Семья

Закон сохранения энергии в электрическом поле. Законы кирхгофа являются одной из форм закона сохранения энергии и относятся к фундаментальным законам природы. Применение закона сохранения энергии

Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом ее значение сохраняется.

Закон сохранения энергии - фундаментальный закон природы, заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Закон сохранения энергии

В электродинамике закон сохранения энергии исторически формулируется в виде теоремы Пойтинга.

Изменение электромагнитной энергии, заключенной в неком объеме, за некий интервал времени равно потоку электромагнитной энергии через поверхность, ограничивающую данный объем, и количеству тепловой энергии, выделившейся в данном объеме, взятой с обратным знаком.

$ \frac{d}{dt}\int_{V}\omega_{em}dV=-\oint_{\partial V}\vec{S}d\vec{\sigma}-\int_V \vec{j}\cdot \vec{E}dV $

Электромагнитное поле обладает энергией, которая распределяется в пространстве, занятом полем. При изменении характеристик поля меняется и распределение энергии. Она перетекает из одной области пространства в другую, переходя, возможно, в другие формы. Закон сохранения энергии для электромагнитного поля является следствием полевых уравнений.

Внутри некоторой замкнутой поверхности S, ограничивающей объем пространства V , занятого полем, содержится энергия W — энергия электромагнитного поля:

W = Σ(εε 0 E i 2 / 2 + μμ 0 H i 2 / 2) ΔV i .

Если в этом объеме имеются токи, то электрическое поле производит над движущимися зарядами работу, за единицу времени равную

N = Σ i j̅ i ×E̅ i . ΔV i .

Это величина энергии поля, которая переходит в другие формы. Из уравнений Максвелла следует, что

ΔW + NΔt = -Δt S S̅ × n̅ . dA,

где ΔW — изменение энергии электромагнитного поля в рассматриваемом объеме за время Δt, а вектор = × называется вектором Пойнтинга .

Это закон сохранения энергии в электродинамике .

Через малую площадку величиной ΔA с единичным вектором нормали за единицу времени в направлении вектора протекает энергия × n̅ . ΔA, где — значение вектора Пойнтинга в пределах площадки. Сумма этих величин по всем элементам замкнутой поверхности (обозначена знаком интеграла), стоящая в правой части равенства , представляет собой энергию, вытекающую из объема, ограниченного поверхностью, за единицу времени (если эта величина отрицательна, то энергия втекает в объем). Вектор Пойнтинга определяет поток энергии электромагнитного поля через площадку, он отличен от нуля всюду, где векторное произведение векторов напряженности электрического и магнитного полей отлично от нуля.

Можно выделить три главных направления практического применения электричества: передача и преобразование информации (радио, телевидение, компьютеры), передача импульса и момента импульса (электродвигатели), преобразование и передача энергии (электрогенераторы и линии электропередачи). И импульс, и энергия переносятся полем через пустое пространство, наличие среды приводит лишь к потерям. Энергия не передается по проводам! Провода с током нужны для формирования электрического и магнитного полей такой конфигурации, чтобы поток энергии, определяемый векторами Пойнтинга во всех точках пространства, был направлен от источника энергии к потребителю. Энергия может передаваться и без проводов, тогда ее переносят электромагнитные волны. (Внутренняя энергия Солнца убывает, уносится электромагнитными волнами, в основном светом. Благодаря части этой энергии поддерживается жизнь на Земле.)

Закон сохранения энергии

В механике закон сохранения энергии утверждает, что в замкнутой системе частиц, полная энергия, которая является суммой кинетической и потенциальной энергии и не зависит от времени, то есть является интегралом движения. Закон сохранения энергии справедлив только для замкнутых систем, то есть при отсутствии внешних полей или взаимодействий.

Силы взаимодействия между телами, для которых выполняется закон сохранения механической энергии называются консервативными силами. Закон сохранения механической энергии не выполняется для сил трения, поскольку при наличии сил трения происходит преобразование механической энергии в тепловую.

Математическая формулировка

Эволюция механической системы материальных точек с массами \(m_i\) по второму закону Ньютона удовлетворяет системе уравнений

\[ m_i\dot{\mathbf{v}_i} = \mathbf{F}_i \]

где
\(\mathbf{v}_i \) — скорости материальных точек, а \(\mathbf{F}_i \) — силы, действующие на эти точки.

Если подать силы, как сумму потенциальных сил \(\mathbf{F}_i^p \) и непотенциальных сил \(\mathbf{F}_i^d \) , а потенциальные силы записать в виде

\[ \mathbf{F}_i^p = - \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

то, домножив все уравнения на \(\mathbf{v}_i \) можно получить

\[ \frac{d}{dt} \sum_i \frac{mv_i^2}{2} = - \sum_i \frac{d\mathbf{r}_i}{dt}\cdot \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) + \sum_i \frac{d\mathbf{r}_i}{dt} \cdot \mathbf{F}_i^d \]

Первая сумма в правой части уравнения является ни чем иным, как производной по времени от сложной функции, а следовательно, если ввести обозначения

\[ E = \sum_i \frac{mv_i^2}{2} + U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

и назвать эту величину механической энергией , то, интегрируя уравнения с момента времени t=0 до момента времени t, можно получить

\[ E(t) - E(0) = \int_L \mathbf{F}_i^d \cdot d\mathbf{r}_i \]

где интегрирование проводится вдоль траекторий движения материальных точек.

Таким образом, изменение механической энергии системы материальных точек со временем равно работе непотенциальных сил.

Закон сохранения энергии в механике выполняется только для систем, в которых все силы потенциальные.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Закон сохранения энергии является общим законом природы, следовательно, он применим и к явлениям, происходящим в электричестве. При рассмотрении процессов превращения энергии в электрическом поле рассматривают два случая:

  1. Проводники присоединены к источникам ЭДС, при этом постоянными являются потенциалы проводников.
  2. Проводники являются изолированными, что означает: заряды проводников неизменны.

Мы будем рассматривать первый случай.

Допустим, что у нас имеется система, состоящая из проводников и диэлектриков. Эти тела совершают малые и очень медленные перемещения. Температура тел поддерживается постоянной ($T=const$), для этого тепло или отводят (если оно выделяется) или подводят (при поглощении тепла). Диэлектрики у нас являются изотропными и мало сжимаемыми (плотность постоянна ($\rho =const$)). При заданных условиях внутренняя энергия тел, которая не связана с электрическим полем, остается неизменной. Помимо этого, диэлектрическая проницаемость ($\varepsilon (\rho ,\ T)$), зависящая от плотности вещества и его температуры, может считаться постоянной.

На любое тело, помещенное в электрическое поле, действуют силы. Иногда такие силы называют пондемоторными силами поля. При бесконечно малом перемещении тел пондемоторные силы выполняют бесконечно малую работу, которую обозначим $\delta A$.

Закон сохранения энергии для цепей постоянного тока содержащих ЭДС

Электрическое поле имеет определённую энергию. При перемещении тел электрическое поле между ними изменяется, значит, изменяется его энергия. Увеличение энергии поля при малом смещении тел обозначим как $dW$.

Если в поле движутся проводники, то изменяется их взаимная емкость. Для сохранения без изменения потенциалов проводников на них следует добавлять (или убирать с них) заряды. В таком случае каждый источник тока совершает работу, равную:

\[\varepsilon dq=\varepsilon Idt\ \left(1\right),\]

где $\varepsilon$ - ЭДС источника; $I$ - сила тока; $dt$ - время перемещения. В исследуемой системе тел возникают электрические токи, соответственно во всех частях системы будет выделяться тепло ($\delta Q$), которое по закону Джоуля - Ленца равно:

\[\delta Q=RI^2dt\ \left(2\right).\]

Следуя закону сохранения энергии, работа всех источников тока равна сумме механической работы сил поля, изменению энергии поля и количества теплоты Джоуля - Ленца:

\[\sum{\varepsilon Idt=\delta A+dW+\sum{RI^2dt\ \left(3\right).}}\]

При отсутствии движения проводников и диэлектриков ($\delta A=0;;\ dW$=0) вся работа источников ЭДС переходит в тепло:

\[\sum{\varepsilon Idt=\sum{RI^2dt\ \left(4\right).}}\]

Используя закон сохранения энергии, иногда можно рассчитать механические силы, действующие в электрическом поле проще, чем исследуя, как воздействует поле на отдельные части тела. При этом поступают следующим образом. Допустим, нам следует вычислить величину силы $\overline{F}$, которая действует на тело, находящееся в электрическом поле. Допускают, что рассматриваемое тело совершает малое перемещение $d\overline{r}$. В таком случае, работа силы $\overline{F}$ равна:

\[\delta A=\overline{F}d\overline{r}=F_rdr\ \left(5\right).\]

Далее находят все изменения энергии, которые вызваны перемещением тела. Затем из закона сохранения энергии получают проекцию силы${\ \ F}_r$ на направление перемещения ($d\overline{r}$). Если выбрать перемещения параллельные осям системы координат, то можно найти компоненты силы вдоль этих осей, следовательно, вычислить неизвестную силу по величине и направлению.

Примеры задач с решением

Пример 1

Задание. Плоский конденсатор частично погружен в жидкий диэлектрик (рис.1). Когда конденсатор заряжается, на жидкость в областях неоднородного поля действуют силы, при этом жидкость втягивается в конденсатор. Найдите силу ($f$) воздействия электрического поля на каждую единицу горизонтальной поверхности жидкости. Считайте, что конденсатор соединен с источником напряжения, напряжение $U$ и напряженность поля внутри конденсатора постоянны.

Решение. При увеличении столба жидкости между пластинами конденсатора на величину $dh$ работа силы $f$ равна:

где $S$ - горизонтальное сечение конденсатора. Изменение энергии электрического поля плоского конденсатора определим как:

Обозначим $b$ - ширину пластины конденсатора, тогда заряд, который дополнительно перейдет от источника, равен:

При этом работа источника тока:

\[\varepsilon dq=Udq=U\left(\varepsilon {\varepsilon }_0E-{\varepsilon }_0E\right)bdh\left(1.4\right),\]

\[\varepsilon =U\ \left(1.5\right).\]

Учитывая, что $E=\frac{U}{d}$Тогда формула (1.4) перепишется в виде:

\[\varepsilon dq=\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh\left(1.6\right).\]

Применяя закон сохранения энергии в цепи постоянного тока, если она имеет источник ЭДС:

\[\sum{\varepsilon Idt=\delta A+dW+\sum{RI^2dt\ \left(1.7\right)}}\]

для рассматриваемого случая запишем:

\[\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)Sdh=Sfdh+\left(\frac{ее_0E^2}{2}-\frac{е_0E^2}{2}\right)Sdh\ \left(1.8\right).\]

Из полученной формулы (1.8) найдем $f$:

\[\left(\varepsilon {\varepsilon }_0E^2-{\varepsilon }_0E^2\right)=f+\left(\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}\right)\to f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}.\]

Ответ. $f=\frac{\varepsilon {\varepsilon }_0E^2}{2}-\frac{{\varepsilon }_0E^2}{2}$

Пример 2

Задание. В первом примере мы считали сопротивления проводов бесконечно малыми. Как изменилась бы ситуация, если сопротивление считать конечной величиной, равной R?

Решение. Если предполагать, что сопротивление проводов не мало, то при объединении в законе сохранения (1.7) слагаемых: $\varepsilon Idt\ $ и $RI^2dt$, мы получим, что:

\[\varepsilon Idt=RI^2dt=\left(\varepsilon -IR\right)Idt=UIdt.\]

Рассмотрим системы из двух проводников в вакууме. Один проводние создает поле , другой. Результирующее поле
, квадрат этой величины. Полная энергия этой системы
. Первые два интеграла – это собственные знергии проводников, а последний = потенциальная энергия их взаимодействия. Собственная энергия заряженного тела – всегда величина положительная, положительной является и полная энергия. Энергия же взаимодействия может быть как положительной, так и отрицательной. При всех возможных перемещениях заряженных тел, не изменяющих конфигурацию зарядов на каждом теле, собственная энергия остается постоянной, поэтому ее можно считать аддитивной постоянной в выражении для полной энергии. В этих случаях изменение полной энергии происходит только за счет изменения потенциальной энергии взаимодействия.

1.4.6. Закон сохранения энергии для электрического поля в несегнетоэлектрической среде

Энергия электрического поля, создаваемого какой-либо системой заряженных тел (проводников, диэлектриков), изменяется, если тела системы перемещаются (то есть меняется взаимное положение тел), или, если изменяются их заряды. При этом совершают работу внешние силы, приложенные к телам системы, и источники электрической энергии (батареи, генераторы, и тому подобные), присоединенные к проводникам системы.

Закон сохранения энергии для малого изменения состояния системы при постоянной температуре и постоянной плотности среды имеет вид:

Здесь:
- работа внешних сил;
- работа источников электрической энергии;
- изменение энергии электростатического поля системы;
- изменение кинетической энергии системы;
- теплота Джоуля - Ленца, которая вызвана прохождением электрических токов в системе при изменении или перераспределении зарядов проводников.

Если перемещение тел производится квазистатически, то есть очень медленно, то можно пренебречь изменением кинетической энергии системы,
, и считать работу внешних сил
численно равной и противоположной по знаку работе
, совершаемой в рассматриваемом процессе силами, которые действуют на тела системы в электрическом поле и называются пондемоторными силами. В этом случае закон сохранения энергии можно записать в виде:.

Работа источников электрической энергии за малый промежуток времени
равна:
, где
- общее число источников электрической энергии в рассматриваемой системе;- ЭДС-того источника,
- заряд, проходящий через этот источник за время
,
- ток в источнике, работа
, если токидет от катода к аноду.

Если заряд каждого проводника не изменяется и не перераспределяется , то выражение закона сохранения энергии для квазистатического изменения состояния системы имеет вид:
,

то есть в этом процессе работа пондемоторных сил равна убыли энергии электрического поля системы. С помощью этого выражения можно рассчитывать работу пондемоторных сил.

Найдем силы, действующие на пластины заряженного плоского конденсатора. Расстояние между пластинами
, где- площадь пластины. Конденсатор заряжен и отключен от источника питания, так что заряд конденсатора
,
- поверхностная плотность заряда. При увеличении расстояния сила, приложенная к перемещаемой пластине, совершает работу
. Изменение энергии электростатического поля в конденсаторе
, где- объемная плотность энергии в прилегающем к пластине слое толщиной
. Таким образом, из закона сохранения энергии следует, что пондемоторная сила равна
.

Андрей Владимирович Гаврилов, доцент НГАВТ

Закон сохранения энергии в электричестве.................................................... 4

Основные законы и формулы ................................................................................................................................................ 4

Примеры решения задач ............................................................................................................................................................ 8

Задачи для самостоятельного решения ..................................................................................................................... 10

Галина Степановна Лукина, главный методист ХКЗФМШ

Физика и живая природа................................................................................................. 16

1. Задания для самостоятельного выполнения ...................................................................................................... 16

2. Задачи-вопросы ....................................................................................................................................................................... 17

3. Наблюдения ................................................................................................................................................................................ 21

4. Задачи для самостоятельного решения ................................................................................................................ 22

5. Приложение ................................................................................................................................................................................ 26

Аркадий Федорович Немцев, зав. отделом ХКЦРТДЮ

ТЕПЛОВЫЕ ПРОЦЕССЫ ВОКРУГ НАС............................................................................... 38

ТЕПЛОЕМКОСТЬ ............................................................................................................................................................................ 38

Плавление. Испарение ............................................................................................................................................................... 38

Удельная теплота сгорания топлива ........................................................................................................................... 39

ЗАДАЧИ ............................................................................................................................................................................................... 41

Физические задачи из литературных произведений ............................................................................................ 43

, доцент НГАВТ

Закон сохранения энергии в электричестве

Основные законы и формулы

Если в проводящей среде (проводнике) создать электрическое поле, то в ней возникает упорядоченное движение электрических зарядов – электрический ток

При прохождении электрического тока через однородный проводник выделяется теплота, называемая джоулевой теплотой. Количество выделившейся теплоты определяется законом Джоуля – Ленца:

Данная форма закона применима только для постоянного тока, то есть для такого тока, величина которого не изменяется с течением времени.

Количество теплоты, выделяющееся в проводнике в единицу времени, называется тепловой мощностью тока

.

Следует отметить, что при прохождении электрического тока, теплота может не только выделяться, но и поглощаться, что наблюдается при прохождении тока через спай разнородных металлов. Данное явление получило название эффекта Пельтье. Теплота, поглощаемая или выделяемая при эффекте Пельтье, является избыточной над джоулевой теплотой и определяется выражением

.

Где П12 – коэффициент Пельтье. В отличие от джоулевой теплоты, пропорциональной квадрату силы тока и всегда выделяющейся в проводнике, теплота Пельтье пропорциональна первой степени силы тока, а знак ее зависит от направления тока через спай металлов.

Работа тока полностью переходит в теплоту только в случае неподвижных металлических проводников. Если ток совершает механическую работу (например, в случае электрического двигателя), то работа тока переходит в теплоту лишь частично.

Для того чтобы через проводник достаточно долго протекал электрический ток, необходимо принимать меры по поддержанию в проводнике электрического поля. Электростатическое поле, то есть поле неподвижных электрических зарядов, не способно длительное время поддерживать ток. В результате действия кулоновских сил в проводнике происходит такое перераспределение свободных носителей зарядов, при котором поле внутри него становится равным нулю. Так, если в электростатическое поле внести проводник, то возникшее в нем движение зарядов очень быстро прекращается и потенциал поля в любой точке проводника становится одинаковым.

Работа кулоновских сил по перемещению заряда определяется выражением:

Акул = q (φ1 - φ2).

Если заряд перемещается в электростатическом поле по замкнутой траектории, то работа кулоновских сил в этом случае равна нулю.

Для того, чтобы в электрической цепи длительное время протекал электрический ток, необходимо, чтобы цепь содержала участок, на котором на свободные заряды кроме кулоновских сил действовали бы силы природа которых отлична от кулоновских – сторонние силы. Сторонние силы на заряды действуют в особых устройствах - источниках тока. Так, например, в химических источниках тока, сторонние силы возникают в результате химических реакций.

Величина, числена равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС)

Химические источники тока способны поддерживать ток в цепи достаточно длительный промежуток времени, до тех пор, пока не происходят необратимые реакции с химическими соединениями, входящими в их состав. Так, если замкнуть проводником химический источник тока, то величина тока будет с течением времени уменьшаться до нуля по мере расходования энергии химических реакций в источнике.

Существуют обратимые химические источники тока – аккумуляторы. Такие устройства при разрядке можно восстанавливать - заряжать – то есть при помощи тока от внешнего источника восстанавливать их работоспособность за счет обращения химических реакций. При зарядке аккумуляторы накапливают электрическую энергию. Количество энергии, которую способен запасти аккумулятор, определяется его емкостью. Емкость аккумуляторов измеряется в ампер-часах.

Электрические цепи, то есть цепи в которых может протекать электрический ток, содержат источники тока, проводники, также в состав цепи могут входить конденсаторы.

Энергетический баланс в электрических цепях определяется законом сохранения и превращения энергии. Запишем его в следующем виде:

Авнеш = ΔW + Q.

где Авнеш – работа, совершенная над системой внешними силами, ΔW – изменение энергии системы, Q –выделившееся количество теплоты. Будем считать, что, если Авнеш > 0, то внешние силы совершают над системой положительную работу, а если Авнеш < 0, положительную работу совершает сама система, если ΔW>0, то энергия системы увеличивается, а если ΔW< 0, энергия уменьшается, если Q>0, то в системе выделяется тепло, а если Q< 0, тепло поглощается системой.

Энергия системы в общем случае складывается из различных видов энергии – это и энергия электростатического поля, и кинетическая энергия заряженных тел, и потенциальная энергия в поле силы тяжести.

Энергия электростатического поля может быть определена как через заряд, так и через характеристики электростатического поля.

Для уединенного проводника, то есть проводника находящегося вдали от других проводников, выражение для энергии поля имеет вид:

.

Соответственно для энергии заряженного конденсатора

.

В отличии от уединенного проводника, поле конденсатора сосредоточено в пространстве между его обкладкам. Энергию, запасенную в конденсаторе, можно определить по формуле:

Где Е – напряженность поля, а V – объем пространства, где локализовано поле. Для плоского конденсатора V=Sd.

Отношение энергии поля к объему, где это поле сосредоточено, называется объемной плотностью энергии электрического поля

Анализируя приведенные формулы, можно заметить, что изменение заряда конденсатора, его емкости или напряжения на обкладках, приводит к изменению и энергии электрического поля конденсатора.

Для изменения емкости заряженного конденсатора, например, путем раздвижения его обкладок, необходимо совершить внешнюю механическую работу. Это связано с тем, что обкладки заряжены разноименно, и работа совершается против кулоновских сил притяжения разноименных зарядов.

Если конденсатор подключен к источнику ЭДС то кроме механической работы, работу совершают и сторонние силы в источнике. Поэтому в этом случае работа внешних сил может быть представлена в виде суммы:

Авнеш = Амех + Аист.

Когда через источник ЭДС протекает заряд Δq сторонние силы, действующие на заряды в источнике, совершают работу

Аист = Δq ε.

Работа сторонних сил может быть как положительной, так и отрицательной. Если источник разряжается – то Δq >0 и Аист > 0, если источник заряжается – то Δq <0 и Аист < 0.

Так, например, если замкнуть через сопротивление обкладки конденсатора, то через сопротивление будет некоторое время протекать электрический ток, и на сопротивлении будет выделяться джоулева теплота. Следует отметить, что ток разряда конденсатора уменьшается с течением времени и формулу Теплоэнергетика" href="/text/category/teployenergetika/" rel="bookmark">тепловую энергию .

Однако, если процесс разрядки конденсатора будет осуществляться медленно, то теплота выделятся не будет:

.

Если t достаточно велико (стремится к бесконечности), то выделившееся количество теплоты Q может быть очень мало.

Примеры решения задач

Задача №1. Две металлические пластины А и В находятся на расстоянии d = 10 мм друг от друга. Между ними находится металлическая пластина С толщиной h = 2 мм (рис.1). Потенциал пластины А = 50В, а пластины В = - 60В. Как изменится энергия конденсатора, если вынуть пластину С. Площадь поверхности пластины С, параллельной пластинам А и В равна 10 см2.

Решение. Напряженность электрического поля внутри проводника равна нулю, поэтому при удалении металлической пластины из поля в области пространства, ранее занятой пластиной, появиться электрическое поле, энергия которого W. Найдем связь между энергией поля, его напряженностью и объемом.

; ; https://pandia.ru/text/78/048/images/image017_47.gif" width="169" height="44 src="> , где V – объем пластины. Так как в условии задачи не оговаривается вид диэлектрика, будем считать, что между пластинами А и В находится воздух или вакуум ε = 1.

С учетом принятых обозначений: = 2,68*10-7 Дж.

Задача №2. Две соединенные проводником пластины плоского конденсатора площадью S каждая, находятся на расстоянии d друг от друга (рис.1) во внешнем однородном электрическом поле, напряженность которого . Какую работу надо совершить, чтобы медленно сблизить пластины до расстояния d/2?

Решение. Так как пластины замкнуты между собой проводником, то их потенциалы равны, а значит, равна нулю напряженность поля в пространстве между пластинами. После сближения пластин в области пространства, заштрихованной на рис.2, появится электрическое поле, энергия которого равна: . Исходя из закона сохранения энергии, можно записать: A=W.

Ответ: https://pandia.ru/text/78/048/images/image022_22.jpg" align="left" width="176 height=117" height="117">Задача №3. В схеме, изображенной на рисунке 1, найдите количество теплоты, выделившееся в каждом резисторе при замыкании ключа. Конденсатор, емкостью С1 заряжен до напряжения U 1 U 2 . Сопротивления резисторов R 1 и R 2 .

Решение. Для рассматриваемой системы закон сохранения энергии имеет вид

0 = ΔW + Q или Q = Wнач - Wкон

Начальная энергия заряженных конденсаторов https://pandia.ru/text/78/048/images/image024_27.gif" width="87 height=23" height="23">..gif" width="52" height="23 src="> так как конденсаторы соединены параллельно. Таким образом

и Q = Wнач - Wкон = https://pandia.ru/text/78/048/images/image029_25.gif" width="109" height="24 src=">.gif" width="63 height=47" height="47">.gif" width="105 height=47" height="47">.jpg" align="left" width="170 height=136" height="136">Задача №4. Трем одинаковым конденсаторам емкостью С каждый сообщили заряды q 1 , q 2 и q 3 . Затем конденсаторы соединили так, как показано на рисунке. Найдите заряд каждого конденсатора после замыкания ключей.

Решение. Обкладки соединяемых конденсаторов являются замкнутой системой и для них выполняется закон сохранения электрического заряда.

.

Мысленно проведем вдоль цепочки конденсаторов единичный положительный заряд, вернув его в начальную точку. Работа сил электростатического поля по перемещению заряда по замкнутой траектории равна нулю. Значит

Решая уравнения, получаем выражения для зарядов

https://pandia.ru/text/78/048/images/image042_10.jpg" width="396" height="128">

Задача №2. Точечный заряд q находится на расстоянии L от безграничной проводящей плоскости. Найдите энергию взаимодействия этого заряда с зарядами, индуцированными на плоскости.

Задача №3. Две проводящие полуплоскости образуют прямой двугранный угол. Точечный заряд q находится на расстояниях и https://pandia.ru/text/78/048/images/image046_17.gif" width="13" height="13">и отпускают без начальной скорости. В ходе начавшихся колебаний стержень достигает горизонтального положения, после чего движется обратно, и процесс повторяется. Найдите заряд шарика. Ускорение свободного падения равно g .

Задача №8. Найдите объемную плотность энергии электрического поля вблизи бесконечной заряженной плоскости с поверхностной плотностью зарядов 10 нКл/м2. Объемная плотность энергии – энергия, приходящаяся на единицу объема.

Задача №9. Большая тонкая проводящая пластина площадью S и толщиной d помещена в однородное электрическое поле напряженностью Е. Какое количество теплоты выделиться, если поле мгновенно выключить? Какую минимальную работу надо совершить, чтобы вынуть пластину из поля?

Задача №10. На обкладках плоского конденсатора находятся заряды + q и – q . Площадь обкладки S , расстояние между ними d 0 . Какую работу надо совершить, чтобы сблизить обкладки до расстояния d ?

Задача №11. Внутри плоского конденсатора, площадь обкладки которого 200 см2 и расстояние между ними 1 см находится пластинка из стекла (ε = 5), целиком заполняющая промежуток между обкладками. Как изменится энергия конденсатора, если удалить эту пластинку? Решить задачу для случая 1) конденсатор все время подключен к источнику тока с напряжением 200 В. 2) конденсатор первоначально был присоединен к тому же источнику, затем его отключили, и только после этого удалили пластинку.

Задача №12. Плоский конденсатор заполнили диэлектриком и на пластины подали некоторую разность потенциалов. Энергия конденсатора при этом равна W = 2*10-5 Дж. После того, как конденсатор отключили от источника, диэлектрик вынули из конденсатора. Работа, которую надо было совершить для этого, равна А = 7*10-5 Дж. Найдите диэлектрическую проницаемость диэлектрика.

Задача №13. Стеклянная пластинка полностью заполняет пространство между обкладками плоского конденсатора, емкость которого в отсутствии пластинки 20 нФ. Конденсатор подключили к источнику тока с напряжением 100 В. Пластинку медленно без трения вынули из конденсатора. Найдите приращение энергии конденсатора и механическую работу против электрических сил при извлечении пластинки.

Задача №14. Конденсатор емкостью С несет на обкладках заряд q . Какое количество теплоты выделится в конденсаторе, если его заполнить веществом с диэлектрической проницаемостью ε?

Задача №15. Плоский конденсатор находится во внешнем электрическом поле напряженностью Е, перпендикулярной пластинам. На пластинах площадью S находятся заряды + q и – q . Расстояние между пластинами d . Какую минимальную работу надо совершить, чтобы поменять пластины местами? Расположить параллельно полю? Вынуть из поля?

Задача №16. Конденсатор емкостью С заряжен до напряжения U . К нему подключают точно такой же конденсатор. Сопротивление подводящих проводов равно R . Какое количество теплоты выделиться в проводах?

Задача №17. Два одинаковых плоских конденсатора емкостью С каждый соединяют параллельно и заряжают до напряжения U . Пластины одного из них медленно разводят на большое расстояние. Какая при этом совершается работа?

Задача №18. Два конденсатора емкостью С каждый, заряжены до напряжения U и соединены через резистор. Пластины одного конденсатора быстро раздвигают, так, что расстояние между ними увеличивается вдвое, а заряд на пластинах за время их перемещения не изменяется. Какое количество теплоты выделится в резисторе?

Задача №19. Конденсатор емкостью С1=1 мкФ зарядили до напряжения 300 В и подключили к незаряженному конденсатору С2 емкостью 2 мкФ. Как изменилась при этом энергия системы?

Задача №20. Два одинаковых плоских конденсатора емкостью С каждый присоединяют к двум одинаковым батареям с ЭДС Е. В какой-то момент времени один конденсатор отключают от батареи, а второй оставляют присоединенным. Затем медленно разводят обкладки обеих конденсаторов, уменьшая емкость каждого в n раз. Какая механическая работа совершается в каждом случае? Объясните полученный результат.

Задача №21. В схеме, изображенной на рис., найдите количество теплоты, выделившееся в каждом резисторе при замыкании ключа. Конденсатор, емкостью С1 заряжен до напряжения U 1 , а конденсатор емкостью С2 – до напряжения U 2 . Сопротивления резисторов R 1 и R 2 .

Задача №22. Два конденсатора емкостями С1 и С2 соединили последовательно и подключили к источнику тока с напряжением U . Затем конденсаторы отключили и включили параллельно так, что + одного конденсатора оказался подключенным к + другого. Какая при этом выделилась энергия?

Задача №23. В схеме приведенной на рис. , конденсатор емкостью С, зарядили до напряжения U . Какое количество энергии будет запасено в аккумуляторе с ЭДС ε после замыкания ключа? Какое количество теплоты выделится в резисторе?

Задача №24.

Задача №25. Какое количество тепла выделится в цепи при переключении ключа К из положения 1 в положение 2?

Задача №26. В электрической цепи, схема которой показана на рис., ключ К замкнут. Заряд конденсатора q = 2 мкКл, внутреннее сопротивление батареи r = 5 Ом, сопротивление резистора 25 Ом. Найдите ЭДС батареи, если при размыкании ключа К на резисторе выделяется количество теплоты Q = 20 мкДж.

Задача №27. В электрической цепи, схема которой показана на рис., ключ К замкнут. ЭДС батареи Е=24 В, ее внутреннее сопротивление r = 5 Ом, заряд конденсатора 2 мкКл. При размыкании ключа К на резисторе выделяется количество теплоты 20 мкДж. Найдите сопротивление резистора.

Задача №28. Свинцовая проволочка диаметром 0,3 мм плавится при пропускании через нее тока 1,8 А, а проволочка диаметром 0,6 мм – при токе 5 А. При каком токе разорвет цепь предохранитель, составленный из двух этих проволочек, соединенных параллельно?

Задача №29. В гирлянде для новогодней елки последовательно соединены двенадцать одинаковых лампочек. Как изменится мощность, потребляемая гирляндой, если в ней оставить только шесть лампочек?

Задача №30. Какой ток пойдет по подводящим проводам при коротком замыкании в цепи, если при поочередном включении двух электроплиток с сопротивлением R 1 = 200 Ом и R 2 = 500 Ом на них выделяется одинаковая мощность 200 Вт.

Задача №31. При прохождении постоянного электрического тока по участку АВ на резисторе сопротивлением R 2 выделяется тепловая мощность P 2 . Какая тепловая мощность выделяется на каждом из резисторов сопротивлениями R 1 и R 3 ?

Задача №32. Выполнение работ" href="/text/category/vipolnenie_rabot/" rel="bookmark">выполнения работы , как далеко расположен нужный объект, и т. п.

Для выполнения простейших измерений или расчетов в отсутствие необходимых инструментов иногда приходится прибегать к «подручным средствам». Такими «подручными средствами» могут служить кисти наших рук, сами руки. А определение «на глазок» длины предмета или расстояния до нужного объекта возможно методом сравнения с нашим ростом, длиной шага, размером обуви и т. д.

Задание 1 Измерьте с помощью обычной школьной линейки (или тетрадного листа в клеточку) все возможные параметры своей руки, которые могут помочь в определении размеров других предметов:

Длину самого короткого и самого длинного пальца руки,

Максимальный раствор ладони (расстояние от кончика мизинца до кончика большого пальца при полностью раскрытой ладони),

Максимальное расстояние от кончика указательного пальца до кончика большого пальца при полностью раскрытой ладони,

- «локоть» (расстояние от локтевого сустава до кончика среднего пальца лежащей на столе руки).

Запишите (для памяти) полученные значения на шпаргалку или в записную книжку. Они не однажды вам могут понадобиться.

Задание 2 (3 балла за задание в целом). Пользуясь только что полученными «ручными» мерками, оцените:

Длину и ширину столешницы вашего учебного стола,

Длину и ширину любого помещения,

Размеры рамки для фотографии.

Проверьте линейкой или сантиметром, правильность оценочных значений.

Задание 3 (1 балл). Зная свой рост или рост любого из присутствующих в помещении людей, оцените методом сравнения высоту потолка данного помещения в метрах.

Замечание. Если вам понравилось пользоваться «подручными» мерками, следует помнить, что их надо постоянно обновлять.

Задание 4 (1 балл). Оцените среднюю длину собственного шага (в см).

Задание 5 (5 баллов за задание в целом).

3. Сравните полученные значения скорости со скоростью передвижения известных вам живых существ.

4. Рассчитайте кинетическую энергию, которую вы развиваете во время бега и во время ходьбы.

Таблица 1. Справочные материалы

Ориентировочные значения максимальной скорости в животном мире (в км/ч)

Скорость

Скорость

Насекомые

Скорость

Млекопитающие

Скорость

Собака, волк

Ласточка

Стрекоза

Задание 6 (2 балла). На уроках физкультуры в школе одним из зачетных видов занятий является бег на определенное расстояние (чаще всего, это 60 м) за определенный промежуток времени. Зная длину дистанции и время, за которое вы пробегаете это расстояние, оцените среднюю скорость бега в спринтерском темпе. Выразите полученное значение средней скорости в км/ч.

Современная физика знает много видов энергии, связанных с движением или различным взаимным расположением самых разнообразных материальных тел или частиц, например, всякое движущееся тело обладает кинетической энергией, пропорциональной квадрату его скорости. Эта энергия может изменяться, если скорость тела будет возрастать или убывать. Тело, приподнятое над землей, имеет потенциальную гравитационную энергию, изменяющуюся три изменении высоты тела.

Неподвижные электрические заряды, находящиеся на некотором расстоянии друг от друга, обладают потенциальной электростатической энергией в соответствии с тем, что по закону Кулона заряды либо притягиваются (если они разного знака), либо отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними.

Кинетической и потенциальной энергией обладают и молекулы, и атомы, и частицы, их составляющие - электроны, протоны, нейтроны и т. д. В зависимости от характера движения и природы сил, действующих между этими частицами, изменение энергии в системах таких частиц может проявляться в форме механической работы, в протекании электрического тока, в передаче теплоты, в изменении внутреннего состояния тел, в распространении электромагнитных колебаний и т. п.

Уже более 100 лет назад в физике был установлен фундаментальный закон, в соответствии с которым энергия не может исчезать или возникать из ничего. Она может лишь переходить из одного вида в другой . Этот закон называется законом сохранения энергии .

В трудах А. Эйнштейна этот закон получил существенное развитие. Эйнштейн установил взаимопревращаемость энергии и массы и тем самым расширил толкование закона сохранения энергии, который теперь в общем случае формулируется как закон сохранения энергии и массы .

В соответствии с теорией Эйнштейна всякое изменение энергии тела d Е связано с изменением его массы d m формулой d Е=d mс 2 , где с - скорость света в вакууме, равная 3 х 10 8 м/с.

Из этой формулы, в частности, следует, что если в результате какого-либо процесса масса всех тел, участвующих в процессе, уменьшится на 1 г, то при этом выделится энергия, равная 9х10 13 Дж, что эквивалентно 3000 т условного топлива.

Эти соотношения имеют первостепенное значение при анализе ядерных превращений. В большинстве же макроскопических процессов изменением массы можно пренебречь и говорить лишь о законе сохранения энергии.

Проследим за преобразованиями энергии на каком-нибудь частном примере. Рассмотрим всю цепочку преобразований энергии, необходимую для изготовления какой-либо детали на токарном станке (рис. 1). Пусть исходная энергия 1, количество которой мы примем за 100%, получена за счет полного сжигания некоторого количества природного топлива. Следовательно, для нашего примера 100% исходной энергии содержится в продуктах сгорания топлива, находящихся при высокой (около 2000 К) температуре.

Продукты сгорания в котле электростанции, охлаждаясь, отдают свою внутреннюю энергию в виде теплоты воде и водяному пару. Однако по техническим и экономическим причинам продукты сгорания нельзя охладить до температуры окружающей среды. Они выбрасываются через трубу в атмосферу при температуре около 400 К, унося с собой часть исходной энергии. Поэтому во внутреннюю энергию водяного пара перейдет только 95% исходной энергии.

Полученный водяной пар поступит в паровую турбину, где его внутренняя энергия вначале частично превратится в кинетическую энергию струн пара, которая затем будет отдана в виде механической энергии ротору турбины.

Только часть энергии пара может быть превращена в механическую энергию. Остальная часть отдается охлаждающей воде при конденсации пара в конденсаторе. В нашем примере мы приняли, что энергия, переданная ротору турбины, составит около 38%, что примерно соответствует положению дел на современных электростанциях.

При преобразовании механической энергии в электрическую за счет так называемых джоулевых потерь в обмотках ротора и статора электрогенератора будет потеряно еще около 2% энергии. В результате в электрическую сеть поступит около 36% исходной энергии.

Электродвигатель превратит в механическую энергию вращения токарного станка только часть подведенной к нему электроэнергии. В нашем примере около 9% энергии в виде джоулевой теплоты в обмотках двигателя и теплоты трения в его подшипниках будет отдано в окружающую атмосферу.

Таким образом, к рабочим органам станка окажется подведенным только 27% исходной энергии. Но и на этом злоключения энергии не заканчиваются. Оказывается, что подавляющая часть энергии при механической обработке детали расходуется на трение и в виде теплоты отводится с жидкостью, охлаждающей деталь. Теоретически на то, чтобы из исходной заготовки получить нужную деталь, хватило бы лишь весьма малой доли (в нашем примере условно принято 2%) исходной энергии.


Рис. 1. Схема преобразований энергии при обработке детали на токарном станке: 1 - потеря энергии с уходящими газами, 2 - внутренняя энергия продуктов сгорания, 3 - внутренняя энергия рабочего тела - водяного пара, 4 - теплота, отдаваемая охлаждающей воде в конденсаторе турбины, 5 - механическая энергия ротора турбогенератора, 6 - потери в электрогенераторе, 7 - потерн в электроприводе станка, 8 - механическая энергия вращения станка, 9 - работа трения, превращающаяся в теплоту, отдаваемую жидкости, охлаждающей деталь, 10 - увеличение внутренней энергии детали и стружки после обработки.

Из рассмотренного примера, если его считать достаточно типичным, можно сделать по крайней мере три очень полезных вывода.

Во-первых, на каждой ступеньке преобразования энергии какая-то часть ее теряется . Это утверждение не следует понимать как нарушение закона сохранения энергии. Теряется она для того полезного эффекта, ради которого соответствующее преобразование осуществляется. Полное количество энергии после преобразования остается неизменным.

Если в некоторой машине или аппарате осуществляется процесс преобразования и передачи энергии, то эффективность этого устройства обычно характеризуют коэффициентом полезного действия (к. п. д.) . Схема такого устройства показана на рис. 2.


Рис. 2. Схема для определения к. п. д. устройства, преобразующего энергию.

Пользуясь обозначениями, приведенными на рисунке, к. п. д. можно определить как кпд = Епол/ Епод

Ясно, что при этом на основании закона сохранения энергии должно быть Епод = Епол + Епот

Поэтому к. п. д. можно записать еще и так: кпд = 1 - (Епот/Епол)

Возвращаясь к примеру, изображенному на рис. 1, можно сказать, что к. п. д. котла равен 95%, к. п. д. преобразования внутренней энергии пара в механическую работу - 40%, к. п. д. электрогенератора - 95%, к. п. д. электропривода станка - 75% и к. п. д. собственно процесса обработки детали около 7%.

В прошлом, когда законы превращения энергии еще не были известны, мечтой людей было создание так называемого вечного двигателя - устройства, которое совершало бы полезную работу, не затрачивая никакой энергии. Такой гипотетический двигатель, существование которого нарушало бы закон сохранения энергии, сегодня называют вечным двигателем первого рода в отличие от вечного двигателя второго рода. Сегодня, разумеется, никто не принимает всерьез возможность создания вечного двигателя первого рода.

Во-вторых, все потери энергии в конечном итоге превращаются в теплоту, которая отдается либо атмосферному воздуху, либо воде естественных водоемов.

В-третьих, в конечном счете люди полезно используют лишь малую часть той первичной энергии, которая была затрачена для получения соответствующего полезного эффекта.

Это особенно очевидно при рассмотрении затрат энергии на транспорт. В идеализированной механике, не учитывающей сил трения, перемещение грузов в горизонтальной плоскости не требует затрат энергии.

В реальных условиях вся энергия, потребляемая транспортным средством, затрачивается на преодоление сил трения и сил сопротивления воздуха, т. е. в конечном счете вся энергия, потребляемая на транспорте, превращается в теплоту. В этом отношении любопытны следующие цифры, характеризующие работу перемещения 1 т груза на расстояние 1 км различными видами транспорта: самолет - 7,6 кВт-ч/(т-км), автомобиль - 0,51 кВт-ч/(т-км), поезд - 0,12 кВт-ч/(т-км).

Таким образом, один и тот же полезный эффект может быть достигнут при воздушном транспорте за счет в 60 раз больших затрат энергии, чем при железнодорожном. Конечно, большая затрата энергии дает существенную экономию во времени, но даже и при одинаковой скорости (автомобиль и поезд) затраты энергии различаются в 4 раза.

Этот пример говорит о том, что люди часто поступаются энергетической экономичностью ради достижения иных целей, например комфорта, скорости и т. п. Как правило, сама по себе энергетическая экономичность того или иного процесса нас мало интересует - важны суммарные технико-экономические оценки эффективности процессов. Но по мере удорожания первичных источников энергии энергетическая составляющая в технико-экономических оценках становится все более важной.