычно определяют как влажность, которая зависит от температуры. Относительная влажность (в %) - количество водяного пара по сравнению с максимальным его количеством, которое может содержаться в воздухе при данной температуре. Все пруды, озера, ручьи, реки и другие водоемы под открытым небом называются поверхностными водами .
Вода, попадающая на землю в виде осадков, может следовать двумя различными путями:
  • инфильтрация (впитывание в почву)
  • поверхностный сток (стекание по земле).
Инфильтрационная влага поступает двумя путями:
  1. часть воды удерживается в почве (капиллярная вода) и возвращается в атмосферу путем эвапотранспирации;
  2. гравитационная вода, увлекаемая силой тяжести, стекает или просачивается по порам и трещинам в земле.
Однако рано или поздно гравитационная вода достигает непроницаемого слоя горной породы или плотной глины и накапливается под ним, заполняя все поры, трещины и пустоты. Такие запасы воды называются грунтовыми водами, а ее верхнюю границу - уровнем грунтовых вод. Круговорот воды состоит из испарения, конденсации и осадков, этот процесс включает:
  1. поверхностный сток (вода становится частью поверхностных вод);
  2. испарение-транспирация (вода впитывается почвой, удерживается в качестве капиллярной, а затем возвращается в атмосферу при испарении, или поглощается растениями и выделяется в виде паров при транспирации);
  3. инфильтрация до уровня грунтовых вод (вода попадает под землю, движется сквозь нее, питая колодцы и родники, и таким образом вновь попадает в систему поверхностных вод).



Рис. 13 Круговорот поверхностных вод.


Вся вода, которую мы употребляем, в той или иной точке изымается из круговорота. Потребности на Земле резко увеличились в пресной воде. Сейчас ежегодно на бытовое, промышленное и сельскохозяйственное водоснабжение расходуется до 3500 км
³ пресной воды, при этом ежегодный прирост составляет - 10 млрд. м ³ (10 км³). Безвозвратно потребляется около 150 км ³ в год, остальная вода возвращается в виде стоков их них, 70% расходуется в сельском хозяйстве. Бытовое потребление воды в современном городе составляет 200-300 л/человека, поэтому город с населением 9 млн. жителей потребляет в сутки до 60 млн. м ³ , а в год - до 3 км ³ воды, причем к качеству бытовой воды предъявляются высокие требования по совокупности физических, химических, биологических и бактериологических показателей.
Таким образом, в результате антропогенных воздействий несколько упрощенно можно представить круговорот воды в природе в виде испарения ее с поверхности гидросферы и суши, изъятия на бытовое и промышленное потребление и возврата в гидросферу в виде осадков и стоков.



Схема 1. Движение загрязнителей в круговороте воды.


Вода, поступает в окружающую среду с:
  • атмосферными осадками - в виде вымываемых из воздуха загрязнителей (поллютантов) и особенно после смыва их при стекании по городским улицам и промышленным площадкам;
  • городскими сточными водами - фекалиями, бытовыми стоками - моющими средствами (детергентами), микроорганизмами;
  • промышленными сточными водами - различными компонентами жидких отходов: реакционные воды (исходными веществами и продуктами реакции), свободные и связанные воды, содержащиеся в сырье, промывные воды (после промывки сырья, оборудования), водные экстрагенты и абсорбенты, охлаждающие воды, бытовые воды (из прачечных, столовых и др.), атмосферные стоки с промышленных предприятий;
  • сельскохозяйственными стоками - ядохимикатами, удобрениями, органическими веществами, мочевиной, азотом, фосфором и др.
Загрязнением воды считается такое изменение ее физических, химических и биологических свойств под воздействием жидких, твердых и газообразных веществ, которое делает воду опасной для здоровья, развития живых организмов и использования в народном хозяйстве.
Загрязнение гидросферы очень опасно, т.к. велика роль воды в жизненных процессах, процессы самоочищения протекают очень медленно, количество загрязнителей огромно, их взаимодействие в воде иногда отличается повышенной опасностью, возможно резкое увеличение концентрации загрязнителей в пищевой цепи, в конце которой - человек.
Однако с загрязнением можно эффективно бороться, при соответствующей очистке и удалении загрязнителей вода рециклируется и используется неограниченное число раз, не вредя экосистемам. Такое водопотребление называется возвратным. И напротив, орошение является безвозвратным водопотреблением, т.к. вода возвращается в атмосферу за счет испарения и транспирации и на какое-то время теряется (не используясь по сельскохозяйственному назначению).
Надо учитывать, что по мере роста потребителей возможности использования дополнительных поверхностных источников воды становятся все более ограниченными, причем они все сильнее загрязняются.

Как известно, все структурные компоненты биосферы тесно взаимосвязаны между собой сложными биогеохимическими циклами миграции веществ и энергии. Процессы взаимообмена и взаимодействия протекают на разных уровнях: между геосферами (атмо-, гидро-, литосферой), между природными зонами, отдельными ландшафтами, их морфологическими частями и т. д. Однако повсюду господствует единый генеральный процесс обмена веществом и энергией, процесс, порождающий явления разного масштаба - от атомарного до планетарного. Многие элементы, пройдя цепь биологических и химических превращений, возвращаются в состав тех же самых химических соединений, в которых они находились в начальный момент. При этом главной движущей силой в функционировании, как глобального, так и малых (а также локальных) круговоротов, являются сами живые организмы.
Роль биогеохимических круговоротов в развитии биосферы исключительно велика, поскольку они обеспечивают многократность одних и тех же органических форм при ограниченном объеме исходного вещества, участвующего в круговоротах. Человечеству остается лишь поражаться тому, как мудро устроена природа, которая сама же подсказывает «непутевому Homo sapiens», как следует организовать так называемое безотходное производство. Заметим, однако, что в природе нет полностью замкнутых круговоротов: любой из них одновременно сомкнут и разомкнут. Элементарный пример частичного круговорота представляет собой вода, которая, испарившись с поверхности океана, частично снова попадает туда.
Между отдельными малыми круговоротами существуют сложные взаимосвязи, что в конечном итоге приводит к постоянному перераспределению вещества и энергии между ними, к устранению своего рода асимметричных явлений в развитии круговоротов. Так, в литосфере в избытке оказались в связанном состоянии кислород и кремний, в атмосфере в свободном состоянии азот и кислород, в биосфере - водород, кислород и углерод. Нельзя не отметить также, что основная масса углерода сконцентрировалась в осадочных породах литосферы,
где карбонаты аккумулировали основную массу углекислого газа, поступившего в атмосферу с вулканическими извержениями.
Нельзя забывать и о том, что между космосом и Землей существует теснейшая связь, которую с известной долей условности следует рассматривать в рамках глобального круговорота (поскольку, как уже отмечалось, он не является замкнутым). Из космоса на нашу планету попадает лучистая энергия (солнечные и космические лучи), корпускулы Солнца и других звезд, метеоритная пыль и т. д. Особенно важна роль солнечной энергии. В свою очередь, Земля отдает обратно часть энергии, рассеивает в космос водород и т. д.
Многие ученые, начиная с В. Вернадского, рассматривая глобальный биогеохимический круговорот элементов в природе как один из важнейших факторов поддержания динамических равновесий в природе, различали в процессе его эволюции две стадии: древнюю и современную. Есть основания полагать, что на древней стадии круговорот был иным, однако из-за отсутствия многих неизвестных (названий элементов, их массы, энергии и т. д.) смоделировать круговороты прошлых геологических эпох («былые биосферы») практически невозможно.
К этому следует добавить, что основную часть живого вещества составляют С, О, Н, N, главными источниками питания растений являются СО2, Н2О и другие минеральные вещества. С учетом значимости для биосферы углерода, кислорода, водорода, азота, а также специфической роли фосфора кратко рассмотрим их глобальные круговороты, получившие название «частных» или «малых». (Существуют еще локальные кругообороты, ассоциирующиеся с отдельными ландшафтами.)
Биогеохимические круговороты отдельных элементов. Как известно, три химических элемента - кислород, углерод и водород - составляют 98% общей массы живого вещества, при этом на первый из них приходится 70%, на второй - 18 и на третий - 10%. В отличие от большей части кислорода и водорода, присутствующих в организмах в виде водной субстанции (являющейся растворителем и средой для протекания биохимических реакций), углерод является, в сущности, структурообразующим компонентом. В науке хорошо известна его способность легко образовывать углерод-углеродные связи, при этом получаются полимерные цепи и кольца, служащие основой для получения разнообразных органических соединений.
В ходе длительной эволюции биосферы в распределении углерода произошли значительные изменения. Огромное количество углерода оказалось сконцентрированным на дне океана в виде малорастворимого карбоната кальция, а также в карбонатах осадочной толщи литосферы в виде каустобиолитов! и т. д. Много углерода сосредоточено в биомассе суши и в организмах моря, в атмосфере, в гумосфере. Движущей силой современного глобального круговорота углерода является биологический круговорот, протекающий по следующей схеме: «биоассимиляция углерода из атмосферы, водной или наземной среды растениями, потребление органических соединений животными и людьми, окисление органических веществ до углекислого газа в процессе дыхания и разложения отходов, возврат углекислого газа в атмосферу».
Круговорот углерода на суше и в океане неодинаков: на суше он преимущественно возвращается обратно в атмосферу, в океане остается в основном в растворе. Известно, что океан является полу автономной системой в газообмене с атмосферой, что указывает на медленный обмен углекислым газом в системе «океан - атмосфера». Что же касается системы «суша - океан», то здесь преобладает односторонняя миграция углерода в виде выноса этого элемента с суши в карбонатных и органических соединениях.
Громадный научный интерес представляет кругооборот кислорода - одного из важнейших элементов в природе, отчасти в связи с растущим его потреблением на промышленные и другие нужды. Существует мнение, что человечество в первую очередь столкнется с дефицитом именно кислорода, поскольку оно ежегодно сжигает примерно четвертую часть этого элемента, продуцируемого наземной растительностью.
Начало интенсивного накопления кислорода в атмосфере связывается с распространением фотосинтезирующих элементов около 2 млрд лет тому назад. В процессе длительной эволюции глобального круговорота кислорода наибольшая часть этого элемента осталась в атмосфере, другая часть оказалась растворенной в океане, третья была зафиксирована в земной коре в виде сульфатов, карбонатов, различных окислов.
Сравнительно хуже изучен глобальный круговорот азота главным образом в связи с трудностями оценки составляющих круговорота. До сих пор точно неизвестно, какие конкретно организмы способны фиксировать азот, переводить его в такие химические соединения, которые могут использоваться живыми организмами. Между тем в биологическом круговороте из огромного запаса азота в атмосфере и осадочной оболочке литосферы принимает участие только фиксированный азот, усваиваемый живыми организмами суши и океана. В целом в естественных условиях процессы связывания и высвобождения азота уравновешивают друг друга.
Определенный интерес представляет осадочный круговорот фосфора - довольно редкого элемента в биосфере (в земной коре его содержание не превышает 1%). Схема круговорота фосфора на суше выглядит следующим образом: «поглощение растениями неорганического фосфора, перевод его в состав живого вещества растений и животных (а также людей), возвращение органических фосфатов вместе с трупами, отходами и экскрементами живых существ в землю, переработка фосфатов микроорганизмами».
Совсем иная картина имеет место в водоемах, что связано с осаждением отмерших организмов на дне и накоплением их в донных отложениях. Известно, что разложение органики вблизи дна часто происходит в замедленном режиме вследствие недостаточного притока кислорода. В итоге минерализованный фосфор образует нерастворимый комплекс с трехвалентным железом и таким образом оказывается уже недоступным для усвоения водными организмами. Однако это не единственный способ «изъятия» фосфора из глобального круговорота. Большое его количество выносится в Мировой океан, скорость же обратного переноса (птицами и продуктами рыбного промысла) составляет значительно меньшую величину. Пример глобального круговорота фосфора показывает, какую опасность представляют любые малообдуманные воздействия человека на естественный ход био- геохимических процессов в биосфере.
Рассмотренные нами некоторые круговороты особо важных для биосферы элементов показывают огромную важность поддержания сложившихся динамических равновесий в едином глобальном биогеохимическом круговороте.