Бунин

С чем могут реагировать металлы. I. Реакции металлов с неметаллами. Взаимодействие металлов со сложными веществами

Известно, что все простые вещества условно можно разделить на простые вещества-металлы и простые вещества-неметаллы.

МЕТАЛЛЫ, по определению М. В. Ломоносова - это «светлые тела, которые ковать можно». Обычно это ковкие блестящие материалы, обладающие высокой тепло- и электропроводностью. Эти физические и многие химические свойства металлов связаны со способностью их атомов ОТДАВАТЬ электроны.

НЕМЕТАЛЛЫ, напротив, способны ПРИСОЕДИНЯТЬ электроны в химических процессах. Большинство неметаллов проявляют противоположные металлам свойства: не блестят, не проводят электрический ток, не куются. Являясь противоположными по свойствам, металлы и неметаллы легко реагируют друг с другом.

Эта часть Самоучителя посвящена краткому освещению свойств металлов и неметаллов. Описывая свойства элементов, желательно придерживаться следующей логической схемы:

1. Вначале описать строение атома (указать распределение валентных электронов), сделать вывод о принадлежности данного элемента к металлам или неметаллам, определить его валентные состояния (степени окисления) - см. урок 3;

2. Затем описать свойства простого вещества, составив уравнения реакций

  • с кислородом;
  • с водородом;
  • с металлами (для неметаллов) или с неметаллами (для металлов);
  • с водой;
  • с кислотами или со щелочами (там, где это возможно);
  • с растворами солей;

3. Затем нужно описать свойства важнейших соединений (водородных соединений, оксидов, гидроксидов, солей). При этом вначале следует определить характер (кислотный или основной) данного соединения, а затем, вспомнив свойства соединений этого класса, составить необходимые уравнения реакций;

4. И наконец нужно описать качественные реакции на катионы (анионы), содержащие этот элемент, способы получения простого вещества и важнейших соединений этого химического элемента, указать практическое применение изучаемых веществ этого элемента.

Так, если вы определите, что оксид кислотный, то он будет реагировать с водой, основными оксидами, основаниями (см. урок 2.1) и ему будет соответствовать кислотный гидроксид (кислота). При описании свойств этой кислоты также полезно заглядывать в соответствующий раздел: урок 2.2.

Металлы - это простые вещества, атомы которых могут только отдавать электроны. Такая особенность металлов связана с тем, что на внешнем уровне этих атомов мало электронов (чаще всего от 1 до 3) или внешние электроны расположены далеко от ядра . Чем меньше электронов на внешнем уровне атома и чем дальше они расположены от ядра, - тем активнее металл (ярче выражены его металлические свойства).

Задание 8.1. Какой металл активнее:

Назовите химические элементы А, Б, В, Г.

Металлы и неметаллы в Периодической системе химических элементов Менделеева (ПСМ) разделяет линия, проведённая от бора к астату. Выше этой линии в главных подгруппах находятся неметаллы (см. урок 3). Остальные химические элементы - металлы.

Задание 8.2. Какие из следующих элементов относятся к металлам: кремний, свинец, сурьма, мышьяк, селен, хром, полоний?

Вопрос. Как можно объяснить тот факт, что кремний - неметалл, а свинец - металл, хотя число внешних электронов у них одинаково?

Существенной особенностью атомов металлов является их большой радиус и наличие слабо связанных с ядром валентных электронов. Для таких атомов величина энергии ионизации* невелика.

* ЭНЕРГИЯ ИОНИЗАЦИИ равна работе, затрачиваемой на удаление одного внешнего электрона из атома (на ионизацию атома), находящегося в основном энергетическом состоянии.

Часть валентных электронов металлов, отрываясь от атомов, становятся «свободными». «Свободные» электроны легко перемещаются между атомами и ионами металлов в кристалле, образуя «электронный газ» (рис. 28).

В последующий момент времени любой из «свободных» электронов может притянуться любым катионом, а любой атом металла может отдать электрон и превратиться в ион (эти процессы показаны на рис. 28 пунктирами).

Таким образом, внутреннее строение металла похоже на слоёный пирог, где положительно заряженные «слои» атомов и ионов металла чередуются с электронными «прослойками» и притягиваются к ним. Наилучшей моделью внутреннего строения металла является стопка стеклянных пластинок, смоченных водой: оторвать одну пластинку от другой очень трудно (металлы прочные), а сдвинуть одну пластинку относительно другой очень легко (металлы пластичные) (рис. 29).

Задание 8.3. Сделайте такую «модель» металла и убедитесь в этих свойствах.

Химическая связь, осуществляемая за счёт «свободных» электронов, называется металлической связью .

«Свободные» электроны обеспечивают также такие физические свойства металлов, как электро- и теплопроводность, пластичность (ковкость), а также металлический блеск.

Задание 8.4. Найдите дома металлические предметы.

Выполняя это задание, вы легко найдёте на кухне металлическую посуду: кастрюли, сковородки, вилки, ложки. Из металлов и их сплавов делают станки, самолёты, автомобили, тепловозы, инструменты. Без металлов невозможна современная цивилизация, так как электрические провода также делают из металлов - Cu и Al. Только металлы годятся для получения антенн для радио- и телеприёмников, из металлов делают и лучшие зеркала. При этом чаще используют не чистые металлы, а их смеси (твёрдые растворы) - СПЛАВЫ.

Сплавы

Металлы легко образуют сплавы - материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов (простых веществ), из которых хотя бы один является металлом. Многие металлические сплавы имеют один металл в качестве основы с малыми добавками других компонентов. В принципе, чёткую границу между металлами и сплавами трудно провести, так как даже в самых чистых металлах имеются «следовые» примеси других химических элементов.

Все перечисленные выше предметы - станки, самолёты, автомобили, сковородки, вилки, ложки, ювелирные изделия - делают из сплавов. Металлы-примеси (легирующие компоненты) очень часто изменяют свойства основного металла в лучшую, с точки зрения человека, сторону. Например, и железо и алюминий - довольно мягкие металлы. Но, соединяясь друг с другом или с другими компонентами, они превращаются в сталь, дуралюмин и другие прочные конструкционные материалы. Рассмотрим свойства самых распространённых сплавов.

Сталь - это сплавы железа с углеродом , содержащие последнего до 2 %. В состав легированных сталей входят и другие химические элементы - хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно перечислить. Малоуглеродистая сталь (менее 0,25 % углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55 %) идет на изготовление режущих инструментов: бритвенные лезвия, сверла и др.

Железо составляет основу чугуна . Чугуном называется сплав железа с 2–4 % углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей и др.

Бронза - сплав меди , обычно с оловом как основным легирующим компонентом, а также с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка. Оловянные бронзы знали и широко использовали ещё в древности. Большинство античных изделий из бронзы содержат 75–90 % меди и 25–10 % олова, что делает их внешне похожими на золотые, однако они более тугоплавкие. Это очень прочный сплав. Из него делали оружие до тех пор, пока не научились получать железные сплавы. С применением бронзы связана целая эпоха в истории человечества: Бронзовый век.

Латунь - это сплавы меди с Zn, Al, Mg . Это цветные сплавы с невысокой температурой плавления, их легко обрабатывать: резать, сваривать и паять.

Мельхиор - является сплавом меди с никелем , иногда с добавками железа и марганца. По внешним характеристикам мельхиор похож на серебро, но обладает большей механической прочностью. Сплав широко применяют для изготовления посуды и недорогих ювелирных изделий. Большинство современных монет серебристого цвета изготавливают из мельхиора (обычно 75 % меди и 25 % никеля с незначительными добавками марганца).

Дюралюминий , или дюраль - это сплав на основе алюминия с добавлением легирующих элементов - медь, марганец, магний и железо. Он характеризуется своей стальной прочностью и устойчивостью к возможным перегрузкам. Это основной конструкционный материал в авиации и космонавтике.

Химические свойства металлов

Металлы легко отдают электроны, т. е. являются восстановителями . Поэтому они легко реагируют с окислителями.

Вопросы

  1. Какие атомы являются окислителями?
  2. Как называются простые вещества, состоящие из атомов, которые способны принимать электроны?

Таким образом, металлы реагируют с неметаллами. В таких реакциях неметаллы, принимая электроны, приобретают обычно НИЗШУЮ степень окисления.

Рассмотрим пример. Пусть алюминий реагирует с серой:

Вопрос. Какой из этих химических элементов способен только отдавать электроны? Сколько электронов?

Алюминий - металл , имеющий на внешнем уровне 3 электрона (III группа!), поэтому он отдаёт 3 электрона:

Поскольку атом алюминия отдает электроны, атом серы принимает их.

Вопрос. Сколько электронов может принять атом серы до завершения внешнего уровня? Почему?

У атома серы на внешнем уровне 6 электронов (VI группа!), следовательно, этот атом принимает 2 электрона:

Таким образом, полученное соединение имеет состав:

В результате получаем уравнение реакции:

Задание 8.5. Составьте, рассуждая аналогично, уравнения реакций:

  • кальций + хлор (Cl 2);
  • магний + азот (N 2).

Составляя уравнения реакций, помните, что атом металла отдаёт все внешние электроны, а атом неметалла принимает столько электронов, сколько их не хватает до восьми.

Названия полученных в таких реакциях соединений всегда содержат суффикс ИД :

Корень слова в названии происходит от латинского названия неметалла (см. урок 2.4).

Металлы реагируют с растворами кислот (см. урок 2.2). При составлении уравнений подобных реакций и при определении возможности такой реакции следует пользоваться рядом напряжений (рядом активности) металлов:

Металлы, стоящие в этом ряду до водорода , способны вытеснять водород из растворов кислот:

Задание 8.6. Составьте уравнения возможных реакций:

  • магний + серная кислота;
  • никель + соляная кислота;
  • ртуть + соляная кислота.

Все эти металлы в полученных соединениях двухвалентны.

Реакция металла с кислотой возможна, если в результате её получается растворимая соль. Например, магний практически не реагирует с фосфорной кислотой, поскольку его поверхность быстро покрывается слоем нерастворимого фосфата:

Металлы, стоящие после водорода, могут реагировать с некоторыми кислотами, но водород в этих реакциях не выделяется :

Задание 8.7. Какой из металлов - Ва, Mg, Fе, Рb, Сu - может реагировать с раствором серной кислоты? Почему? Составьте уравнения возможных реакций.

Металлы реагируют с водой , если они активнее железа (железо также может реагировать с водой). При этом очень активные металлы (Li – Al ) реагируют с водой при нормальных условиях или при небольшом нагревании по схеме:

где х - валентность металла.

Задание 8.8. Составьте уравнения реакций по этой схеме для К, Nа, Са . Какие ещё металлы могут реагировать с водой подобным образом?

Возникает вопрос: почему алюминий практически не реагирует с водой? Действительно, мы кипятим воду в алюминиевой посуде, - и… ничего! Дело, в том, что поверхность алюминия защищена оксидной пленкой (условно - Al 2 O 3). Если её разрушить, то начнётся реакция алюминия с водой, причём довольно активная. Полезно знать, что эту плёнку разрушают ионы хлора Cl – . А поскольку ионы алюминия небезопасны для здоровья, следует выполнять правило: в алюминиевой посуде нельзя хранить сильно солёные продукты!

Вопрос. Можно ли хранить в алюминиевой посуде кислые щи, компот?

Менее активные металлы, которые стоят в ряду напряжений после алюминия, реагируют с водой в сильно измельчённом состоянии и при сильном нагревании (выше 100 °C) по схеме:

Металлы, менее активные, чем железо, с водой не реагируют!

Металлы реагируют с растворами солей . При этом более активные металлы вытесняют менее активный металл из раствора его соли:

Задание 8.9. Какие из следующих реакций возможны и почему:

  1. серебро + нитрат меди II;
  2. никель + нитрат свинца II;
  3. медь + нитрат ртути II;
  4. цинк + нитрат никеля II.

Составьте уравнения возможных реакций. Для невозможных поясните, почему они невозможны.

Следует отметить (!), что очень активные металлы , которые при нормальных условиях реагируют с водой , не вытесняют другие металлы из растворов их солей, поскольку они реагируют с водой, а не с солью:

А затем полученная щёлочь реагирует с солью:

Поэтому реакция между сульфатом железа и натрием НЕ сопровождается вытеснением менее активного металла:

Коррозия металлов

Коррозия - самопроизвольный процесс окисления металла под действием факторов окружающей среды.

В природе практически не встречается металлов в свободном виде. Исключение составляют только «благородные», самые неактивные металлы, например золото, платина. Все остальные активно окисляются под действием кислорода, воды, кислот и др. Например, ржавчина образуется на любом незащищённом железном изделии именно в присутствии кислорода или воды. При этом окисляется железо:

а восстанавливаются компоненты атмосферной влаги:

В результате образуется гидроксид железа (II ), который, окисляясь, превращается в ржавчину:

Подвергаться коррозии могут и другие металлы, правда, ржавчина на их поверхности не образуется. Так, нет на Земле металла алюминия - самого распространённого металла на планете. Но зато основу многих горных пород и почвы составляет глинозём Al 2 O 3 . Дело в том, что алюминий мгновенно окисляется на воздухе. Коррозия металлов наносит колоссальный ущерб, разрушая различные металлические конструкции.

Чтобы уменьшить потери от коррозии, следует устранить причины, которые её вызывают. В первую очередь, металлические предметы следует изолировать от влаги. Это можно сделать разными способами, например, хранить изделие в сухом месте, что далеко не всегда возможно. Кроме того, можно поверхность предмета покрасить, смазать водоотталкивающим составом, создать искусственную оксидную плёнку. В последнем случае в состав сплава вводят хром, который «любезно» распространяет собственную оксидную плёнку на поверхность всего металла. Сталь становится нержавеющей.

Изделия из нержавеющей стали дороги. Поэтому для защиты от коррозии используют тот факт, что менее активный металл не изменяется, т. е. не участвует в процессе . Поэтому если к сохраняемому изделию приварить более активный металл, то, пока он не разрушится, изделие корродировать не будет. Этот способ защиты называется протекторной защитой.

Выводы

Металлы - это простые вещества, которые всегда являются восстановителями. Восстановительная активность металла убывает в ряду напряжений от лития к золоту. По положению металла в ряду напряжений можно определить, как металл реагирует с растворами кислот, с водой, с растворами солей.

ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

По химическим свойствам металлы подразделяют на:

1 )Активные (щелочные и щелчноземельные металлы, Mg, Al, Zn и др.)

2) Металлы средней активности (Fe, Cr, Mn и др.) ;

3 )Малоактивные (Cu, Ag)

4) Благородные металлы – Au, Pt, Pd и др.

В реакциях - только восстановители. Атомы металлов легко отдают электроны внешнего (а некоторые – и предвнешнего) электронного слоя, превращаясь в положительные ионы. Возможные степени окисления Ме Низшая 0,+1,+2,+3 Высшая +4,+5,+6,+7,+8

1.ВЗАИМОДЕЙСТВИЕ С НЕМЕТАЛЛАМИ

1. С ВОДОРОДОМ

Реагируют при нагревании металлы IA и IIA группы, кроме бериллия. Образуются твёрдые нестойкие вещества гидриды, остальные металлы не реагируют.

2K + H₂ = 2KH (гидрид калия)

Ca + H₂ = CaH₂

2.С КИСЛОРОДОМ

Реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. Щелочные металлы при нормальных условиях образуют оксиды, пероксиды, надпероксиды (литий – оксид, натрий – пероксид, калий, цезий, рубидий – надпероксид

4Li + O2 = 2Li2O (оксид)

2Na + O2 = Na2O2 (пероксид)

K+O2=KO2 (надпероксид)

Остальные металлы главных подрупп при нормальных условиях образуют оксиды со степенью окисления, равной номеру группы 2Сa+O2=2СaO

2Сa+O2=2СaO

Металлы побочных подрупп образуют оксиды при нормальных условиях и при нагревании оксиды разной степени окисления, а железо железную окалину Fe3O4 (Fe⁺²O∙Fe2⁺³O3)

3Fe + 2O2 = Fe3O4

4Cu + O₂ = 2Cu₂⁺¹O (красный) 2Cu + O₂ = 2Cu⁺²O (чѐрный);

2Zn + O₂ = ZnO 4Cr + 3О2 = 2Cr2О3

3. С ГАЛОГЕНАМИ

галогениды (фториды, хлориды, бромиды, иодиды). Щелочные при нормальных условиях с F, Cl , Br воспламеняются:

2Na + Cl2 = 2NaCl (хлорид)

Щелочноземельные и алюминий реагируют при нормальных условиях:

С a+Cl2= С aCl2

2Al+3Cl2 = 2AlCl3

Металлы побочных подгрупп при повышенных температурах

Cu + Cl₂ = Cu⁺²Cl₂ Zn + Cl₂ = ZnCl₂

2Fe + ЗС12 = 2Fe⁺³Cl3 хлорид железа (+3) 2Cr + 3Br2 = 2Cr⁺³Br3

2Cu + I₂ = 2Cu⁺¹I (не бывает йодида меди (+2)!)

4. ВЗАИМОДЕЙСТВИЕ С СЕРОЙ

при нагревании даже у щелочных металлов, с ртутью при нормальных условиях. Реагируют все металлы, кроме золота и платины

с серой сульфиды : 2K + S = K2S 2Li+S = Li2S ( сульфид )

С a+S= С aS( сульфид ) 2Al+3S = Al2S3 Cu + S = Cu⁺²S (чѐрный )

Zn + S = ZnS 2Cr + 3S = Cr2⁺³S3 Fe + S = Fe⁺²S

5. ВЗАИМОДЕЙСТВИЕ С ФОСФОРОМ И АЗОТОМ

протекает при нагревании (исключение: литий с азотом при нормальных условиях) :

с фосфором – фосфиды: 3 Ca + 2 P =Са3 P 2,

С азотом – нитриды 6Li + N2 = 3Li2N (нитрид лития) (н.у.) 3Mg + N2 = Mg3N2 (нитрид магния) 2Al + N2 = 2A1N 2Cr + N2 = 2CrN 3Fe + N2 = Fe₃⁺²N₂¯³

6. ВЗАИМОДЕЙСТВИЕ С УГЛЕРОДОМ И КРЕМНИЕМ

протекает при нагревании:

С углеродом образуются карбиды С углеродом реагируют только наиболее активные металлы. Из щелочных металлов карбиды образуют литий и натрий, калий, рубидий, цезий не взаимодействуют с углеродом:

2Li + 2C = Li2C2, Са + 2С = СаС2

Металлы – d-элементы образуют с углеродом соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC – используются для получения сверхтвёрдых сталей.

с кремнием – силициды: 4Cs + Si = Cs4Si,

7. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ВОДОЙ:

С водой реагируют металлы, стоящие до водорода в электрохимическом ряду напряжений Щелочные и щелочноземельные металлы реагируют с водой без нагревания, образуя растворимые гидроксиды(щелочи) и водород, алюминий (после разрушения оксидной пленки - амальгирование), магний при нагревании, образуют нерастворимые основания и водород.

2Na + 2HOH = 2NaOH + H2
С a + 2HOH = Ca(OH)2 + H2

2Аl + 6Н2O = 2Аl(ОН)3 + ЗН2

Остальные металлы реагируют с водой только в раскаленном состоянии, образуя оксиды (железо – железную окалину)

Zn + Н2O = ZnO + H2 3Fe + 4HOH = Fe3O4 + 4H2 2Cr + 3H₂O = Cr₂O₃ + 3H₂

8 С КИСЛОРОДОМ И ВОДОЙ

На воздухе железо и хром легко окисляется в присутствии влаги (ржавление)

4Fe + 3O2 + 6H2O = 4Fe(OH)3

4Cr + 3O2 + 6H2O = 4Cr(OH)3

9. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ОКСИДАМИ

Металлы (Al, Mg,Са), восстанавливают при высокой температуре неметаллы или менее активные металлы из их оксидов → неметалл или малоактивный металл и оксид (кальцийтермия, магнийтермия, алюминотермия)

2Al + Cr2O3 = 2Cr + Al2O3 ЗСа + Cr₂O₃ = ЗСаО + 2Cr (800 °C) 8Al+3Fe3O4 = 4Al2O3+9Fe (термит) 2Mg + CО2 = 2MgO + С Mg + N2O = MgO + N2 Zn + CО2 = ZnO+ CO 2Cu + 2NO = 2CuO + N2 3Zn + SО2 = ZnS + 2ZnO

10. С ОКСИДАМИ

Металлы железо и хром реагируют со оксидами, уменьшая степень окисления

Cr + Cr2⁺³O3 = 3Cr⁺²O Fe+ Fe2⁺³O3 = 3Fe⁺²O

11. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ СО ЩЕЛОЧАМИ

Со щелочами взаимодействуют только те металлы, оксиды и гидроксиды которых обладают амфотерными свойствами ((Zn, Al, Cr(III), Fe(III) и др. РАСПЛАВ → соль металла + водород.

2NaOH + Zn → Na2ZnO2 + H2 (цинкат натрия)

2Al + 2(NaOH · H2O) = 2NaAlO2 + 3H2
РАСТВОР → комплексная соль металла + водород.

2NaOH + Zn0 + 2H2O = Na2 + H2 (тетрагидроксоцинкат натрия) 2Al+2NaOH + 6H2O = 2Na+3H2

12. ВЗАИМОДЕЙСТВИЕ С КИСЛОТАМИ (КРОМЕ HNO3 и Н2SО4 (конц.)

Металлы, стоящие в электрохимическом ряду напряжений металлов левее водорода, вытесняют его из разбавленных кислот → соль и водород

Запомни! Азотная кислота никогда не выделяет водород при взаимодействии с металлами.

Мg + 2НС1 = МgСl2 + Н2
Al + 2НС1 = Al⁺³Сl₃ + Н2

13. РЕАКЦИИ С СОЛЯМИ

Активные металлы вытесняют из солей менее активные. Восстановление из растворов:

CuSO4 + Zn = Zn SO4 + Cu

FeSO4 + Cu = РЕАКЦИИ НЕТ

Mg + CuCl2(pp) = MgCl2 + С u

Восстановление металлов из расплавов их солей

3Na+ AlCl₃ = 3NaCl + Al

TiCl2 + 2Mg = MgCl2 +Ti

Металлы групп В реагируют с солями, понижая степень окислениЯ

2Fe⁺³Cl3 + Fe = 3Fe⁺²Cl2

Металлы - активные восстановители с положительной степенью окисления. Благодаря химическим свойствам металлы широко используются в промышленности, металлургии, медицине, строительстве.

Активность металлов

В реакциях атомы металлов отдают валентные электроны и окисляются. Чем больше энергетических уровней и меньше электронов имеет атом металла, тем легче ему отдавать электроны и вступать в реакции. Поэтому металлические свойства увеличиваются сверху вниз и справа налево в таблице Менделеева.

Рис. 1. Изменение металлических свойств в таблице Менделеева.

Активность простых веществ показана в электрохимическом ряду напряжений металлов. Слева от водорода находятся активные металлы (активность увеличивается к левому краю), справа - неактивные.

Наибольшую активность проявляют щелочные металлы, находящиеся в I группе периодической таблицы и стоящие левее водорода в электрохимическом ряду напряжений. Они вступают в реакцию со многими веществами уже при комнатной температуре. За ними идут щелочноземельные металлы, входящие во II группу. Они реагируют с большинством веществ при нагревании. Металлы, находящиеся в электрохимическом ряду от алюминия до водорода (средней активности) требуют дополнительных условий для вступления в реакции.

Рис. 2. Электрохимический ряд напряжений металлов.

Некоторые металлы проявляют амфотерные свойства или двойственность. Металлы, их оксиды и гидроксиды реагируют с кислотами и основаниями. Большинство металлов реагирует только с некоторыми кислотами, замещая водород и образуя соль. Наиболее ярко выраженные двойственные свойства проявляют:

  • алюминий;
  • свинец;
  • цинк;
  • железо;
  • медь;
  • бериллий;
  • хром.

Каждый металл способен вытеснять стоящий правее него в электрохимическом ряду другой металл из солей. Металлы, находящиеся слева от водорода, вытесняют его из разбавленных кислот.

Свойства

Особенности взаимодействия металлов с разными веществами представлены в таблице химических свойств металлов.

Реакция

Особенности

Уравнение

С кислородом

Большинство металлов образует оксидные плёнки. Щелочные металлы самовоспламеняются в присутствии кислорода. При этом натрий образует пероксид (Na 2 O 2), остальные металлы I группы - надпероксиды (RO 2). При нагревании щелочноземельные металлы самовоспламеняются, металлы средней активности - окисляются. Во взаимодействие с кислородом не вступают золото и платина

4Li + O 2 → 2Li 2 O;

2Na + O 2 → Na 2 O 2 ;

K + O 2 → KO 2 ;

4Al + 3O 2 → 2Al 2 O 3 ;

2Cu + O 2 → 2CuO

С водородом

При комнатной температуре реагируют щелочные, при нагревании - щелочноземельные. Бериллий не вступает в реакцию. Магнию дополнительно необходимо высокое давление

Sr + H 2 → SrH 2 ;

2Na + H 2 → 2NaH;

Mg + H 2 → MgH 2

Только активные металлы. Литий вступает в реакцию при комнатной температуре. Остальные металлы - при нагревании

6Li + N 2 → 2Li 3 N;

3Ca + N 2 → Ca 3 N 2

С углеродом

Литий и натрий, остальные - при нагревании

4Al + 3C → Al 3 C4;

2Li+2C → Li 2 C 2

Не взаимодействуют золото и платина

2K + S → K 2 S;

Fe + S → FeS;

Zn + S → ZnS

С фосфором

При нагревании

3Ca + 2P → Ca 3 P 2

С галогенами

Не реагируют только малоактивные металлы, медь - при нагревании

Cu + Cl 2 → CuCl 2

Щелочные и некоторые щелочноземельные металлы. При нагревании, в условиях кислой или щелочной среды реагируют металлы средней активности

2Na + 2H 2 O → 2NaOH + H 2 ;

Ca + 2H 2 O → Ca(OH) 2 + H 2 ;

Pb + H 2 O → PbO + H 2

С кислотами

Металлы слева от водорода. Медь растворяется в концентрированных кислотах

Zn + 2HCl → ZnCl 2 + 2H 2 ;

Fe + H 2 SO 4 → FeSO 4 + H 2 ;

Cu + 2H 2 SO 4 → CuSO 4 + SO 2 +2H 2 O

Со щелочами

Только амфотерные металлы

2Al + 2KOH + 6H 2 O → 2K + 3H 2

Активные замещают менее активные металлы

3Na + AlCl 3 → 3NaCl + Al

Металлы взаимодействуют между собой и образуют интерметаллические соединения - 3Cu + Au → Cu 3 Au, 2Na + Sb → Na 2 Sb.

Применение

Общие химические свойства металлов используются для создания сплавов, моющих средств, применяются в каталитических реакциях. Металлы присутствуют в аккумуляторах, электронике, в несущих конструкциях.

Основные отрасли применения указаны в таблице.

Рис. 3. Висмут.

Что мы узнали?

Из урока 9 класса химии узнали об основных химических свойствах металлов. Возможность взаимодействовать с простыми и сложными веществами определяет активность металлов. Чем активнее металл, тем легче он вступает в реакцию при обычных условиях. Активные металлы реагируют с галогенами, неметаллами, водой, кислотами, солями. Амфотерные металлы взаимодействуют со щелочами. Малоактивные металлы не реагируют с водой, галогенами, большинством неметаллов. Кратко рассмотрели отрасли применения. Металлы используются в медицине, промышленности, металлургии, электронике.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 70.

1. Металлы реагируют с неметаллами.

2 Me + n Hal 2 → 2 MeHal n

4Li + O2 = 2Li2O

Щелочные металлы, за исключением лития, образуют пероксиды:

2Na + O 2 = Na 2 O 2

2. Металлы, стоящие до водорода, реагируют с кислотами (кроме азотной и серной конц.) с выделением водорода

Me + HCl → соль + H2

2 Al + 6 HCl → 2 AlCl3 + 3 H2

Pb + 2 HCl → PbCl2↓ + H2

3. Активные металлы реагируют с водой с образованием щелочи и выделением водорода.

2Me + 2n H 2 O → 2Me(OH) n + n H 2

Продуктом окисления металла является его гидроксид – Me(OH) n (где n-степень окисления металла).

Например:

Ca + 2H 2 O → Ca(OH) 2 + H 2

4. Металлы средней активности реагируют с водой при нагревании, образуя оксид металла и водород.

2Me + nH 2 O → Me 2 O n + nH 2

Продукт окисления в таких реакциях – оксид металла Me 2 O n (где n-степень окисления металла).

3Fe + 4H 2 O → Fe 2 O 3 ·FeO + 4H 2

5. Металлы, стоящие после водорода, с водой и растворами кислот (кроме азотной и серной конц.) не реагируют

6. Более активные металлы вытесняют менее активные из растворов их солей.

CuSO 4 + Zn = Zn SO 4 + Cu

CuSO 4 + Fe = Fe SO 4 + Cu

Активные металлы ‑ цинк и железо заместили медь в сульфате и образовали соли. Цинк и железо окислились, а медь восстановилась.

7. Галогены реагируют с водой и раствором щелочи.

Фтор в отличие от других галогенов воду окисляет:

2H 2 O + 2F 2 = 4HF + O 2 .

на холоде: Cl2+2KOH=KClO+KCl+H2OCl2+2KOH=KClO+KCl+H2O образуется хлорид и гипохлорит

при нагревании: 3Cl2+6KOH−→KClO3+5KCl+3H2O3Cl2+6KOH→t,∘CKClO3+5KCl+3H2O образуется лорид и хлорат

8 Активные галогены (кроме фтора) вытесняют менее активные галогены из растворов их солей.

9. Галогены не реагируют с кислородом.

10. Амфотерные металлы (Al, Be, Zn) реагируют с растворами щелочей и кислот.

3Zn+4H2SO4=3 ZnSO4+S+4H2O

11. Магний реагирует с углекислым газом и оксидом кремния.

2Мg + CO2 = C + 2MgO

SiO2+2Mg=Si+2MgO

12. Щелочные металлы (кроме лития) с кислородом образуют пероксиды.

2Na + O 2 = Na 2 O 2

3. Классификация неорганических соединений

Простые вещества – вещества, молекулы которых состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.

Сложные вещества (или химические соединения) – вещества, молекулы которых состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.

Простые вещества разбиваются на две большие группы: металлы и неметаллы.

Металлы – группа элементов, обладающая характерными металлическими свойствами: твёрдые вещества (исключение составляет ртуть) имеют металлический блеск, являются хорошими проводниками теплоты и электричества, ковкие (железо (Fe), медь (Cu), алюминий (Al), ртуть (Hg), золото (Au), серебро (Ag) и др.).

Неметаллы – группа элементов: твёрдые, жидкие (бром) и газообразные веществ, которые не обладают металлическим блеском, являются изоляторы, хрупкие.

А сложные вещества в свою очередь подразделятся на четыре группы, или класса: оксиды, основания, кислоты и соли.

Оксиды – это сложные вещества, в состав молекул которых входят атомы кислорода и какого – нибудь другого вещества.

Основания – это сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами.

С точки зрения теории электролитической диссоциации, основания – сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH4+) и гидроксид – анионы OH-.

Кислоты – это сложные вещества, в состав молекул которых входят атомы водорода, способные замещаться или обмениваться на атомы металла.

Соли – это сложные вещества, молекулы которых состоят из атомов металлов и кислотных остатков. Соль представляет собой продукт частичного или полного замещения атомов водорода кислоты металлом.