Чехов

Ученые внесшие большой вклад в информатику. Презентация на тему: "Выдающиеся ученые информатики". Новосибирский государственный технический университет


Реферат по дисциплине концептуальные основы информатики.

ТЕМА: Выдающиеся отечественные и зарубежные учёные, внёсшие существенный вклад в развитие и становление информатики

Группа: АМ-216

Студент: Сараев В.Ю.

Новосибирск 2002


- Введение

- Блез Паскаль

- Шарль Ксавье Томас де Кольмар

- Чарльз Бэббидж

- Герман Холлерит

- Электромеханическая вычислительная машина "Марк 1«

- Создание транзистора

- М-1

- М-2

- Дальнейшее развитие информатики

- Список используемой литературы

Информатика - наука об общих свойствах и закономерностях информации, а также методах её поиска, передачи, хранения, обработки и использования в различных сферах деятельности человека. Как наука сформировалась в результате появления ЭВМ. Включает в себя теорию кодирования информации, разработку методов и языков программирования, математическую теорию процессов передачи и обработки информации.

В развитии вычислительной техники обычно выделяют несколько поколений ЭВМ: на электронных лампах (40-е-начало 50-х годов), дискретных полупроводниковых приборах (середина 50-х-60-е годы), интегральных микросхемах (в середине 60-х годов).

История компьютера тесным образом связана с попытками человека, облегчить автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже древности появилось простейшее счётное устройство-абак. В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты.

Блез Паскаль(1623 - 1662) счетное устройство

В 1641 году французский математик Блез Паскаль, когда ему было 18 лет, он изобрёл счетную машину - "бабушку" современных арифмометров. Предварительно он построил 50 моделей. Каждая последующая была совершеннее предыдущей. В 1642 году французский математик Блез Паскаль конструировал счетное устройство, чтобы облегчить труд своего отца - налогового инспектора, которому приходилось производить немало сложных вычислений. Устройство Паскаля "умело" только складывать и вычитать. Отец и сын вложили в создание своего устройства большие деньги, но против счетного устройства Паскаля выступили клерки, они боялись потерять из-за него работу, а также работодатели, считавшие, что лучше нанять дешевых счетоводов, чем покупать новую машину. Юный конструктор записывает, не зная еще, что мысль его на века обгоняет свое время: "Вычислительная машина выполняет действия, более приближающиеся к мысли, чем всё то, что делают животные". Машина приносит ему популярность. Оценить его формулы и теоремы могут лишь считанные люди, а тут - подумать только! Машина считает сама!! Это мог оценить любой смертный, и вот толпы людей торопятся в Люксембургский сад, чтобы поглазеть на чудо-машину, о ней пишут стихи, ей приписывают фантастические добродетели. Блез Паскаль становится знаменитым человеком.

Два столетия спустя, в 1820 француз Шарль Ксавье Томас де Кольмар (1785...1870) создал Арифмометр, первый массово производимый калькулятор. Он позволял производить умножение, используя принцип Лейбница, и являлся подспорьем пользователю при делении чисел. Это была самая надежная машина в те времена; она не зря занимала место на столах счетоводов Западной Европы. Арифмометр так же поставил мировой рекорд по продолжительности продаж: последняя модель была продана в начале XX века.

Чарльз Бэббидж (1791-1871)

Чарльз Бэббидж проявил свой талант математика и изобретателя весьма широко. Перечисление всех новаций, предложенных ученым, получится довольно длинным, однако в качестве примера можно упомянуть, что именно Бэббиджу принадлежат такие идеи, как установка в поездах «черных ящиков» для регистрации обстоятельств аварии, переход к использованию энергии морских приливов после исчерпания угольных ресурсов страны, а также изучение погодных условий прошлых лет по виду годичных колец на срезе дерева. Помимо серьезных занятий математикой, сопровождавшихся рядом заметных теоретических работ и руководством кафедрой в Кембридже, ученый всю жизнь страстно увлекался разного рода ключами-замками, шифрами и механическими куклами.

Во многом благодаря именно этой страсти, можно сказать, Бэббидж и вошел в историю как конструктор первого полноценного компьютера. Разного рода механические счетные машины были созданы еще в XVII-XVIII веках, но эти устройства были весьма примитивны и ненадежны. А Бэббидж, как один из основателей Королевского астрономического общества, ощущал острую потребность в создании мощного механического вычислителя, способного автоматически выполнять длинные, крайне утомительные, но очень важные астрономические калькуляции. Математические таблицы использовались в самых разнообразных областях, но при навигации в открытом море многочисленные ошибки в таблицах, рассчитанных вручную, бывало, стоили людям жизни. Основных источников ошибок было три: человеческие ошибки в вычислениях; ошибки переписчиков при подготовке таблиц к печати; ошибки наборщиков.

Будучи еще весьма молодым человеком, в начале 1820-х годов Чарльз Бэббидж написал специальную работу, в которой показал, что полная автоматизация процесса создания математических таблиц гарантированно обеспечит точность данных, поскольку исключит все три этапа порождения ошибок. Фактически вся остальная жизнь ученого была связана с воплощением этой заманчивой идеи в жизнь. Первое вычислительное устройство, разработанное Бэббиджем, получило название «разностная машина», поскольку в вычислениях опиралось на хорошо разработанный метод конечных разностей. Благодаря этому методу все сложно реализуемые в механике операции умножения и деления сводились к цепочкам простых сложений известных разностей чисел.

Хотя работоспособный прототип, подтверждающий концепцию, был построен благодаря правительственному финансированию весьма быстро, сооружение полноценной машины оказалось делом весьма непростым, поскольку требовалось огромное количество идентичных деталей, а индустрия в те времена только-только начинала переходить от ремесленного производства к массовому. Так что попутно Бэббиджу пришлось самому изобретать и машины для штамповки деталей. К 1834 году, когда «разностная машина № 1» еще не была достроена, ученый уже задумал принципиально новое устройство - «аналитическую машину», явившуюся, по сути дела, прообразом современных компьютеров. К 1840 году Бэббидж практически полностью завершил разработку «аналитической машины» и тогда же понял, что воплотить ее на практике сразу не удастся из-за технологических проблем. А потому он начал проектировать «разностную машину № 2» - как бы промежуточную ступень между первым вычислителем, ориентированным на выполнение строго определенной задачи, и второй машиной, способной автоматически вычислять практически любые алгебраические функции.

Мощь общего вклада Бэббиджа в информатику заключается, прежде всего, в полноте сформулированных им идей. Ученым была спроектирована система, работа которой программировалась через ввод последовательности перфокарт. Система была способна выполнять разнообразные типы вычислений и настолько гибка, насколько это могли обеспечить инструкции, подаваемые на вход. Иными словами, гибкость «аналитической машины» обеспечивалась благодаря «программному обеспечению». Разработав чрезвычайно развитую конструкцию принтера, Бэббидж стал пионером идеи компьютерного ввода-вывода, поскольку его принтер и пачки перфокарт обеспечивали полностью автоматический ввод и вывод информации при работе вычислительного устройства.

Были сделаны и дальнейшие шаги, предвосхитившие конструкцию современных компьютеров. «Аналитическая машина» Бэббиджа могла хранить промежуточные результаты вычислений (набивая их на перфокарты), чтобы обработать их впоследствии или использовать один и тот же промежуточный массив данных для нескольких разных калькуляций. Наряду с разделением «процессора» и «памяти», в «аналитической машине» были реализованы возможности условных переходов, разветвляющих алгоритм вычислений, и организации циклов для многократного повторения одной и той же подпрограммы. Не имея под рукой реального вычислителя, в своих теоретических рассуждениях Бэббидж продвинулся настолько, что сумел глубоко заинтересовать и привлечь к программированию своей гипотетической машины дочь Джорджа Байрона Августину Аду Кинг, графиню Лавлейс, обладавшую бесспорным математическим дарованием и вошедшую в историю как «первый программист».

К сожалению, Чарльзу Бэббиджу не довелось увидеть воплощения большинства из своих революционных идей. Работу ученого всегда сопровождали несколько очень серьезных проблем. Его крайне живой ум совершенно не был способен удержаться на месте и дождаться завершения очередного этапа. Едва предоставив мастерам, чертежи изготовляемого узла, Бэббидж тут же начинал вносить в него поправки и добавления, непрерывно отыскивая пути для упрощения и улучшения работы устройства. Во многом именно из-за этого практически все начинания Бэббиджа так и не были доведены до конца при его жизни. Другая проблема - весьма конфликтный характер. Вынужденный постоянно выбивать под проект деньги в правительстве, Бэббидж тут же мог выдавать такого рода фразы: «Меня дважды спрашивали [члены парламента]: „А скажите, мистер Бэббидж, если заложить в машину неверные числа, на выходе она все равно выдаст правильный ответ?“ Я не в состоянии постичь, какую же кашу надо иметь в голове, чтобы она порождала подобного рода вопросы»… Понятно, что при такой натуре и склонности к резким суждениям ученый постоянно имел трения не только со сменявшими друг друга правительствами, но и с духовными властями, недолюбливавшими вольнодумца, и с мастерами, изготовлявшими узлы его машин.

Выдающийся канадский физиолог и нейропсихолог. В области нейроинформатики он известен своими работами, приведшими к пониманию влияния нейронов на процесс обучения. Его по праву считают одним из создателей теории искусственных нейронных сетей . Хебб предложил один из первых работающих алгоритмов их обучения.

В области искусственного интеллекта его именем названы искусственные нейронные сети Хэмминга, применяющихся для классификации образов. В них, а также во многих других направлениях, например, в эволюционном моделировании, используется понятие расстояния Хэмминга.

Ричард Хэмминг — обладатель большого количества наград и лауреат многих премий. В его честь была учреждена специальная медаль, которой награждаются учёные, внёсшие значительный вклад в теорию информации.

Он внес большой вклад в целый ряд областей, включая математику (основы математики, функциональный анализ, геометрии, топологиия математического анализа) , физики (квантовой механики, гидродинамики и квантовой статистической механики), экономике (теория игр), вычислительной (фон-Неймановской архитектуры, линейного программирования, самовоспроизводящихся машин, стохастических вычислений), и статистики.

Фон Нейман был одним из основателей вычислительной техники. Дональд Кнут называет фон Неймана изобретателем, который в 1945 году разработал алгоритм сортировки слиянием, в котором первая и вторая половины массива сортируются рекуррентно, а потом сливаются. Фон Нейман написал программу сортировки для ЕДВАК, чернилами на 23-х страницах. На первой странице можно увидеть следы фразы «Совершенно секретно», которая была написана карандашом, а позже стерта. Он также работал по философии искусственного интеллекта с Аланом Тьюрингом во время визита в Принстон в 1930-х годах.

Норберт Винер изобрел кибернетику, вдохновляя поколение ученых использовать компьютерные технологии как средства для расширения человеческих возможностей.

Видения Винером кибернетики оказали мощное влияние на более поздние поколения ученых, и вдохновили их исследования для расширения человеческих возможностей интерфейсами сложной электроники.

В 1964, Норберт Винер получил национальную медаль науки США. В том же году он опубликовал одну из его последних книг «Бог и Голем».

Английский ученый, математик, логик, криптограф и теоретический биолог. Он был очень влиятельным в развитии теоретической информатики, обеспечивая формализацию понятия алгоритма и вычислений на машине Тьюринга, которую можно считать моделью компьютера общего назначения. Тьюринг считается отцом теоретической информатики и искусственного интеллекта.

Он сделал вклад в теорию автоматов. Он и его последователи успешно применили эту теорию, чтобы увеличить производство компьютеров. Его книга на эту тему «синтез цифровых автоматов» стал широко известен. За эту работу он был удостоен Ленинской премии в 1964 году и избран членом Академии Наук СССР.

Он значительно повлиял на многие другие областях теоретической информатики (в том числе теории программирования и искусственного интеллекта), а также его применение в СССР. Он опубликовал около 800 печатных работ.

Советский специалист в области новых методов управления сложными системами, создания ЭВМ новой архитектуры и проблем искусственного интеллекта. Профессор, доктор технических наук.

Советский ученый, известный как пионер в системах программирования и исследований языков программирования.

Дональд Кнут считает его изобретателем идеи хеширования. Он также создал один из первых алгоритмов для составления арифметических выражений.

Он был ответственным за языки альфа и Рапира, аист-0 первая советская система разделения времени (СРВ), электронные издательские системы «Рубин», и мрамор, на мультипроцессорной рабочей станции. Он также был инициатором создания компьютерного банка Русский Язык (Машинный Фонд Русского Языка), Советский проект для создания крупного представителя русского корпуса, проектом в 1980-е годы сопоставимы с английским банком и британским национальным корпусом. В Национальном корпусе русского языка, созданных Российской Академией наук в 2000-х годах является правопреемником проекта Ершова.

Советский математик и пионер информатики. Один из основателей кибернетики. Ляпунов был членом Советской Академии наук и специалистом в области реальной теории функций, математических вопросов кибернетики, теории множеств, теории программирования, математической лингвистикии и математической биологии.

Американский математик, инженер-электрик, и криптограф, известный как «отец теории информации».

Шеннон известен, за написание основ теории информации, Математической Теории связи, которые он опубликовал в 1948 году. В 21 год будучи магистром в Массачусетском технологическом институте (МТИ) , он писал диссертацию, доказывая, что электрическим применением Булевой алгебры можно строить любые логические, числовые отношения. Шеннон внес большой вклад в область криптоанализа для национальной обороны во время Второй Мировой Войны, включая его основные работы по codebreaking и надежности телекоммуникаций.

Реферат У ченика МБОУ “ СОШ №4 ” 10А класса Ильичева Ильи На тему: ” Вклад российских ученых в развитие вычислительной техники ХХ в.” Город: Ахтубинск 2019 год Руководитель: О.Н.Кнышов

Обоснование необходимости проведения работы. Появление компьютеров – одна из существенных особенностей современного мира. Первоначальный смысл английского слова «компьютер» – это человек, производящий расчеты. Широкое распространение компьютеров привело к тому, что все большее число людей стали изучать основы вычислительной техники, а программирование постепенно превратилось из рабочего инструмента специалиста в элемент культуры.

Первая половина XX в. Конкретный комплекс счетно-аналитической техники может состоять из различного числа устройств, но в него обязательно входят следующие четыре устройства: 1) входной перфоратор; 2) контрольник; 3) сортировальная машина; 4) табулятор.

Первая половина XX в. К 1930 г. в мире уже существовало около 8000 САК. Нередко в них внедрялись новаторские решения: табуляторы с алфавитно-цифровым выводом, совместная работа нескольких табуляторов.

Первая половина XX в. В начальный период развития перфорационной техники она применялась главным образом в статистике. Со временем все более возрастает ее применение для бухгалтерского учета. Например, в 40-е гг. в СССР в статистике использовалось около 10 % счетно-аналитических машин, а более 80 %– в бухгалтерском учете.

Первая половина XX в. В Академии наук СССР создается самостоятельная машиносчетная станция. В 1926–1927 гг. в промышленности, на транспорте, в государственных банках и ЦСУ создаются крупные машиносчетные станции. С 1931 г. в СССР начинается широкое развитие работ по механизации учета.

Первая половина XX в. Следующей была выпущена модель Т-2, выполняющая те же операции и получившая широкое распространение. Эта модель выпускалась до 1940 г. Она была рассчитана на два режима работы: обычный и повышенный. Смена режима осуществлялась переключением скорости работы главного мотора, а выбор режима определялся скоростью подачи перфокарт.

Первая половина XX в. Машина «РВМ-1» была создана по проекту Н. И. Бессонова. Проект запоздал, но был очень удачным и по быстродействию мог соперничать с электронными вычислительными машинами: умножение двух чисел с плавающей точкой с 27-разрядной мантиссой и 6-разрядным порядком производилось за 50 мс.

Краткие итоги первой половина XX в. Необходимость проведения массовых расчетов в различных областях и развитие электротехники привели к созданию электромеханической вычислительной техники. Кроме того, были введены еще очень важные принципы и понятия – двоичная система счисления и математическая логика Джорджа Буля.

Краткие итоги первой половина XX в. Основными устройствами табулятора были: вычислительный механизм, в котором использовались реле; перфоратор; сортировальная машина. Г. Холлерит стал «отцом-основателем» целого направления вычислительной техники – счетно-перфорационного. На базе созданных им устройств создавались целые машиносчетные станции для механизированной обработки информации, послужившие прообразом грядущих вычислительных центров.

Вторая половина XX в. В декабре 1951 года успешно прошла испытания первая в России ЭВМ. Результаты испытаний, как и принято в Академии наук СССР, были оформлены подробным отчетом, утвержденным директором Энергетического института АН СССР академиком Г. М. Кржижановским 15 декабря 1951 года.

Вторая половина XX в. Машина была введена в эксплуатацию для решения задач как в интересах ученых своего института, так и для сторонних организаций. Решали на этой машине свои задачи и ученые ряда институтов Академии наук СССР. Машина М-1 находилась в эксплуатации более трех лет.

Вторая половина XX в. Машина М-1 включала в свой состав арифметическое устройство параллельного типа, устройство управления - главный программный датчик, внутреннюю память двух видов и устройство ввода-вывода с использованием телеграфной буквопечатающей аппаратуры.

Вторая половина XX в. Основные характеристики М-1: Система счисления - двоичная. Количество двоичных разрядов - 25. Система кодирования - двухадресная. Внутренняя память: медленная на магнитном барабане - 256 чисел, быстрая на электронных трубках - 256 чисел. Скорость работы - около 20 оп/с при работе с магнитным барабаном и около 1000 оп/с при работе с электронной памятью на электростатических трубках. Потребляемая мощность - 8 кВт. Занимаемая площадь - 4 кв. м. (при эксплуатации машина М-1 размещалась в комнате площадью в 12 кв. м.).

Разработчики ЭВМ М-1 Брук Исаак Семенович Матюхин Николай Яковлевич Карцев Михаил Александрович Александриди Тамара Миновна Рогачев Юрий Васильевич Шидловский Рене Павлович Залкинд Александр Борисович Белынский Владалекс Владимирович Лебедев Сергей Алексеевич

Научный подвиг С.А. Лебедева Сергей Алексеевич начал заниматься вопросами конструирования вычислительной техники в 45 лет, будучи уже известным ученым-электриком. К этому времени им были получены значительные научные результаты области устойчивости работы электрических систем.

Научный подвиг С.А. Лебедева Параллельно с завершающим этапом работ над МЭСМ в 1950 году была начата разработка первой Большой Электронно-счетной машины. Разработка БЭСМ велась уже в Москве, в лаборатории ИТМиВТ, которую возглавил С.А. Лебедев. В кратчайший срок такая машина была создана. В апреле 1953 года быстродействующая электронная вычислительная машина БЭСМ-1 была принята Государственной комиссией в эксплуатацию.

Вывод Вклад российских ученых в развитие вычислительной техники ХХ в. о чень велик. Без этих людей р азвитие ЭВМ было бы невозможно. Разработчики машины М-1 - первой российской ЭВМ - в последствии стали крупными специалистами в области вычислительной техники и внесли значительный вклад в ее развитие, в том числе и в составе предприятий Министерства радиопромышленности СССР. Их труд высоко оценен присвоением ученых степеней и почетных званий, присуждением государственных наград.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Цель работы: Обобщить знания по теме Задачи: знакомство с учёными, которые внесли огромный вклад в развитие информатики

3 слайд

Описание слайда:

Аль-Хорезми Аристотель Джон Непер Блез Паскаль Готфрид Лейбниц Джордж Буль Чарльз Бэббидж Норберт Винер Конрад Цузе Герман Холлерит Ада Лавлейс С. А. Лебедев Джон Фон Нейман Клод Шеннон Эдсгер Вайб Дейкстра Тим Бернес-Ли Джон Моучли и Джон Эккерт Алан Тьюринг Шарль Ксавье Томас де Кольмар Стивен Пол Джобс Литература выход Вывод

4 слайд

Описание слайда:

Джордж Буль (1815 - 1864). Развил идеи Г. Лейбница. Считается основоположником математической логики (булевой алгебры). Свои математические исследования Буль начал с разработки операторных методов анализа и теории дифференциальных уравнений, затем занялся математической логикой. В основных трудах Буля "математический анализ логики, являющийся опытом исчисления дедуктивного рассуждения" и "исследование законов мышления, в которых основаны математические теории логики и вероятности" были заложены основы математической логики.

5 слайд

Описание слайда:

Мухаммед ибн Муса Хорезми (около 783-около 850) хорезмийский,центральноазиатский математик, астроном и географ, основатель классической алгебры. Ал-Хорезми написал книгу «Об индийском счёте», способствовавшую популяризации десятичной позиционной системы записи чисел во всём Халифате, вплоть до Испании. В XII веке эта книга была переведена на латинский язык и сыграла очень большую роль в развитии европейской арифметики и внедрении индо-арабских цифр. Имя автора, в латинизированной форме (Algorismus, Algorithmus), стало обозначать в средневековой Европе всю систему десятичной арифметики; отсюда берёт начало современный термин алгоритм, впервые использованный Лейбницем.

6 слайд

Описание слайда:

Аристотель (384 - 322 гг. до н.э). Ученый и философ. Он пытался дать ответ на вопрос: «Как мы рассуждаем», изучал правила мышления. Подверг человеческое мышление всестороннему анализу. Определил основные формы мышления: понятие, суждение, умозаключение. Его трактаты по логике объединены в сборнике «Органон». В книгах «Органона»: «Топика», «Аналитики», в «Герменевтике» и др. мыслитель разрабатывает важнейшие категории и законы мышления, создает теорию доказательства, формулирует систему дедуктивных умозаключений. Дедукция (от лат. deductio - выведение) позволяет выводить истинное знание о единичных явлениях, исходя из общих закономерностей. Логику Аристотеля называют формальной логикой.

7 слайд

Описание слайда:

Джон Непер (1550 - 1617) В 1614 году шотландский математик Джон Непер изобрел таблицы логарифмов. Принцип их заключался в том, что каждому числу соответствует свое специальное число - логарифм. Логарифмы очень упрощают деление и умножение. Например, для умножения двух чисел складывают их логарифмы. результат находят в таблице логарифмов. В дальнейшем им была изобретена логарифмическая линейка, которой пользовались до70-х годов нашего века.

8 слайд

Описание слайда:

Блез Паскаль (1623 - 1662) В 1642 году французский математик Блез Паскаль сконструировал счетное устройство, чтобы облегчить труд своего отца - налогового инспектора, которому приходилось производить немало сложных вычислений. Устройство Паскаля "умело" только складывать и вычитать. Отец и сын вложили в создание своего устройства большие деньги, но против счетного устройства Паскаля выступили клерки - они боялись потерять из-за него работу, а также работодатели, считавшие, что лучше нанять дешевых счетоводов, чем покупать дорогую машину. Счетное устройство

9 слайд

Описание слайда:

Готфрид Лейбниц (1646 - 1716) В 1673 году выдающийся немецкий ученый Готфрид Лейбниц построил первую счетную машину, способную механически выполнять все четыре действия арифметики. Ряд важнейших ее механизмов применяли вплоть до середины 20 века в некоторых типах машин. к типу машины Лейбница могут быть отнесены все машины, в частности и первые ЭВМ, производившие умножение как многократное сложение, а деление - как многократное вычитание. Главным достоинством вех этих машин являлись более высокие, чем у человека, скорость и точность вычислений. Их создание продемонстрировало принципиальную возможность механизации интеллектуальной деятельности человека. счетная машина

10 слайд

Описание слайда:

Чарльз Бэббидж (1791-1871) В начале 19 века Чарльз Бэббидж сформулировал основные положения, которые должны лежать в основе конструкции вычислительной машины принципиально нового типа. Эти исходные принципы, изложенные более 150 лет назад, полностью реализованы в современных ЭВМ, но для 19 века они оказались преждевременными. Бэббидж сделал попытку создать машину такого типа на основе механического арифмометра, но ее конструкция оказалась очень дорогостоящей, и работы по изготовлению действующей машины закончить не удалось. С 1834 года и до конца жизни Бэббидж работал над проектом аналитической машины, не пытаясь ее построить. Только в 1906 году его сын выполнил демонстрационные модели некоторых частей машины. Если бы аналитическая машина была завершена, то, по оценкам Бэббиджа, на сложение и вычитание потребовалось 2 секунды, а на умножение и деление – 1 минута. Аналитическая машина

11 слайд

Описание слайда:

Норберт Винер (1894 - 1964) Норберт Винер завершил свой первый фундаментальный труд (вышеупомянутую "Кибернетику") в возрасте 54 лет. А до этого была еще полная достижений, сомнений и тревог жизнь большого ученого. К восемнадцати годам Норберт Винер уже числился доктором философии по специальности "математическая логика" в Корнельском и Гарвардском университетах. В девятнадцатилетнем возрасте доктор Винер был приглашен на кафедру математики Массачусетского Технологического Института, "где он и прослужил до последних дней своей малоприметной жизни". Так или примерно так можно было бы закончить биографическую статью об отце современной кибернетики. И всё сказанное было бы правдой, ввиду необыкновенной скромности Винера-человека, но Винеру-ученому, если и удалось спрятаться от человечества, то спрятался он в тени собственной славы.

12 слайд

Описание слайда:

Конрад Цузе (1910- 1995) Работы им начаты в 1933 году, а через три года им построена модель механической вычислительной машины, в которой использовались двоичная система счисления, трехадресная система программирования и перфокарты. После войны Цузе изготовил модели Z4 и Z5. Цузе в 1945 году создал язык PLANKALKUL ("исчисление планов"), который относится к ранним формам алгоритмических языков. В 1938 году Цузе изготовил модель машины Z1 на 16 машинных слов, в следующем году - модель Z2, и еще через 2 года он построил первую в мире действующую вычислительную машину с программным управлением (модель Z3), которая демонстрировалась в Германском научно-исследовательском центре авиации.

13 слайд

Описание слайда:

Герман Холлерит (1860-1929) Занимаясь в 80-х годах прошлого столетия вопросами обработки статистических данных, он создал систему, автоматизирующую процесс обработки. Холлерит впервые (1889) построил ручной перфоратор, который был использован для нанесения цифровых данных на перфокарты, и ввел механическую сортировку для раскладки этих перфокарт в зависимости от места пробивок. Носитель данных Холлерита – 80-колонная перфокарта не претерпела существенных изменений до настоящего времени. Им построена суммирующая машина, названная табулятором, которая прощупывала отверстия на перфокартах, воспринимала их как соответствующие числа и подсчитывала их.

14 слайд

Описание слайда:

Ада Лавлейс (1815-1852) Научные идеи Бэббиджа увлекли дочь известного английского поэта лорда Байрона- графиню Аду Августу Лавлейс. В то время еще не возникли такие понятия, как ЭВМ, программирование, и тем не менее Аду Лавлейс по праву считают первым в мире программистом. Дело в том, что Бэббидж не составил не одного полного описания изобретенной им машины. Это сделал один из его учеников в статье на французском языке. Ада Лавлейс перевела ее на английский, и не просто перевела, а добавила собственные программы, по которым машина могла бы проводить сложные математические расчеты. В результате первоначальный объем статьи увеличился втрое, и Бэббидж получил возможность продемонстрировать мощь своей машины. Многими же понятиями, введенными Адой Лавлейс в описания тех первых в мире программ, широко пользуются современные программисты.

15 слайд

Описание слайда:

С. А. Лебедев (1902-1974) В начале 50-х годов в Киеве в лаборатории моделирования и вычислительной техники Института электротехники АН УССР под руководством академика С. А. Лебедева создавалась МЭСМ - первая советская ЭВМ. Функционально- структурная организация МЭСМ была предложена Лебедевым в 1947 году. Первый пробный пуск макета машины состоялся в ноябре 1950 года, а в эксплуатацию машина была сдана в 1951 году. МЭСМ работала в двоичной системе, с трехадресной системой команд, причем программа вычислений хранилась в запоминающем устройстве оперативного типа. Машина Лебедева с параллельной обработкой слов представляла собой принципиально новое решение. Она была одной из первых в мире и первой на европейском континенте ЭВМ с хранимой в памяти программой.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1.Научный подвиг С.А. Лебедева

2. Вклад в развитие ЭВМ И.С. Брука

3. Вклад в создание ЭВМ В.М. Глушкова

4. Вклад в развитие ЭВМ А.П. Ершова

Введение

Компьютеры и цифровая техника настолько прочно вошли в нашу жизнь, что сейчас воспринимаются как данность. И мало кто задает себе вопросы, кем и каким трудом был проложен путь к современным информационным технологиям. К сожалению, за годы искусственно созданной информационной закрытости государства в сознании многих людей сложился стереотип национального компьютерного нигилизма. Между тем, зная факты развития науки и техники не понаслышке, можно смело говорить о наличии глубоких корней и традиций отечественного компьютеростроения, имевшихся у нас достижений мирового уровня в этой области. Осознанию истинных масштабов участия наших соотечественников в мировой компьютерной истории призван способствовать рассказ о вкладе академика Сергея Алексеевича Лебедева в становление электроники и вычислительной техники, как в нашей стране, так и в мире.

По словам президента Российской академии наук академика Ю.С. Осипова, уникальные разработки С.А. Лебедева «определили столбовую дорогу мирового компьютеростроения на несколько десятилетий вперед». Именно академик Лебедев создал в тяжелые послевоенные годы первую отечественную ЭВМ и последующие все более и более производительные вычислительные машины. Появление электронно-вычислительных машин стало научно-технической революцией, кардинально изменившей развитие общества.

1. Научный подвиг С.А. Лебедева (1902 - 1974 гг.)

Сергей Алексеевич начал заниматься вопросами конструирования вычислительной техники в 45 лет, будучи уже известным ученым-электриком. К этому времени им были получены значительные научные результаты области устойчивости работы электрических систем. В 1939 году ему была присвоена ученая доктора наук (минуя степень кандидата наук) за разработку теории "искусственной устойчивости" электрических систем. В годы войны С. А. Лебедев работал в области автоматизации управления сложными системами. Под его руководством были разработана система стабилизации танкового орудия при прицеливании, система автоматического самонаведения на цель авиационной торпеды.

Для разработки системы стабилизации танковой пушки и автоматического устройства самонаведения на цель авиационной торпеды требовалось провести большие расчеты. Развивая это направление, С. А.Лебедев создал в 1945 году аналоговую вычислительную машину для решения системы обыкновенных дифференциальных уравнений. По окончании войны С. А. Лебедев вернулся к работам по повышению устойчивости энергосистем. За работы этого цикла он получил в 1950 году Государственная премия СССР. эвм лебедев брук глушков ершов

Как известно, за рубежом принципы компьютеростроения и электронного счета разработал фон Нейман, классическая архитектура компьютера так и называется «фон Неймановская». Научный подвиг Лебедева заключается в том, что в условиях информационной замкнутости тех лет Сергей Алексеевич пришел к тем же выводам, что и фон Нейман, но на полгода раньше. Разработанные теоретические выкладки позволили Сергею Алексеевичу перейти к практической работе. Первым значимым результатом стала Малая электронная счетная машина (МЭСМ). В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:

· наличие арифметических устройств, памяти, устройств ввода/вывода и управления;

· кодирование и хранение программы в памяти, подобно числам;

· двоичная система счисления для кодирования чисел и команд;

· автоматическое выполнение вычислений на основе хранимой программы;

· наличие как арифметических, так и логических операций;

· иерархический принцип построения памяти;

· использование численных методов для реализации вычислений.

В 1951 году она была принята комиссией в эксплуатацию, а в 1952 году на ней уже решались важные научно-технические задачи из области термоядерных процессов, космических полетов, ракетной техники, дальних линий передач и прочего. В Киеве, в Национальной академии наук Украины, где создавалась МЭСМ, сохранилась конструкторская документация и папки с материалами о первой отечественной ЭВМ, большая часть из которых составлена С. А. Лебедевым.

Параллельно с завершающим этапом работ над МЭСМ в 1950 году была начата разработка первой Большой (впоследствии переименованной в Быстродействующую) Электронно-счетной машины. Разработка БЭСМ велась уже в Москве, в лаборатории ИТМиВТ, которую возглавил С.А. Лебедев. В те годы не было собственной элементной базы, необходимых конструкций под вычислительные блоки, охладительных систем. Приходилось самим изготавливать шасси и стенды, сверлить и клепать, монтировать и отлаживать различные варианты триггеров, счетчиков сумматоров, проверять их на надежность в работе.

В кратчайший срок такая машина была создана. В апреле 1953 года быстродействующая электронная вычислительная машина БЭСМ-1 была принята Государственной комиссией в эксплуатацию. Она имела 5 тыс. электронных ламп, выполняя 8 - 10 тыс. операций в секунду, являлась одной из самых быстродействующих машин в мире. Машина была принята, но в серию не пошла. Это было следствием противодействия со стороны Министерства машиностроения и приборостроения, которое всеми силами пыталось "протолкнуть" свою более слабую и менее надежную машину.

В октябре 1955 года в Дармштадте (ФРГ) на Международной конференции по электронным счетным машинам доклад о наших достижениях произвел сенсацию - БЭСМ была признана самой быстродействующей машиной в Европе. Ее быстродействие оказалось рекордным - 8 000 оп/с. После триумфальной победы БЭСМ, под руководством Лебедева сразу начались работы над следующей версией ЭВМ, с улучшенными характеристиками: повышенным быстродействием, большей памятью, увеличенным временем устойчивой работы. Так появились следующие версии семейства БЭСМ - БЭСМ-2, БЭСМ-3М, БЭСМ-4. Эти машины уже выпускались серийно на Заводе Счетно-аналитических машин ЗСАММ, сначала по несколько десятков экземпляров - затем сотнями. МЭСМ, "Стрела" и первые машины серии БЭСМ - это вычислительная техника первого поколения. Элементная база первых вычислительных машин - электронные лампы - определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным.

Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте. Лучшей в серии БЭСМ по праву стала знаменитая БЭСМ-6 - первый в мире серийный «миллионник» (1 млн. оп/с). Главный конструктор реализовал в ней множество революционных для того времени решений, благодаря чему машина пережила три поколения вычислительной техники и выпускалась 17 лет. Надежность и простота в эксплуатации, экономичность, малый расход энергии, развитое программное обеспечение, хорошее быстродействие, вот что характеризовало ее. Вот что обеспечивало ее популярность и конкурентно способность, даже когда появились громоздкие монстры EС. За это время было произведено около 450 машин, что является абсолютным рекордом для ЭВМ класса «суперкомпьютер». До настоящего времени сохранился последний экземпляр БЭСМ-6, работающий под Санкт-Петербургом в Учебном центре Военно-морского флота. На базе БЭСМ-6 был создан многомашинный вычислительный комплекс АС-6, который в течение 15 лет использовался в центрах управления полетами космических аппаратов для обработки информации в реальном времени. Так в 1975 году при совместном полете космических кораблей «Союз» и «Аполлон» наш АС-6, обрабатывая информацию, обсчитывал данные по траектории полета за 1 минуту, в то время как у американской стороны такой расчет занимал полчаса. Ни один из типов машин С.А. Лебедева не являлся копией какой-либо иностранной ЭВМ, все создавалось на собственной научной базе, с применением оригинальных подходов к решению теоретических и прикладных задач. И в этом проявление высоких интеллектуальных способностей действительно выдающегося русского ученого и его научный подвиг.

Для нашей страны создание собственных вычислительных технологий было большим прорывом. Сергей Алексеевич еще в далекие 60-е годы понимал, что электронная вычислительная техника явится одним из самых мощных средств научно-технического прогресса, окажет огромное воздействие на развитие науки, экономики и обороны страны. Впоследствии в одной из своих статей он напишет: «Внедрение таких машин, реорганизацию умственного труда человека по их результатам можно сравнить только с таким этапом истории человечества, как введение машинного труда взамен ручного». Первая БЭСМ стала основой серии из 6 поколений машин, внесших огромный вклад в развитие отечественной науки и техники: в освоении космоса, в атомной промышленности, в создании противоракетной обороны. Вне всякого сомнения, без Лебедевской вычислительной техники в этих отраслях сложно было бы достичь таких результатов. Этот вклад был настолько существенен, что его высоко ценили сами конструктора, в чьих интересах создавались ЭВМ. С. А. Лебедев внес основополагающий вклад в становление и развитие вычислительных наук в бывшем СССР. Им разработаны главные принципы построения и структура универсальных электронных цифровых вычислительных машин, организована работа коллективов разработчиков высокопроизводительных ЭВМ, промышленное производство этих ЭВМ и их внедрение, подготовка кадров.

С.А.Лебедева называют "отцом вычислительной техники" в СССР.

2. Вклад в развитие ЭВМ И.С. Брука (1902-1974)

В нашей стране в 1948 г. проблемы развития вычислительной техники становятся общегосударственной задачей. В этом году развернулась разработка первого в СССР проекта цифровой электронной вычислительной машины. В августе 1948 года совместно со своим сотрудником молодым инженером Б.И. Рамеевым (в дальнейшем известным конструктором вычислительной техники, создателем серии "Урал") он представил проект автоматической вычислительной машины. В октябре того же года ими были представлены детально проработанные предложения по организации в Академии наук лаборатории для разработки и строительства цифровой вычислительной машины.

Чуть позднее Государственный комитет Совета министров СССР по внедрению передовой техники в народное хозяйство выдал И.С. Бруку и Б.И. Рамееву Авторское Свидетельство за №10475 на изобретение цифровой вычислительной машины с приоритетом от 4 декабря 1948 года. Это первый официально зарегистрированный документ, касающийся развития вычислительной техники в нашей стране. Этот день мы с полным правом можем объявить днем рождения российской информатики. Вскоре, однако, Рамеева призвали в армию и темпы создания ЭВМ замедлились. Специалистов в области создания электронной вычислительной техники в стране не было и Брук пригласил на работу выпускников и дипломников Н.Матюхина, Т. Александриди, М.Карцева. Все они в последствии стали крупными учеными, конструкторами вычислительной техники. Таким образом, работы по созданию нового научного направления сочетались с подготовкой специалистов для новой области.

В апреле 1950 года И.С. Брук оформляет постановление президиума Академии наук СССР о разработке цифровой электронной вычислительной машины М-1. Машина под руководством И.С. Брука была сконструирована и собрана выпускниками и студентами вузов. Все они стали впоследствии крупными специалистами в области вычислительной техники. Окрыленный успехом в апреле 1952 Брук начинает новый проект - разработку вычислительной машины М-2, которая положила начало созданию экономичных машин среднего класса. В машине М-2 использовались 1879 ламп, меньше, чем в ""Стреле"", а средняя производительность составляла 2000 операций в секунду. М-2 имела трехадресную систему команд, формат 34 двоичных разряда, представление чисел с плавающей точкой и фиксированной точкой, память на электронно-лучевых трубках (ЭЛТ) емкостью 512 чисел и дополнительную память на магнитном барабане емкостью 512 чисел. Были задействованы 3 типа памяти: электростатическая на 34 трубках Вильямса, на магнитном барабане и на магнитной ленте с использованием обычного для того времени магнитофона МАГ-8И уже через полгода новая машина была смонтирована и поставлена на отладку, а к лету будущего года заработала в полном объеме. На этой машине проводились расчеты по ядерным исследованиям для Института атомной энергии, проводились расчеты по прочности плотин, строящихся тогда Куйбышевской и Волжской гидроэлектростанций, проводились расчеты термодинамических и газодинамических параметров воздуха для задач, связанных с запуском ракет. О высоких характеристиках машины говорит тот факт, что она эксплуатировалась в течение 15 лет. Вероятно, впервые в М-2 М.А.Карцевым была реализована идея укороченных адресов в командах и укороченных кодов операций. Эта идея была предшественником способов формирования исполнительных адресов в ЭВМ второго и третьего поколений. Тем не менее, эта машина не была запущена в серию.

Сказалось противодействие со стороны Министерства машиностроения и приборостроения, который как монополист в области производства электронной аппаратуры не поставлял необходимые для сбора машины компоненты и всеми силами пытался "протолкнуть" свою более слабую и менее надежную машину. Почти одновременно с конструированием М-2 Брук начал разработку машины М-3,которая работала с 30- разрядными двоичными числами с фиксированной точкой, имела двухадресный формат команд, память емкостью 2048 чисел на магнитном барабане и производительность 30 оп/сек. При работе с ферритовой памятью той же емкости производительность М-3 возрастала до 1,5 тыс. оп/сек. Она имела всего 770 электронных ламп и 3тыс. купроксных диодов и занимала площадь 3 кв.м. Основные идеи построения М-3 были сформулированы И.С.Бруком, Н.Я.Матюхиным и В.В.Белынским. Но внедрение и этой машины встретило сильные препятствие. Ввину разработчикам было поставлено, что эта машина появилась "незаконно". Она была разработана в порядке личной инициативы. Тем не менее этой машине повезло больше. Она стала основой для разработок на ее основе машин в Армении, Белоруссии, Венгрии и Китая.

В традициях школы малых ЭВМ И.С. Брука была выполнена разработка машины "Сетунь", выпускавшейся серийно Казанским заводом ЭВМ. Автор машины "Сетунь" Н.П. Брусенцов сотрудничал с И.С. Бруком во время создания М-2 и развил инженерные подходы к конструированию малых ЭВМ, которые были свойственны школе И.С. Брука. Машина "Сетунь" интересна тем, что она была основана на троичной системе счисления. Интересен также опыт программирования задач на машине "Сетунь", который дал представление о подходах к структурному программированию и диалоговому режиму работы. В 1956 году И.С. Брук выступил с докладом на сессии Академии наук, где изложил главные направления промышленного применения вычислительных машин. В 1958 году под его руководством была подготовлена проблемная записка "Разработка теории, принципов построения и применения специализированных вычислительных и управляющих машин". Эти документы явились толчком для организации в СССР ряда научно-исследовательских организаций и конструкторских бюро по управляющим машинам и системам.

В частности был создан Институт электронных управляющих машин (ИНЭУМ) Академии наук, первым директором, которого был назначен И.С. Брук. Одновременно он был утвержден Президиумом АН СССР научным руководителем проблемы "Разработка теории, принципов построения и применения управляющих машин". В 1957 г. в ИНЭУМ коллектив, руководимый М.А.Карцевым, начал разработку электронной управляющей машины М-4, одной из первых транзисторных машин, предназначенной для управления в реальном масштабе времени комплексом радиолокационных станций (РЛС), который создавал Радиотехнический институт АН СССР (академик А.Л.Минц).

В 1958 г. были разработаны эскизный и технический проект М-4, а в 1959 г. уже были изготовлены 2 комплекта М-4 на заводе. Испытания заводского образца М-4 на экспериментальном комплексе РЛС были проведены в 1962 г. Это была машина, впервые выполненная по ТЗ конкретного заказчика, что позволило принимать технические решения, соответствующие предполагаемым алгоритмам обработки информации. М-4 работала с 23-разрядными числами с фиксированной точкой (отрицательные числа представлялись в дополнительном коде), имела оперативную память емкостью 1024 24-разрядных числа и постоянную память программ емкостью 1280 30-разрядных чисел (использовалось разделение памяти программ и данных). Кроме того, она содержала узлы приема и выдачи информации с собственной буферной памятью и имела параллельный ввод/вывод информации по 14 каналам со скоростью более 6 тыс.чисел/сек. Реальное быстродействие М-4 составляло 30 тыс.оп/сек. (на операциях сложения).

Решение о запуске М-4 в серийное производство состоялось в 1962 году. Но разработчики настояли на ее модернизации, имея в виду, что, благодаря прогрессу в электронной технике за 1957-62 гг., можно было резко улучшить ее характеристики и выпустить машину, на порядок более мощную, чем выпускавшиеся тогда в СССР. Модернизированная М4 (М4М) включала также новые узлы первичной обработки информации (устройство перекодирования, устройство определения координат), буферную память. В декабре 1964 года завод выпустил 5 машин М-4М, которые имели быстродействие 220 тыс. оп/сек на программах, записанных в постоянной памяти, и 110 тыс. оп/сек на программах, хранящихся в основной оперативной памяти. Емкость оперативной памяти составляла от 4096 до 16384 29-разрядных слов, а постоянной памяти - от 4096 до 8192 в инструкций и констант (также 29-разрядных).

В таком виде М-4М выпускалась серийно 15 лет. Для нее была в 1968 г. разработана система внешних устройств для ввода, хранения, документирования, частичной обработки и выдачи информации внешним абонентам при одновременной асинхронной работе всех абонентских систем и устройств. Другой разработкой ИНЭУМ, выполненной под руководством И.С. Брука, была управляющая машина М-7. Эта машина имела характеристики, относящие ее к другому классу по сравнению с М-4. М-7 предназначалась для систем управления мощными теплоэнергетическими блоками электростанций ("котел-турбина-генератор"). Она выполняла функции поддержания нормальных режимов работы энергоблока путем их оптимизации на минимум расхода топлива, выдачи соответствующих уставок на регуляторы, а также сложные логические программы операций пуска и останова энергоблока, анализа сочетаний параметров работы энергоблока с целью обнаружения предаварийных ситуаций и отображения необходимой информации для оператора энергоблока. Ориентация архитектуры машины на ожидаемые алгоритмы решения задач позволила выбрать технические решения, наилучшим образом отвечающие требованиям по надежности. М-7 была классической цифровой управляющей машиной последовательного действия с памятью на магнитном барабане и развитыми устройствами связи с объектом, обеспечивающими ввод аналоговых сигналов с преобразованием их в цифровую форму, а также дискретной информации от релейных датчиков. Она оперировала с 12-разрядными числами с фиксированной точкой.

Сходные принципы построения были реализованы в машинах фирмы Librascope (США). Разработку М-7 и ее внедрение в 1966-69 годах на энергоблоках 200 Мвт Конаковской ГРЭС и 800 Мвт Славянской ГРЭС проводили группы Н.Н. Ленова и Н.В.Паутина. В 1958 году И.С.Брук начал разработку машины М-5. На начальной стадии работ в выборе архитектуры М-5 участвовал М.А.Карцев, а разработка была проведена коллективом во главе с В.В. Белынским. М-5 представляла собой мультипрограммную и многотерминальную ЭВМ, реализующую режимы как пакетной обработки, так и разделения времени. Ее структура базировалась на общей магистрали, связывающей центральный процессор, блоки оперативной памяти, устройства управления вводом-выводом и внешней памятью (игравшие роль каналов, характерных для машин третьего поколения). Была выделена адресная арифметика, обеспечивавшая выполнение операций над индексными регистрами и преобразование. М-5 оперировала с 37-разрядными числами с фиксированной и плавающей точкой. 37-разрядный формат одноадресных инструкций содержал поля адреса, ключей, индексов и кода операций. Была обеспечена возможность страничной организации памяти. Машина М-5, реализованная на транзисторных элементах и ферритовой памяти (т.е. на технической базе ЭВМ второго поколения), по своей архитектуре во многом была предшественницей ЭВМ третьего поколения. Она была изготовлена Минским заводом им. С.Орджоникидзе в одном экземпляре в 1961 году и, к сожалению, не получила дальнейшего развития по причинам не технического, а организационного характера.

3. Вклад в создание ЭВМ В.М. Глушкова (1923-1982)

Работы В.М. Глушкова составили тот теоретический фундамент, на основе которого в Киеве были разработаны новые принципы построения ЭВМ. Эти новые принципы построения ЭВМ развитой архитектурой и повышенным уровнем "интеллектуальности" были воплощены в известных в свое время машинах КИЕВ, ДНЕПР-2 и серии машин МИР. Машины серии МИР предвосхитили многие черты персональных ЭВМ, появившихся много позже. О большинстве разработок, выполненных по идеям В. М. Глушкова. можно сказать, что они были выполнены впервые. Среди них -- дистанционное компьютерное управление конвертерным цехом металлургического завода и химическим производством, оптимальный раскрой стальных листов на судостроительных верфях, автоматизированное управление целыми промышленными предприятиями. Виктору Михайловичу принадлежит приоритет в выдвижении идеи однократного ввода данных в системы обработки информации и информационные системы. Эта идея лежит в основе метода "безбумажной технологии", когда исключается необходимость в многочисленном потоке документов, подготавливаемых вручную, что приводит ко всякого рода ошибкам, припискам, искажениям. Информация, циркулирующая в сетях передачи данных, хранящаяся в базах данных и знаний, оказывается куда более защищенной от искажений и утайки, чем та, которая циркулирует в обычном документообороте. Глушков верил, что эра "безбумажной технологии" наступит очень быстро. И его прогноз постепенно становится реальностью.

В 1958 г. под руководством В. М. Глушкова в Институте кибернетики АН Украины была создана вычислительная машина ""Киев"", имевшая производительность 6 - 10 тыс. операций в секунду. ЭВМ ""Киев"" впервые в нашей стране использовалась для дистанционного управления технологическими процессами. В 1960 г. создают первую в СССР полупроводниковой управляющей машины широкого назначения Днепр, руководители проекта - В.М.Глушков и Б.Н.Малиновский. ЭВМ включала аналого-цифровые и цифро-аналоговые преобразователи. Выпускалась на протяжении 10 лет. В 1961 г. В.М.Глушков разработал теорию цифровых автоматов и высказал идею мозгоподобных структур ЭВМ. Применение впервые в СССР микропрограммного управления в ЭВМ Тетива, использующей только прямые коды операндов, руководитель проекта - Н.Я.Матюхин. ЭВМ Тетива использовалась для систем ПВО. Разработан язык программирования Альфа, являющийся расширением Алгола-60 и содержащий ряд важных новшеств: инициирование переменных, введение многомерных значений и операций над ними, что позднее было повторено в Алголе-68, ПЛ/1, Аде. Руководитель разработки - А.П.Ершов.

4. Вклад в развитие ЭВМ А. П. Ершова (1931-1988)

Андрей Петрович Ершов - один из зачинателей теоретического и системного программирования, создатель Сибирской школы информатики. Его существенный вклад в становление информатики как новой отрасли науки и нового феномена общественной жизни широко признан в нашей стране и за рубежом. Фундаментальные исследования А.П.Ершова в области схем программ и теории компиляции оказали заметное влияние на его многочисленных учеников и последователей. Книга А.П.Ершова "Программирующая программа для электронной вычислительной машины БЭСМ" была одной из первых в мире монографий по автоматизации программирования.

За существенный вклад в теорию смешанных вычислений А.П.Ершов был удостоен премии имени академика А.Н.Крылова. Язык программирования АЛЬФА и оптимизирующий Альфа-транслятор, первая советская система разделения времени АИСТ-0, система учебной информатики Школьница, система подготовки печатных изданий Рубин, многопроцессорная рабочая станция МРАМОР - все эти проекты были инициированы А.П.Ершовым и выполнялись под его руководством. Благодаря уникальным способностям научного предвидения А.П.Ершов одним первых в нашей стране осознал ключевую роль вычислительной техники в прогрессе науки и общества. Его блестящие идеи заложили основу для развития в России таких научных направлений, как параллельное программирование и искусственный интеллект. Более 20 лет тому назад он начал эксперименты по преподаванию программирования в средней школе, которые привели к введению курса информатики и вычислительной техники в средние школы страны и обогатили нас тезисом "программирование - вторая грамотность".

Размещено на Allbest.ru

Подобные документы

    Изучение зарубежной, отечественной практики развития вычислительной техники, а также перспективы развития ЭВМ в ближайшее будущее. Технологии использования компьютеров. Этапы развития вычислительной индустрии в нашей стране. Слияние ПК и средств связи.

    курсовая работа , добавлен 27.04.2013

    Средства вычислительной техники появились давно, так как потребность в различного рода расчетах существовала еще на заре развития цивилизации. Бурное развитие вычислительной техники. Создание первых ПК, мини-компьютеров начиная с 80-х годов ХХ века.

    реферат , добавлен 25.09.2008

    Основные этапы развития вычислительных устройств до начала 50-х годов (появление серийных ЭВМ с хранимой программой). История создания новых полностью электронных цифровых компьютеров. Принципы Неймана как основополагающие концепции построения ЭВМ.

    реферат , добавлен 07.12.2012

    Первые шаги автоматизации умственного труда. Механические и электромеханические принципы вычислений. Применение компьютеров и баз данных, управляющих программ. Классификация ЭВМ по принципу действия, назначению, размерам и функциональным возможностям.

    презентация , добавлен 19.05.2016

    Анализ истории развития вычислительной техники. Сравнительные характеристики компьютеров разных поколений. Особенности развития современных компьютерных систем. Характеристика компиляторов с общей семантической базой. Этапы развития компьютерной техники.

    презентация , добавлен 15.11.2012

    Ручной этап развития вычислительной техники. Позиционная система счисления. Развитие механики в XVII веке. Электромеханический этап развития вычислительной техники. Компьютеры пятого поколения. Параметры и отличительные особенности суперкомпьютера.

    курсовая работа , добавлен 18.04.2012

    Этапы развития информатики и вычислительной техники. Аппаратная часть персональных компьютеров. Внешние запоминающие устройства персонального компьютера. Прикладное программное обеспечение персональных компьютеров. Текстовые и графические редакторы.

    контрольная работа , добавлен 28.09.2012

    История развития системы исчисления, первые специальные приборы для реализации простейших вычислительных операций. Первые поколения компьютеров, принцип работы, устройство и функции. Современный этап развития вычислительной техники и ее перспективы.

    презентация , добавлен 28.10.2009

    Разработка информационно-аналитической системы анализа и оптимизации конфигурации вычислительной техники. Структура автоматизированного управления средствами вычислительной техники. Программное обеспечение, обоснование экономической эффективности проекта.

    дипломная работа , добавлен 20.05.2013

    История персональной вычислительной техники, классификация ПЭВМ. Принципы фон Неймана. Разработка первых персональных компьютеров фирмы IВМ. Концепция "открытой архитектуры". IBM PS/2 и IBM-совместимые 386-е. Использование нового микропроцессора у ПК.