Семья

Какая линия на плоскости определяется уравнением. Параметрические уравнения линии. Связь между декартовыми и полярными координатами точки

Цель: Рассмотреть понятие линии на плоскости, привести примеры. Основываясь на определение линии, ввести понятие уравнения прямой на плоскости. Рассмотреть виды прямой, привести примеры и способы задания прямой. Закрепить умение переводить уравнение прямой из общего вида в уравнение прямой «в отрезках», с угловым коэффициентом.

  1. Уравнение линии на плоскости.
  2. Уравнение прямой на плоскости. Виды уравнений.
  3. Способы задания прямой.

1. Пусть х и у – две произвольные переменные.

Определение : Соотношение вида F(x,y)=0 называется уравнением , если оно справедливо не для всяких пар чисел х и у.

Пример : 2х + 7у – 1 = 0 , х 2 + y 2 – 25 = 0.

Если равенство F(x,y)=0 выполняется для любых х, у, то, следовательно, F(x,y) = 0 – тождество.

Пример: (х + у) 2 - х 2 - 2ху - у 2 = 0

Говорят, что числа х 0 и у 0 удовлетворяют уравнению , если при их подстановке в это уравнение оно обращается в верное равенство.

Важнейшим понятием аналитической геометрии является понятие уравнения линии.

Определение : Уравнением данной линии называется уравнение F(x,y)=0, которому удовлетворяют координаты всех точек, лежащих на этой линии, и не удовлетворяют координаты никакой из точек, не лежащих на этой линии.

Линия, определяемая уравнением y = f(x), называется графиком функции f(x). Переменные х и у – называются текущими координатами, т. к. являются координатами переменной точки.

Несколько примеров определения линий.

1) х – у = 0 => х = у. Это уравнение определяет прямую:

2) х 2 - у 2 = 0 => (х-у)(х+у) = 0 => точки должны удовлетворять либо уравнению х - у = 0, либо уравнению х + у = 0, что соответствует на плоскости паре пересекающихся прямых, являющихся биссектрисами координатных углов:

3) х 2 + у 2 = 0. Этому уравнению удовлетворяет только одна точка О(0,0).

2. Определение: Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких–либо заданных начальных условий.

Уравнение прямой с угловым коэффициентом.



Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем , то получим

xcosj + ysinj - p = 0 –нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

3. Уравнение прямой по точке и угловому коэффициенту.

Пусть угловой коэффициент прямой равен k, прямая проходит через точку М(х 0 , у 0). Тогда уравнение прямой находится по формуле: у – у 0 = k(x – x 0)

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

если х 1 ¹ х 2 и х = х 1 , еслих 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.

Рассмотрим соотношение вида F(x, y)=0 , связывающее переменные величины x и у . Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у . Примеры уравнений: 2х + 3у = 0, х 2 + у 2 – 25 = 0,

sin x + sin y – 1 = 0.

Если (1) справедливо для всех пар чисел х и у, то оно называется тождеством . Примеры тождеств: (х + у) 2 - х 2 - 2ху - у 2 = 0, (х + у)(х - у) - х 2 + у 2 = 0.

Уравнение (1) будем называть уравнением множества точек (х; у), если этому уравнению удовлетворяют координаты х и у любой точки множества и не удовлетворяют координаты никакой точки, не принадлежащие этому множеству.

Важным понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия α.


Определение. Уравнение (1) называется уравнением линии α (в созданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии α , и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Если (1) является уравнением линии α, то будем говорить, что уравнение (1) определяет (задает) линию α.

Линия α может определятся не только уравнением вида (1), но и уравнением вида

F (P, φ) = 0 , содержащим полярные координаты.

  • уравнение прямой с угловым коэффициентом;

Пусть дана некоторая прямая, не перпендикулярная, оси ОХ . Назовем углом наклона данной прямой к оси ОХ угол α , на который нужно повернуть ось ОХ , чтобы положительное направление совпало с одним из направлений прямой. Тангенс угла наклона прямой к оси ОХ называют угловым коэффициентом этой прямой и обозначают буквой К .

К=tg α
(1)

Выведем уравнение данной прямой, если известны ее К и величина в отрезке ОВ , которой она отсекает на оси ОУ .

(2)
y=kx+b
Обозначим через М " точку плоскости (х; у). Если провести прямые BN и NM , параллельные осям, то образуются r BNM – прямоугольный. Т. MC C BM <=>, когда величины NM и BN удовлетворяют условию: . Но NM=CM-CN=CM-OB=y-b, BN=x => учитывая (1), получаем, что точка М (х; у) С на данной прямой <=>, когда ее координаты удовлетворяют уравнению: =>

Уравнение (2) называют уравнением прямой с угловым коэффициентом. Если K=0 , то прямая параллельна оси ОХ и ее уравнение имеет вид y = b.

  • уравнение прямой, проходящей через две точки;
(4)
Пусть даны две точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Приняв в (3) точку М (х; у) за М 2 (х 2 ; у 2), получим у 2 -у 1 =k(х 2 - х 1). Определяя k из последнего равенства и подставляя его в уравнение (3), получаем искомое уравнение прямой: . Это уравнение, если у 1 ≠ у 2 , можно записать в виде:

Если у 1 = у 2 , то уравнение искомой прямой имеет вид у = у 1 . В этом случае прямая параллельна оси ОХ . Если х 1 = х 2 , то прямая, проходящая через точки М 1 и М 2 , параллельна оси ОУ , ее уравнение имеет вид х = х 1 .

  • уравнение прямой, проходящей через заданную точку с данным угловым коэффициентом;
(3)
Аx + Вy + С = 0
Теорема. В прямоугольной системе координат Оху любая прямая задается уравнением первой степени:

и, обратно, уравнение (5) при произвольных коэффициентах А, В, С (А и В ≠ 0 одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.

Доказательство.

Сначала докажем первое утверждение. Если прямая не перпендикулярна Ох, то она определяется уравнением первой степени: у = kx + b , т.е. уравнением вида (5), где

A = k, B = -1 и C = b. Если прямая перпендикулярна Ох, то все ее точки имеют одинаковые абсциссы, равные величине α отрезка, отсекаемого прямой на оси Ох.

Уравнение этой прямой имеет вид х = α, т.е. также является уравнение первой степени вида (5), где А = 1, В = 0, С = - α. Тем самым доказано первое утверждение.

Докажем обратное утверждение. Пусть дано уравнение (5), причем хотя бы один из коэффициентов А и В ≠ 0 .

Если В ≠ 0 , то (5) можно записать в виде . Пологая , получаем уравнение у = kx + b , т.е. уравнение вида (2) которое определяет прямую.

Если В = 0 , то А ≠ 0 и (5) принимает вид . Обозначая через α, получаем

х = α , т.е. уравнение прямой перпендикулярное Ох.

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка.

Уравнение вида Ах + Ву + С = 0 является неполным, т.е. какой – то из коэффициентов равен нулю.

1) С = 0; Ах + Ву = 0 и определяет прямую, проходящую через начало координат.

2) В = 0 (А ≠ 0) ; уравнение Ах + С = 0 Оу.

3) А = 0 (В ≠ 0) ; Ву + С = 0 и определяет прямую параллельную Ох.

Уравнение (6) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения удобна для геометрического построения прямой.

  • нормальное уравнение прямой;

Аx + Вy + С = 0 – общее уравнение некоторой прямой, а (5) x cos α + y sin α – p = 0 (7)

ее нормальное уравнение.

Так как уравнение (5) и (7) определяют одну и ту же прямую, то (А 1х + В 1у + С 1 = 0 и

А 2х + В 2у + С 2 = 0 => ) коэффициенты этих уравнений пропорциональны. Это означает, что помножив все члены уравнения (5) на некоторый множитель М, мы получим уравнение МА х + МВ у + МС = 0 , совпадающее с уравнением (7) т.е.

МА = cos α, MB = sin α, MC = - P (8)

Чтобы найти множитель М, возведем первые два из этих равенств в квадрат и сложим:

М 2 (А 2 + В 2) = cos 2 α + sin 2 α = 1

Равенство вида F(x, у) = 0 называется уравнением с двумя переменными х, у, если оно справедливо не для всяких пар чисел х, у. Говорят, что два числа х = x 0 , у = y 0 удовлетворяют некоторому уравнению вида F(x, y) = 0, если при подстановке этих чисел вместо переменных х и у в уравнение его левая часть обращается в нуль.

Уравнением данной линии (в назначенной системе координат) называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты каждой точки, не лежащей на ней.

В дальнейшем вместо выражения «дано уравнение линии F(x, у) = 0» мы часто будем говорить короче: дана линия F(x, у) = 0.

Если даны уравнения двух линий F(x, у)= 0 и Ф(x, у) = 0, то совместное решение системы

F(x,y) = 0, Ф(х, у) = 0

дает все точки их пересечения. Точнее, каждая пара чисел, являющаяся совместным решением этой системы, определяет одну из точек пересечения,

157. Даны точки *) M 1 (2; -2), М 2 (2; 2), M 3 (2; - 1), M 4 (3; -3), M 5 (5; -5), М 6 (3; -2). Установить, какие из данных точек лежат на линии, определенной уравнением х + y = 0, и какие не лежат на ней. Какая линия определена данным уравнением? (Изобразить ее на чертеже.)

158. На линии, определенной уравнением х 2 + у 2 = 25, найти точки, абсциссы которых равны следующим числам: 1) 0, 2) -3, 3) 5, 4) 7; на этой же линии найти точки, ординаты которых равны следующим числам: 5) 3, 6) -5, 7) -8. Какая линия определена данным уравнением? (Изобразить ее на чертеже.)

159. Установить, какие линии определяются следующими уравнениями (построить их на чертеже): 1)x - у = 0; 2) х + у = 0; 3) x - 2 = 0; 4)x + 3 = 0; 5) y - 5 = 0; 6) у + 2 = 0; 7) х = 0; 8) у = 0; 9) х 2 - хy = 0; 10) ху + у 2 = 0; 11) х 2 - у 2 = 0; 12) ху = 0; 13) у 2 - 9 = 0; 14) х 2 - 8x + 15 = 0; 15) у 2 + by + 4 = 0; 16) х 2 у - 7ху + 10y = 0; 17) у - |х|; 18) х - |у|; 19) y + |x| = 0; 20) x + |у| = 0; 21) у = |х - 1|; 22) y = |x + 2|; 23) х 2 + у 2 = 16; 24) (х - 2) 2 + {у- 1) 2 = 16; 25 (x + 5) 2 + (у-1) 2 = 9; 26) (x - 1) 2 + y 2 = 4; 27) x 2 + (y + 3) 2 = 1; 28) (x - 3) 2 + y 2 = 0; 29) x 2 + 2y 2 = 0; 30) 2x 2 + 3y 2 + 5 = 0; 31) (x - 2) 2 + (y + 3) 2 + 1 = 0.

160. Даны линии: l)x + y = 0; 2)х - у = 0; 3)x 2 + у 2 - 36 = 0; 4) х 2 + у 2 - 2х + у = 0; 5) х 2 + у 2 + 4х - 6у - 1 = 0. Определить, какие из них проходят через начало координат.

161. Даны линии: 1) х 2 + у 2 = 49; 2) {х - 3) 2 + (у + 4) 2 = 25; 3) (х + 6) 2 + (y - З) 2 = 25; 4) (х + 5) 2 + (y - 4) 2 = 9; 5) х 2 + у 2 - 12x + 16у - 0; 6) х 2 + у 2 - 2x + 8y + 7 = 0; 7) х 2 + у 2 - 6х + 4у + 12 = 0. Найти точки их пересечения: а) с осью Ох; б) с осью Оу.

162. Найти точки пересечения двух линий:

1) х 2 + у 2 - 8; х - у =0;

2) х 2 + у 2 - 16х + 4у + 18 = 0; х + у = 0;

3) х 2 + у 2 - 2х + 4у - 3 = 0; х 2 + у 2 = 25;

4) х 2 + у 2 - 8y + 10у + 40 = 0; х 2 + у 2 = 4.

163. В полярной системе координат даны точки M 1 (l; π/3),M 2 (2; 0).М 3 (2; π/4), М 4 (√3; π/6) и M 5 (1; 2/3π). Установить, какие из этих точек лежат на линии, определенной в полярных координатах уравнением р = 2cosΘ, и какие не лежат на ней. Какая линия определяется данным уравнением? (Изобразить ее на чертеже.)

164. На линии, определенной уравнением p = 3/cosΘ найти точки, полярные углы которых равны следующим числам: а) π/3 , б) - π/3, в) 0, г) π/6. Какая линия определена данным уравнением? (Построить ее на чертеже.)

165. На линии, определенной уравнением p = 1/sinΘ, найти точки, полярные радиусьмкоторых равны следующим числам: а) 1 6) 2, в) √2 . Какая линия определена данным уравнением? (Построить ее на чертеже.)

166. Установить, какие линии определяются в полярных координатах следующими уравнениями (построить их на чертеже): 1) р = 5; 2) Θ = π/2; 3) Θ = - π/4; 4) р cosΘ = 2; 5) p sinΘ = 1; 6.) p = 6cosΘ; 7) р = 10 sinΘ; 8) sinΘ = 1/2; 9) sinp = 1/2.

167. Построить на черТёЖе следующие спйралй Архимеда: 1) р = 20; 2) р = 50; 3) p = Θ/π; 4) р = -Θ/π.

168. Построить на чертеже следующие гиперболиче-ские спирали: 1) p = 1/Θ; 2) p = 5/Θ; 3) р = π/Θ; 4) р= - π/Θ

169. Построить на чертеже следующие логарифми-ческие спирали: 1) р = 2 Θ ; 2) p = (1/2) Θ .

170. Определить длины отрезков, на которые рассе-кает спираль Архимеда р = 3Θ луч, выходящий из полюса и наклоненный к полярной оси под углом Θ = π/6. Сделать чертеж.

171. На спирали Архимеда р = 5/πΘ взята точка С, полярный радиус которой равен 47. Определить, на сколько частей эта спираль рассекает полярный радиус точки С. Сделать чертеж.

172. На гиперболической спирали P = 6/Θ найти точку Р, полярный радиус которой равен 12. Сделать чертеж.

173. На логарифмической спирали р = 3 Θ найти точку P, полярный радиус которой равен 81. Сделать чертеж.

Прямая на плоскости и в пространстве.

Изучение свойств геометрических фигур с помощью алгебры носит название аналитической геометрии , а использовать при этом мы будем так называемый метод координат .

Линия на плоскости обычно задается как множество точек, которые обладают присущими только им свойствами. Тот факт, что координаты (числа) х и у точки, лежащей на этой линии, аналитически записываются в виде некоторого уравнения.

Опр.1Уравнением линии (уравнением кривой) на плоскости Оху называется уравнение (*), которому удовлетворяют координаты х и у каждой точки данной линии и не удовлетворяют координаты любой другой точки, не лежащей на этой линии.

Из определения 1 следует, что всякой линии на плоскости соответствует некоторое уравнение между текущими координатами (х,у ) точки этой линии и наоборот, всякому уравнению соответствует, вообще говоря, некоторая линия.

Отсюда возникают две основные задачи аналитической геометрии на плоскости.

1.Дана линия в виде множества точек. Нужно составить уравнение этой линии.

2. Дано уравнение линии. Необходимо изучить ее геометрические свойства (форму и расположение).

Пример . Лежат ли точки А (-2;1) и В (1;1) на линии 2х +у +3=0?

Задача о нахождении точек пересечения двух линий, заданных уравнениями и, сводится к отысканию координат, которые удовлетворяют уравнению обеих линий, т.е. к решению системы из двух уравнений с двумя неизвестными.

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогично вводится понятие линии в ПСК.

Линию на плоскости можно задать двумя уравнениями

где х и у – произвольные координаты точки М(х;у), лежащей на данной линии, а t - переменная, называемая параметром , параметр определяет положение точки на плоскости.

Например, если , то значению параметра t=2 соответствует на плоскости точка (3;4).

Если параметр изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способом задания линии называется параметрическим, а уравнение (5.1) –параметрическим уравнением линии.

Чтобы перейти от параметрических уравнений к общему уравнению (*), надо каким – либо способом из двух уравнений исключают параметр. Однако, заметим, такой переход не всегда целесообразен и не всегда возможен.

Линию на плоскости можно задать векторным уравнением , где t- скалярный переменный параметр. Каждому значению параметра соответствует определенный вектор плоскости. При изменении параметра конец вектора опишет некоторую линию.

Векторному уравнению в ДСК соответствуетдва скалярных уравнения

(5.1), т.е. уравнения проекций на оси координат векторного уравнения линии есть ее



параметрическое уравнения.

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , а линия – траектория точки, параметр t при этом есть время.

Вывод: всякой линии на плоскости соответствует уравнение вида .

ВСЯКОМУ УРАВНЕНИЮ ВИДАсоответствует в общем случае некоторая линия, свойства которой определяются данным уравнением (исключение – уравнению на плоскости не соответствует никакой геометрический образ).

Пусть выбрана система координат на плоскости.

Опр. 5.1. Уравнением линии называется такое уравнение вида F(x;y) =0, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты ни одной точки, не лежащей на ней.

Уравнение вида F(x;y )=0 – называют общим уравнением линии или уравнением в неявной форме.

Таким образом, линия Г есть геометрическое место точек, удовлетворяющее данному уравнению Г={(x, y): F(x;y)=0}.

Линию называют также кривой.

Линия на плоскости есть совокупность точек этой плоскости, обладающих определенными свойствами, при этом точки, не лежащие на данной линии, этими свойствами не обладают. Уравнение линии определяет аналитически выраженное соотношение между координатами точек, лежащих на этой линии. Пусть это соотношение задано уравнением

F(x,y )=0. (2.1)

Пара чисел, удовлетворяющая (2.1), – не произвольная: если х задано, то у не может быть каким угодно, значение у связано с х . При изменении х изменяется у , и точка с координатами (х,у ) описывает данную линию. Если координаты точки М 0 (х 0 ,у 0) удовлетворяют уравнению (2.1), т.е. F(х 0 ,у 0)=0 – верное равенство, то точка М 0 лежит на данной линии. Верно и обратное утверждение.

Определение. Уравнением линии на плоскости называется уравнение, которому удовлетворяют координаты любой точки, лежащей на этой линии, и не удовлетворяют координаты точек, не лежащих на этой линии .

Если известно уравнение некоторой линии, то исследование геометрических свойств этой линии можно свести к исследованию ее уравнения – в этом заключается одна из основных идей аналитической геометрии. Для исследования уравнений существуют хорошо разработанные методы математического анализа, которые упрощают изучение свойств линий.

При рассмотрении линий используется термин текущая точка линии – переменная точка М(х,у ), перемещающаяся вдоль этой линии. Координаты х и у текущей точки называются текущими координатами точки линии.

Если из уравнения (2.1) можно явным образом выразить у
через х , т. е. записать уравнение (2.1) в виде , то кривую, определяемую таким уравнением, называют графиком функции f(х) .

1. Дано уравнение: , или . Если х принимает произвольные значения, то у принимает значения, равные х . Следовательно, линия, определяемая этим уравнением, состоит из точек, равноотстоящих от координатных осей Ох и Оу – это биссектриса I–III координатных углов (прямая на рис. 2.1).

Уравнение , или , определяет биссектрису II–IV координатных углов (прямая на рис. 2.1).

0 х 0 х С 0 х

рис. 2.1 рис. 2.2 рис. 2.3

2. Дано уравнение: , где С – некоторая постоянная. Это уравнение можно записать иначе: . Этому уравнению удовлетворяют те и только те точки, ординаты у которых равны С при любом значении абсциссы х . Эти точки лежат на прямой, параллельной оси Ох (рис. 2.2). Аналогично, уравнение определяет прямую, параллельную оси Оу (рис. 2.3).

Не всякое уравнение вида F(x,y )=0 определяет линию на плоскости: уравнению удовлетворяет единственная точка – О(0,0), а уравнению не удовлетворяет ни одна точка на плоскости.

В приведенных примерах мы по заданному уравнению строили определяемую этим уравнением линию. Рассмотрим обратную задачу: составить по заданной линии ее уравнение.


3. Составить уравнение окружности с центром в точке Р(a,b ) и
радиусом R.

○ Окружность с центром в точке Р и радиусом R есть совокупность точек, отстоящих от точки Р на расстоянии R. Это значит, что для любой точки М, лежащей на окружности, МР= R, если же точка М не лежит на окружности, то МР ≠ R.. ●