Чехов

Чем опасно облучение для человека. Радиация - доступным языком. Как вывести радиацию из организма

Радиация – это потоки частиц, образовавшихся во время ядерных реакций или радиоактивного распада . Все мы наслышаны про опасность радиоактивного излучения для человеческого организма и знаем, что оно может стать причиной огромного количества патологических состояний. Но зачастую большинство людей не знают, в чем именно состоит опасность радиации и как можно защитить себя от нее. В этой статье мы рассмотрели, что такое радиация, в чем заключается ее опасность для человека, причиной каких заболеваний она может стать.

Что такое радиация

Определение этого термина не очень понятно для человека, не связанного с физикой или, например, с медициной. Под термином «радиация» подразумевают выход частиц, образовавшихся во время ядерных реакций или радиоактивного распада. То есть это излучение, которое выходит из некоторых веществ.

Радиоактивные частицы имеют различную способность проникновения и прохождения через различные вещества . Некоторые из них могут проходить через стекло, человеческое тело, бетон.

На знании о способности конкретных радиоактивных волн проходить через материалы составлены правила защиты от радиации. Например, стены рентгенологических кабинетов сделаны из свинца, через который радиоактивное излучение не может пройти.

Радиация бывает:

  • природной. Она формирует природный радиационный фон, к которому мы все привыкли. Солнце, почва, камни выделяют излучения. Они не опасны для человеческого организма .
  • техногенной, то есть такой, которая была создана вследствие человеческой деятельности. Сюда относится добывание радиоактивных веществ из глубин Земли, использование ядерных топлив, реакторов и т. д.

Как радиация попадает в человеческий организм

Радиация опасна для человека. При повышении ее уровня выше допустимой нормы развиваются различные заболевания и поражения внутренних органов и систем. На фоне лучевого облучения могут развиваться злокачественные онкологические патологии. Радиационное излучение используют и в медицине. С его помощью проводят диагностику и лечение многих болезней.

Навигация по статье:


Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют - ионизирующее излучение или что чаще встречается радиоактивное излучение , или еще проще радиация . К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация - это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.



Альфа, бета и нейтронное излучение - это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение - это излучение энергии.


Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение - это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое


Нейтронное излучение - это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация:
  • биологическое действие радиации: низкое

Гамма (γ) излучение - это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение - это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.


Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!



Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.




Видео:


Правообладатель иллюстрации BBC World Service Image caption Пока специалисты полагают, что угроза здоровью японского населения невелика

Японские власти сообщили, что во вторник уровень радиации на атомной электростанции "Фукусима-1" на короткий промежуток времени поднялся до отметки, на которой он способен нанести вред здоровью людей.

Всем жителям населенных пунктов в радиусе 20 км от АЭС было предписано немедленно покинуть эту зону. Тем, кто живет на расстоянии от 20 до 30 км от станции, рекомендовали не выходить из дома и провести изоляцию жилищ, чтобы сократить риск попадания в них зараженного воздуха.

Специалисты говорят, что эти действия, если они предприняты незамедлительно, позволяют свести любое негативное воздействие на человеческий организм к минимуму.

Каковы первые последствия воздействия радиоактивного излучения на здоровье человека?

Дозы поглощенного облучения измеряется в греях (один грей равен одному джоулю энергии на один килограмм массы облученного вещества).

Доза облучения больше одного грея считается умеренной, однако уже при такой дозе проявляются симптомы лучевой болезни.

В первые часы после облучения часто начинаются тошнота и рвота, затем следует понос, головные боли и повышение температуры.

Эти явления через некоторое время исчезают, но в течение нескольких недель могут появиться новые и более серьезные симптомы.

При более высоких дозах облучения симптомы лучевой болезни могут проявиться сразу, наряду с множественными и потенциально смертельными поражениями внутренних органов.

Дозы радиации в 4 Гр смертельны для примерно половины здоровых взрослых людей.

Для сравнения, при лечении раковых опухолей радиотерапией пациенты получают несколько доз от 1 Гр до 7 Гр, однако при радиотерапии воздействие оказывается на строго ограниченные участки тела.

Различные ткани организма по-разному реагируют на радиоактивное излучение. Усредненное воздействие на биологические ткани измеряется в зивертах, один зиверт – это количество энергии, поглощенное килограммом биологической ткани, равное по воздействию 1 Гр.

Дозы радиации
Доза радиации (миллизиверты в год, если не указано иное) Эффект
2 Средняя фоновая радиация (в Австралии в среднем 1,5 мЗв, в Северной Америке - 3 мЗв)
9 Облучение, которому подвергается экипаж авиарейса Нью-Йорк-Токио через северный полюс
20 Средний лимит для работников атомной энергетики
50 Бывшая норма радиации для работников атомной энергетики. Также встречается естественно в некоторых районах Ирана, Индии и Европы
100 Порог, с которого отчетливо заметно повышение заболеваемости раком
350 мЗв в течение жизни Порог для переселения людей после Чернобыльской аварии
Разовая доза в 1000 мЗв Вызывает кратковременную (не смертельную) лучевую болезнь с тошнотой и уменьшением содержания лейкоцитов в крови. Тяжесть болезни возрастает вместе с дозой
Разовая доза в 5000 мЗв До половины получивших такую дозу радиации умирают в течение месяца.

Как можно лечить лучевую болезнь?

В первую очередь необходимо ограничить возможность дальнейшего заражения, сняв одежду и обувь. После этого надо помыться с мылом.

Существуют препараты, которые повышают образование лейкоцитов; это помогает в борьбе с воздействием радиации на костный мозг и снижает риск возникновения инфекционных заболеваний в результате ослабления иммунной системы.

Кроме того, возможно применение лекарств для снижения воздействия радиации на внутренние органы человека.

Как радиация влияет на организм человека?

Правообладатель иллюстрации BBC World Service Image caption Важно не допустить к употреблению в пищу зараженные радиацией продукты

Радиоактивные материалы, подвергающиеся спонтанному распаду, испускают ионизирующее излучение, которое может нанести серьезный ущерб внутренним процессам в организме человека. В частности, нарушаются химические связи между молекулами, составляющими человеческую ткань.

Организм пытается восстановить эти связи, но зачастую масштаб ущерба не позволяет это сделать. Кроме того, в процессе естественного восстановления могут возникнуть ошибки.

Наиболее подвержены воздействию радиации клетки желудка и желудочно-кишечного тракта, а также клетки костного мозга, отвечающие за производство белых кровяных тел.

Ущерб организму зависит от уровня и продолжительности воздействия радиации.

Каков долговременный эффект воздействия радиации на организм?

Более всего возрастает риск заболевания раком. Обычно клетки организма просто отмирают, дойдя до своего предельного возраста. Однако когда клетки теряют это свойство и продолжают бесконтрольно размножаться, возникает раковое заболевание.

Здоровый организм обычно не дает клеткам дойти до такого состояния. Однако радиоактивное облучение нарушает эти процессы, резко повышая риск развития рака.

Воздействие радиации приводит также к необратимым изменениям – мутациям – генетического фонда, что, в свою очередь, может передаваться будущим поколениям, вызывая пороки и отклонения от нормального развития: уменьшение размеров мозга и головы, неправильное формирование глаз, задержки роста и трудности в обучении.

Подвержены ли дети большему риску?

Теоретически, да, так как в молодом организме активно продолжается процесс роста и размножения клеток. Соответственно, возрастает и возможность отклонений от нормы в случае нарушения нормальной работы клеток.

Правообладатель иллюстрации BBC World Service Image caption Для детей с их растущими организмами радиация представляет особую опасность

После чернобыльской катастрофы 1986 года, Всемирная организация здравоохранения зарегистрировала резкое увеличение случаев заболевания рака щитовидной железы у детей, которые проживали неподалеку от АЭС.

Причиной тому было выделение радиоактивного йода, который скапливается в щитовидной железе.

Насколько опасна ситуация, сложившаяся на АЭС Фукусима?

На самой АЭС было зарегистрировано ионизирующее излучение в 400 миллизиверт в час.

По мнению специалиста по облучению, профессора Манчестерского университета Ричарда Уэйкфорда, воздействие облучения такой мощности вряд ли может привести к развитию лучевой болезни. Для этого, по его словам, мощность облучения должна быть в два раза выше.

Однако даже такое облучение может стать причиной замедления образования лейкоцитов костным мозгом и на 2-4% повышает риск развития ракового заболевания. В среднем риск заболевания раком в Японии составляет 20-25%.

При этом профессор Уэйкфорд отмечает, что такому воздействию радиации подверглись лишь те, кто участвовал в аварийных работах на атомном реакторе. Кроме того, для снижения уровня облучения эти работники могли привлекаться к работам на АЭС лишь на краткий период времени.

Уровень облучения населения, включая и тех, кто живет недалеко от АЭС, был гораздо меньше.

Что могут сделать японские власти для снижения негативных последствий для здоровья людей?

Как полагает профессор Уэйкфорд, при быстрых и правильных действиях властей последствия облучения для населения могут быть минимальны.

Главной задачей, по мнению Уэйкфорда, должны стать эвакуация населения из близлежащих районов и недопущение употребления пищевых продуктов, подвергнувшихся воздействию радиации.

Для снижения риска накопления радиоактивного йода в щитовидной железе населению могут выдать таблетки с йодом.

Кроме того, диета японцев богата йодом, поэтому это также может способствовать борьбе с последствиями облучения.

Можно ли сравнить аварию на АЭС Фукусима с Чернобыльской катастрофой?

Как заявил профессор Джерри Томас, изучавший последствия чернобыльской аварии, вряд ли произошедшее в Японии сможет сравниться с Чернобылем.

"На Чернобыльской АЭС произошел взрыв, в результате которого был полностью разрушен реактор, и в окружающую среду попало огромное количество радиоактивных веществ", – говорит Джерри Томас.

Профессор Томас подчеркивает, что в основном последствия Чернобыльской аварии наблюдались у тех, кто проживал недалеко от АЭС и, главным образом, у детей.

И значит ли это, что у нас экологическая обстановка хуже, чем в стране, где произошла авария на АЭС? Что же «фонит» в наших городах и не пора ли бежать за дозиметром, чтобы измерить уровень радиации?

уровень радиации

Евгений Вадимович ШИРОКОВ, доцент физического факультета МГУ, заместитель заведующего кафедрой общей ядерной физики.

Повышенный уровень радиации: три главных источника

Основные источники радиации:

1 Космическое излучение, те его частицы, которые доходят до Земли. Но у нас имеется очень надежная и естественная защита от этого излучения — атмосфера. Несколько десятков километров плотного воздуха являются очень сильной преградой для радиоактивных излучений. Их абсолютное большинство — 99,99% - застревает в атмосфере.

2 Радиоактивные изотопы, которые находятся в почве. В природе существует немалое количество радиоактивных ядер-изотопов, которые имеют обыкновение непредсказуемо распадаться, выбрасывая энергию. Эта достаточно мощная энергия, воздействуя на вещество изнутри, может вызывать разрушение или другие эффекты.

3 Отходы некоторых предприятий. Причем это необязательно станции на ядерном топливе (АЭС), а различные предприятия, чаще химического цикла, где в процессе производства может образовываться небольшое количество радиоактивных изотопов. Когда они выбрасываются в атмосферу, наблюдается повышенный уровень радиации.

Но есть и другие источники радиации, гораздо менее значимые. Например, — что обычно изумляет людей — это излучение самого человека! Дело в том, что в нашем организме содержатся два радиоактивных изотопа (никакой опасности для нас они не представляют, они вообще присутствуют во всей органике) — это 14-й углерод, так называемый радио-углерод, и 40-й калий — он содержится в мышечной ткани.

Место действия

Высота. Когда вы летите в самолете на высоте 10 тыс. км и у вас — случайно! — с собой окажется дозиметр, вы с удивлением обнаружите, что уровень радиации в салоне пассажирского лайнера может в 15−20 раз превышать естественный радиационный фон на земле.

Это эффект космического излучения. Чем выше мы поднимаемся, тем меньше частицы, приходящие из космоса, задерживаются атмосферой. Например, те, кто живет в горах, на уровне 4−5 км — все время находятся при повышенном радиационном фоне. Причем превышение может быть даже на порядок, то есть в 10 раз. К примеру, в горах Тибета, в Лхасе, где естественный радиационный фон составляет 100−110 микрогентген в час. Для сравнения: в Москве стандартный радиационный фон — 12−14. Но люди в Лхасе живут и неплохо себя чувствуют.

Сооружения из гранита . Например, на многих станциях метро радиационный фон выше естественного в 2−3 раза, потому что для их облицовки используется гранит. Или на гранитных ступенях у входа в главное здание МГУ — если измерить уровень радиации, он будет в 2 раза выше естественного.

Особенности восприятия

Главный вопрос заключается не в том, что радиационный фон выше, а в том, насколько он выше. Я привел пример авиаперелета, ведь если мы в среднем летаем нечасто, то пилоты, стюардессы, экипаж — практически все время. Но я не слышал, чтобы в этой группе, которая относится к так называемой категории В (лица, находящиеся в повышенном радиационном фоне), отмечались заболевания, связанные с облучением. Можно достаточно уверенно сказать, что превышение допустимого уровеня радиации даже в 10 раз в большинстве случаев вреда здоровью не наносит.

Но есть определенная тонкость. Она связана с тем, что у всех людей разная восприимчивость к радиации. В большинстве своем для человека вполне приемлема и безопасна некоторая доза радиации, получаемая им в сутки. Однако в силу индивидуальности каждого организма возможны отклонения как в одну сторону, так и в другую. И, если у человека, оказавшегося в зоне, где фон значительно превышен, обнаружились явные признаки облучения, это связано с его индивидуальной непереносимостью радиации.

Лучи в клетках

Радиоактивное излучение действует на клетки организма двумя путями: первый — это прямое разрушение, когда из-за воздействия изнутри клетка просто погибает. Второй считается более опасным из-за образования свободных радикалов. Суть в том, что сложная органическая молекула, из которых мы состоим, разрушается не полностью, а частично. И эту освободившуюся часть заполняет свободный радикал, который может присоединить к себе все что угодно из окружающей среды, любую частицу, в том числе и радиоактивную, любой атом, лишь бы он подошел по своему строению. И тогда безвредное органическое вещество может превратиться в яд.

Если обычные клетки просто погибают, то в клетках, отвечающих за наследственность, возможны хромосомные изменения, влияющие впоследствии на потомство. Правда, и те, и другие процессы регулируются регенерационными способностями нашего организма. Как у ящерицы отрастает хвост, так и у нас часть клеток восстанавливается. Естественно, до определенного предела. Когда достигается этот предел, мы говорим о том, что организму нанесен вред.

Допустимый уровень радиации

Те радиационные нормы, которые действуют сегодня, созданы с очень большим запасом. И это разумно — в данной области лучше перестраховаться. Однако после событий 11 марта в Японии ученые заговорили об их пересмотре в сторону повышения, то есть приближения к реальным.

Ведь когда говорят о превышении уровня радиации, то паника, которая возникает в таких случаях, очень опасна. Когда в городах Японии было зарегистрировано повышение в 1,5−2 раза, люди бросились скупать йод, принимать его, что само по себе достаточно вредно, не понимая, что они находятся в безопасной радиационной ситуации. Действительно опасная ситуация сейчас в 1−2-километровой зоне от станции Фукусима — фон действительно очень высокий, и работать там даже в средствах защиты можно только очень ограниченное время. Так вот, паника возникла из-за непонимания того, что даже небольшое превышение дозы (до 10 раз) в 99,999% случаев не опасно для человека. То есть это практически естественный фон, если подняться на несколько километров в горы.

Дозиметристы делают свое дело грамотно. Неграмотно оповещается население. Это касается всех стран: радиофобия — явление распространенное.

Например, паника может возникнуть из-за того, что кто-то сказал жильцам, что их дом построен с применением радиоактивного песка, и люди будут думать, что обречены. Хотя превышение фона может составлять 5% - это просто ничто.

Поэтому главная проблема — в информированности. Причем в информированности компетентной. Источники реальной опасности, связанной с радиацией, вполне конкретны, и в нашей обычной жизни попасть под их воздействие крайне сложно, если не искать их специально.

Излучение в повседневной жизни

Бытовые приборы. Сейчас, в связи с существованием строгого радиационного контроля на производстве, бытовой прибор, в котором находят сколько-нибудь серьезные источники радиации, очень сложно встретить. Например, один из таких приборов — детектор дыма, который устанавливают в отелях, аэропортах в качестве противопожарной сигнализации. Но радиоактивные элементы там настолько микроскопические, что получить вред от этого приспособления можно только одним способом: разобрать его, найти опасный элемент и проглотить. Я думаю, никто в здравом уме такое не сделает.

Рентгеновские сканеры. Сейчас их установили во многих аэропортах мира. Но беременные женщины и дети могут его не проходить, и любой человек, если он из соображений безопасности для здоровья не хочет «просвечиваться», может пройти страндартный личный досмотр.

А что касается вреда, то это кратковременное излучение в целом не опасно. По сути, одно прохождение через сканер соответствует 1/3 от флюорографии грудной клетки. Действительно вредной для здоровья процедурой являются разные формы радиотерапии, которую применяют в тяжелых стадиях онкологических заболеваний, особенно лучевая терапия. Однако это крайние меры, которые принимаются уже в запущенной стадии болезни, когда приходится дробить раковые клетки, при этом облучаются и соседние клетки.

Но в таком случае врачи исходят из принципа меньшего зла. Если человеку по прогнозам остается жить всего несколько месяцев, то после лучевой терапии он получает возможность прожить несколько лет.

Когда же с целью диагностики человеку вводят достаточно большие дозы радиоизотопов, то он становится в какой-то степени источником радиации, особенно опасно это для детей, если они находятся рядом. Правда, достаточно некоторой дистанции, чтобы минимизировать опасность для окружающих.

Но сейчас ученые физического факультета МГУ участвуют в сооружении приборов для совершенно нового метода — электронной терапии в сотрудничестве с Онкологическим центром, и это, конечно, определенный прогресс в лечении онкологических заболеваний. Эти приборы смогут точечно выжигать опухоль, не повреждая соседние ткани.

Как защититься от воздействия радиации

Как ни странно, это здоровый образ жизни и правильное питание. Поглощение вредных веществ из окружающей среды происходит из-за отсутствия ряда полезных веществ в организме. При дефиците некоторых минералов и витаминов он, как губка, начинает впитывать ненужные вещества из окружающей среды.

Поэтому залог здоровья и радиационной безопасности — это полноценное питание, особенно для детей, богатое необходимыми элементами, в первую очередь кальцием и железом: эти элементы при их дефиците в первую очередь замещаются радиоактивными изотопами.

Кальций, например, легко заменяется радиоактивным стронцием, если он, конечно, находится в окружающей атмосфере. Поэтому так важно получать все необходимые элементы в питании, в этом случае опасность заражения, даже если источник излучения находится рядом, значительно снижается.

Есть разные мнения, в том числе и в медицинском сообществе, о веществах, которые выводят изотопы: красное вино, ягоды красной смородины, крыжовника и т. д. Но дело в том, что они ускоряют выведение любых веществ из организма. Поэтому заболевшему человеку врачи рекомендуют много пить, чтобы обмен веществ ускорялся и организм очищался от токсинов.

Но приобретать всем поголовно дозиметры я не советую. Этим должны заниматься профессионалы. Если неподготовленные люди будут проводить замеры, то естественные колебания радиационного фона могут спровоцировать у них панику.

Мнение эксперта

Галина Петровна КОРЖЕНКОВА, врач-маммолог Российского Онкологического центра, к. м. н., эксперт благотворительной программы компании Avon «Вместе против рака груди»

Маммография — это  опасно?

Первое, что нужно отметить: маммографическое исследование, как исследование с целью профилактики рака молочной железы на самой ранней стадии, показано только для женщин старше 40 лет. Для женщин до 40 лет существуют другие виды исследования — с помощью ультразвука и МРТ, а рентгеновский скрининг используется только в случае высокого генетического риска. А вот после 40  лет играет ведущую роль в ранней диагностике рака молочной железы.

Причина, почему женщинам более молодого возраста не рекомендуется маммография: во‑первых, ткань молочных желез у них еще плотная, и маммография не может выполнить свою основную функцию.

Кроме того, международные исследования доказали, что ткани молочной железы к рентгеновскому излучению наиболее чувствительны в возрасте от 20 до 30 лет. После 40 эта чувствительность снижается на порядок, а после 50 — еще в 10 раз. Поэтому рентгеновские скрининговые программы по решению ВОЗ допустимы только для женщин в возрасте старше 40 лет.

Доза, которую женщина получает в момент рентгеновского исследования, была рассчитана шведскими учеными: на 4 маммографических снимка она равна 30% фонового уровня радиации, которую человек получает в течение 3 месяцев.

Из всех регулярных исследований, которые сейчас введены, кроме флюорографии, которую можно делать раз в год, и маммографии, которая, как уже говорилось, допустима с 40 лет, других не рекомендуется. Флюорография у нас — если нет экстренной необходимости — разрешена детям, вернее, подросткам, с 15 лет.

А вот когда женщина сама назначает себе рентгеновские исследования — компьютерную томографию, маммографию — в одном месте, потом ради перепроверки — в другой клинике, то она, конечно, подвергается дополнительному, очевидно ненужному и неполезному облучению.

Вообще безопасность рентгенографии зависит, главным образом, не от дозы облучения, а от качества проведения данного исследования. Поэтому следует ввести сертификацию всех рентгеновских аппаратов.

Как себя обезопасить? Пациентка, приходящая на маммографию, должна спросить, какое количество снимков вы делаете . Если ей предлагают два, то это можно считать некачественным исследованием. Снимков должно быть 4 — по 2 на каждую молочную железу. Ситуация может меняться только для онкологических пациентов, когда требуется более детальное исследование.

Вы не должны опасаться повышенного уровня радиации, если вам предложат пересняться: такая практика существует даже в высококлассных медицинских центрах, в том числе и за рубежом. До 3−5% случаев — это норма. Вот если каждой второй делают повторные снимки, это уже вопрос к организации здравоохранения. Этот процесс должно контролировать руководство клиники. И дело не только в технике, важную роль играет человеческий фактор, уровень подготовки врачей-рентгенологов. И даже если мы оборудуем все медицинские учреждение дорогостоящей аппаратурой, это вовсе не гарантирует идеальных снимков, позволяющих поставить точный диагноз с первого кадра. Необходимы профессионалы, которые умеют с этой аппаратурой полноценно работать.

Рентгеновское облучение: как определить допустимый уровень радиации

Высокотехнологичное рентгеновское сканирование может представлять для нас угрозу лишнего облучения. Наши советы помогут вам снизить дозу.

Мы подвергаемся воздействию рентгеновских лучей примерно в 5−7 раз больше, чем 30 лет назад. Этому две причины: все более широкое применение компьютерной томографии (излучение почти в 500 больше стандартного рентгеновского снимка) и использование во многих медучреждениях рентгеновского оборудования старого образца. Современные цифровые диагностические аппараты дают в несколько раз меньшие дозы облучения. Поэтому старайтесь обследоваться в современных, хорошо оснащенных клиниках.

Старайтесь избегать неоправданных рентгеновских обследований. Конечно, если болит зуб или сломана рука, без рентгена не обойтись. Но  при ряде заболеваний врач может предложить альтернативные методы диагностики. При подозрении на язву желудка, например, часто применяют эндоскопию.

Если врач все-таки направил вас на рентген, он  должен объяснить, что произойдет, если вы откажетесь от него, и почему невозможны альтернативные методы. Риск отказа от рентгена должен заведомо превышать риск облучения при его проведении. Например, при наличии клинических симптомов пневмонии рентгенологическое обследование — единственная возможность подтвердить или исключить диагноз.

Для того чтобы не облучаться лишний раз, контролируйте свой рентгеновский паспорт (вкладывается в медицинскую карточку), куда рентгенолог обязательно заносит полученную вами дозу при каждом обследовании.

При подготовке к процедуре проследите, чтобы области таза, щитовидной железы, глаз и других частей тела были защищены специальным фартуком или воротником с прослойками из свинца. Если вам делают снимки зубов, то очень важно экранировать область щитовидной железы. У детей вообще должно быть защищено все тело, кроме исследуемой области.

Обязательно храните рентгеновские снимки. Сообщите своему лечащему врачу, если вам делали рентгенографию в другой поликлинике или больнице за последние 5 лет. Он  сможет перепроверить результаты и «сэкономить» лишнее облучение.

Фиксируйте любые контакты с радиацией (например, если вы постоянно летаете) и сообщайте об этом своему врачу. Есть виды диагностического сканирования (МРТ, УЗИ), которые не подвергают вас облучению.

Вопрос терминологии

В Международной системе единиц радиация измеряется в зивертах. Для нас привычно понятие «рентген». В чем разница?

РЕНТГЕН — Доза радиации в атмосферном воздухе. ЗИВЕРТ — доза радиации в биологической ткани. Так как это очень большая доза, то уровень рентгеновского излучения считают в МИКРОЗАВЕРТАХ (мкЗв).

Дозы излучения при рентгеновских исследованиях: 1 снимок зуба — 5 мкЗв 1 панорамный снимок зубов — 15−20 мкЗв Снимок грудной клетки — 100  мкЗв Cнимок придаточных пазух носа — 100−200 мкЗв Маммография — 400 мкЗв Флюорограмма — 600 мкЗв Компьютерная томография кишечника — 10000 мкЗв КТ брюшной полости и органов малого таза — 15000 мкЗв

Для сравнения — уровень радиации в нашей жизни:

Ежедневный 3-часовой просмотр телепередач — 5 мкЗв

Авиаперелет на расстояние 2400 км — 10 мкЗв

Среднегодовое фоновое воздействие окружающей среды — 1000 мкЗв

Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

Основными источниками радиации являются:

  • природные радиоактивные вещества вокруг и внутри нас - 73%;
  • медицинские процедуры (рентгеноскопия и прочие) - 13%;
  • космическое излучение - 14%.

Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

mos-rep.ru

Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

В каких единицах измеряется радиация

Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

С прочими единицами измерения можно ознакомиться в таблице.

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель, Бк

1 Ки = 3,7 × 10 10 Бк

Число радиоактивных распадов в единицу времени

Мощность дозы

Зиверт в час, Зв/ч

Рентген в час, Р/ч

1 мкР/ч = 0,01 мкЗв/ч

Уровень излучения в единицу времени

Поглощённая доза

Радиан, рад

1 рад = 0,01 Гр

Количество энергии ионизирующего излучения, переданное определённому объекту

Эффективная доза

Зиверт, Зв

1 рем = 0,01 Зв

Доза облучения, учитывающая различную

чувствительность органов к радиации

Последствия облучения

Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


chornobyl.in.ua

Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

  • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
  • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
  • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
  • около 7 000 000 мкЗв - смерть.

Опасны ли рентгенологические исследования


Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

  • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
  • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
  • 80 цифровых ортопантомограмм (13–17 мкЗв);
  • 40 плёночных ортопантомограмм (25–30 мкЗв);
  • 20 компьютерных томограмм (45–60 мкЗв).

То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

Кому нельзя облучаться

Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

Как защититься

Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.