11 класс

Какие характеристики являются характеристиками рассеивания случайной величины. Основные статистические характеристики ряда измерений. Характеристики случайных величин

    ЭФФЕКТИВНАЯ ПОВЕРХНОСТЬ (ПЛОЩАДЬ) РАССЕЯНИЯ - характеристика отражающей способности цели, выражаемая отношением мощности эл. магн. энергии, отражаемой целью в направлении приёмника, к поверхностной плотности потока энергии, падающей на цель. Зависит от… … Энциклопедия РВСН

    Квантовая механика … Википедия

    - (ЭПР) характеристика отражающей способности цели, облучаемой электромагнитными волнами. Значение ЭПР определяется как отношение потока (мощности) электромагнитной энергии, отражаемой целью в направлении радиоэлектронного средства (РЭС), к… … Морской словарь

    полоса рассеяния - Статистическая характеристика экспериментальных данных, отражающая их отклонение от средних значения. Тематики металлургия в целом EN desperal band … Справочник технического переводчика

    - (функция передачи модуляции), ф ция, с помощью к рой оценивают «резкостные» св ва изображающих оптич. систем и отд. элементов таких систем. Ч. к. х. есть преобразование Фурье т. н. функции рассеяния линии, описывающей характер «расплывания»… … Физическая энциклопедия

    Функция передачи модуляции, функция, с помощью которой оценивают «резкостные» свойства изображающих оптических систем и отдельных элементов таких систем (см., например, Резкость фотографического изображения). Ч. к. х. есть Фурье… …

    полоса рассеяния - статистическая характеристика экспериментальных данных, отражающая их отклонение от среднего значения. Смотри также: Полоса полоса скольжения полоса сброса полоса прокаливаемости … Энциклопедический словарь по металлургии

    ПОЛОСА РАССЕЯНИЯ - статистическая характеристика экспериментальных данных, отражающая их отклонение от средних значения … Металлургический словарь

    Характеристика рассеяния значений случайной величины. М. т. h связана с квадратичным отклонением (См. Квадратичное отклонение) σ формулой Этот способ измерения рассеяния объясняется тем, что в случае нормального… … Большая советская энциклопедия

    ВАРИАЦИОННАЯ СТАТИСТИКА - ВАРИАЦИОННАЯ СТАТИСТИКА, термин, объединяющий группу приемов статистического анализа, применяющихся преимущественно в естественных науках. Во второй половине XIX в. Кетле (Quetelet, «Anthro pometrie ou mesure des differentes facultes de 1… … Большая медицинская энциклопедия

    Математическое ожидание - (Population mean) Математическое ожидание – это распределение вероятностей случайной величины Математическое ожидание, определение, математическое ожидание дискретной и непрерывной случайных величин, выборочное, условное матожидание, расчет,… … Энциклопедия инвестора

Министерство образования и науки РФ

Государственное образовательное учреждение высшего профессионального образования

«МАТИ»-Российский государственный технологический университет имени К. Э. Циолковского

Кафедра «Технология производства двигателей летательных аппаратов»

Лабораторный практикум

MATLAB. Занятие 2

СТАТИСТИЧЕСКИЙ АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Составители:

Курицына В.В.

Москва 2011

ВВЕДЕНИЕ..........................................................................................................

ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН...........................................

Характеристика положения центра группирования случайных величин.....

Характеристики рассеяния случайной величины...........................................

Характеристики выборки наблюдений............................................................

Нормальное распределение (распределение Гаусса) ..................................

ПРЕДСТАВЛЕНИЕ ВЫБОРКИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ В ВИДЕ

РЯДА РАСПРЕДЕЛЕНИЙ.................................................................................

ОПРЕДЕЛЕНИЕ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК В СРЕДЕ

MATLAB ............................................................................................................

Формирование выборки экспериментальных данных.................................

Способы формирования файла выборки..................................................

Вариант 1. Формирование матрицы данных результатов измерений 12

Вариант 2. Моделирование результатов измерений..............................

Построение графиков распределения..........................................................

Вариант 1. Построение графиков распределения..................................

Вариант 2. Построение графиков распределения..................................

ВИЗУАЛЬНОЕ МОДЕЛИРОВАНИЕ.............................................................

Моделирование в Matlab Simulink .................................................................

Начало работы с Simulink ..............................................................................

Создание модели Simulink.............................................................................

Формирование выборки для анализа.........................................................

Расчет статистических характеристик...............................................

Построение гистограммы распределения...............................................

Блок-схема визуальной модели...................................................................

Моделирование случайного процесса..........................................................

Модельный эксперимент............................................................................

Создание массивов со случайными элементами......................................

Модификация источника данных в модели..............................................

Примерный вид блок-схемы модели..........................................................

ВВЕДЕНИЕ

В арсенале средств, которыми должен владеть современный экспериментатор, статистические методы обработки и анализа данных занимают особое место. Это связано с тем, что результат любого, достаточно сложного эксперимента не может быть получен без обработки экспериментальных данных.

Аппарат теории вероятности и математической статистики разработан и применяется для описания закономерностей, присущих массовым случайным событиям. Каждому случайному событию сопоставляется соответствующая случайная величина (в данном случае результат эксперимента).

Для описания случайных величин используются следующие характеристики:

а) числовые характеристики случайной величины (например, математической ожидание, дисперсия, …);

б) закон распределения случайной величины – функция, несущая всю информацию о случайной величине.

Числовые характеристики и параметры закона распределения случайной величины связаны между собой определенной зависимостью. Часто по значению числовых характеристик можно предположить закон распределения случайной величины.

Законом распределения случайной величины обычно называется функция распределения вероятностей принятия случайной величиной того или иного значения. Это функция, которая ставит в соответствие возможным интервальным значениям случайной величины вероятность попадания ее в эти интервалы.

ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

Характеристика положения центра группирования случайных величин

В качестве числовых характеристик положения центра группирования случайных величин используют математическое ожидание или среднее значение, моду и медиану случайной величины (рис.3.1. ).

Математическое ожидание случайной величины Y обозначают через М Y или a и определяют по формуле:

a = MY = ∫ Yϕ (Y ) dY .

Математическое ожидание указывает на положение центра группирования случайных величин, или положение центра масс площади под кривой. Математическое ожидание является числовой характеристикой случайной величины, то есть является одним из параметров функции распределения.

ϕ (Y ϕ (Y)max

0 MoY

MеY

Рис. 3.1. Характеристики группирования случайной величины X

Модой случайной величины Y является такое значение Мo Y , в котором плотность вероятности имеет максимальное значение.

Медианой случайной Y служит значение Ме Y , которое соответствует условию:

P (Y < МеY ) = P (Y > MeY ) = 0,5 .

Геометрически медиана представляет абсциссу точек прямой, которая делит площадь, ограниченную кривой плотности вероятности пополам.

Характеристики рассеяния случайной величины

Одной из основных характеристик рассеяния случайной величины Y около центра распределения служит дисперсия , которая обозначается D(Y) или σ 2 и определяется по формуле:

D(Y ) = σ 2 = ∫ (Y − a) 2 ϕ (Y ) dY .

Дисперсия имеет размерность квадрата случайной величины, что не всегда удобно. Часто вместо дисперсии за меру рассеивания случайной величины используют положительное значение квадратного корня из дисперсии, которое называется средним квадратичным отклонением или стандартным отклонением :

σ = D (Y ) = σ 2 .

Как и дисперсия, среднеквадратичное отклонение характеризует разброс величины вокруг математического ожидания.

В практике широко применяют также характеристику рассеивания, называемую коэффициентом вариации ν , который представляет отношение среднего квадратичного отклонения к математическому ожиданию:

ν = σ a 100% .

Коэффициент вариации показывает, насколько велико рассеяние по сравнению со средним значением случайной величины.

Характеристики выборки наблюдений

Среднее значение наблюдаемого признака можно оценить по формуле

Y = 1 ∑ n Y i ,

n i = 1

где Yi – значение признака в i -м наблюдении (опыте), i=1...n. ; n – количество наблюдений.

Выборочное среднеквадратичное отклонение определяется по формуле:

∑ (Yi − Y ) 2 .

n − 1 i = 1

ν = Y S .

Зная коэффициент вариации ν , можно определить показатель точности Н по формуле:

H = ν n .

Чем точнее проведено исследование, тем меньше будет величина показателя

В зависимости от природы изучаемого явления показатель точности исследования считается достаточным, если он не превышает 3÷5%.

Не редки случаи, когда в результаты эксперимента вкрадывается грубая погрешность . Существует несколько способов оценки грубых погрешностей. Наиболее простой основан на вычислении максимального относительного отклонения U . Для этого результаты измерения располагают в ряд монотонно возрастающих значений. Проверке на грубую погрешность подлежит наименьший Y min или наибольший Y max член ряда. Расчет проводят по формулам:

− Y min

Y max − Y

Значение U сравнивают с табличным значением для данной доверительной вероятности U α . Если U ≤ U α , то в данном наблюдении нет грубой погрешности. В противном случае результат наблюдения отсеивают и

производят перерасчет Y и S . Затем повторяют процедуру оценки и исключения грубых погрешностей до тех пор, пока не будет выполняться неравенство U ≤ U α для крайних членов ряда.

Во многих случаях результаты статистических наблюдений могут быть описаны теоретическими законами распределения . При интерпретации данных, полученных экспериментальным путем возникает задача – определить такой теоретический закон распределения случайной величины, который наилучшим образом соответствует результатам наблюдений. Более конкретно эта задача сводится к проверке гипотезы о принадлежности случайной выборки к некоторому закону распределения.

Разные по природе анализируемые процессы обуславливают области применения различных законов распределения. Так результат технологического эксперимента при одних и тех же условиях обработки подчиняется и результат эксперимента по бросанию монеты с орлом и решкой подчиняются совершенно разным законам. Законы распределения случайной величины характеристик надежности, отказов так же имеют особенности.

Рассеивание случайной величины характеризует её разброс относительно точки математического ожидания. Так как разброс элементов спектра случайной величины происходит по обе стороны от центра рассеивания, то для его учета используют либо четные степени центральных моментов, либо абсолютные центральные моменты. Достаточно рассмотреть центральный момент второго порядка m 2 и абсолютный центральный момент первого порядка t 1 . Первый из них называется дисперсией , а второй – средним отклонением . Изучим их подробнее.

Дисперсия случайной величины Х имеет несколько обозначений:

ДСВ ;

D(X ) = = m 2 = E ( 2) = (59)

НСВ ,

Оператор дисперсии D обладает следующими свойствами:

1) D (C ) = 0

2) D (CX ) = C 2 ·D (X ) . (60)

3) D (C +X ) = D (X )

Ситуация с доказательством свойств оператора дисперсии аналогична той, которая была отмечена для оператора математического ожидания. Остановимся на физическом смысле этих свойств.

Первое свойство говорит, что постоянная величина не имеет разброса. Комментарий не требуется.

При изменении масштаба по оси абсцисс (второе свойство ), новое значение дисперсии получается из старого путем умножения последнего на величину квадрата масштабного коэффициента.

Третье свойство дисперсии заключается в том, что при переносе начала координат на величину C по оси абсцисс дисперсия случайной величины не меняется, так как центрирование компенсирует перенос.

Объединение этих свойств выражается реакцию оператора дисперсии на линейное преобразование случайной величины X :

D(C 1 + C 2 ∙ X ) = C 2 2 ∙ D (X ) . (61)

Из определения дисперсии следует, что ее размерность равна квадрату размерности случайной величины, которую она характеризует. Это не всегда удобно для восприятия. Например, если сказать, что некоторое расстояние S = 567,89 м , а его дисперсия D (S ) = 9∙10 -4 м 2 , то сопоставление этих величин, имеющих отличающиеся размерности , не дает представления о точности измерений. Этот факт способствовал использованию дополнительно в качестве характеристики рассеивания другого показателя – стандарта .

Стандарт или среднее квадратическое отклонение (СКО) представляет собой положительное значение квадратного корня из дисперсии и характеризует разброс СВ относительно ее центра рассеивания в тех же единицах, в каких выражена и сама случайная величина:

(62)

Свойства стандарта определяются свойствами дисперсии:

1) s C = 0

2) s CX = C ·s X (63)

3) s C + X = s X

Если теперь мы охарактеризуем ранее приведенное расстояние S=567,89 м стандартом s S =3*10 -2 м , то наше представление о точности этого расстояния будет адекватным.

Среднее отклонение – это абсолютный центральный момент первого порядка для случайной величиныХ , обозначаемый буквой ϑ X и вычисляемый по определению (58) при r = 1 :

ДСВ ;

ϑ X = τ 1 = E (| |)= (64)

НСВ .

Свойства среднего отклонения аналогичны свойствам стандарта (убедитесь в этом в качестве Упражнения 2.1 ):

1) ϑ X = 0

2)ϑ CX = |C |·ϑ X (65)

3) ϑ C + X = ϑ X

2.2.6 Примеры одномерных распределений .

Рассмотрим законы распределений некоторых дискретных и непрерывных случайных величин, играющих важную роль в теории и практике.

Индикатор события.

Индикатор события I A представляет собой частный случай испытаний Бернулли. Это дискретная случайная величина, принимающая только два возможных значения 0 и 1 с вероятностями (1 – p ) и p соответственно. Здесь p = P (A ) – вероятность наступления события A , описанного на некотором пространстве W . Рассмотрим все введенные выше характеристики для этой случайной величины в качестве примера и с целью их использования при изучении более сложных законов.

Дано :X = I A = {x 1 = 0; x 2 = 1} ; P (x 1) = P (Ā ) = 1 – p =q ; P (x 2) = P (A ) = p .

Найти : 1) F (I A ) – ? 2) E (I A ) – ? 3) D (I A ) – ? 4) s I – ?

Решение :

1)Функцию распределения разместим в расширенной таблице ряда распределения, как это предложено в (44):

X = I A -
P(X = I A ) q p -
F(I A ) q

Числовые характеристики определим по формулам (51), (59) и (62):

2)E (I A ) = 0∙q + 1∙p = p ;

3)D (I A ) = =a 2 - = 0 2 ∙q +1 2 ∙p p 2 = p ∙(1 – p ) = pq ;

4) = .

Индикатор событий используется при изучении повторных испытаний и решении других задач как вспомогательная случайная величина.

2.2.6.2 Равномерное распределение .

В качестве иллюстрации, поясняющей материал раздела 2.2 для непрерывных случайных величин, исследуем непрерывное равномерное распределение на некотором отрезке [a ; b ]. Распределение называется равномерным на отрезке, если его плотность вероятности постоянна на этом отрезке и равна нулю за его пределами. Представим изучение данного распределения в виде решения задачи.

Дано : f (x ) = c , [a ; b ] ; f (x ) = 0 вне этого отрезка.

Найти : 1 ) постоянную плотность распределения c – ?, 2 ) F (x ) – ?, 3 )E (X ) – ?, 4 ) Mo(X ) – ?, 5 ) Me(X ) – ?, 6 ) D (X ) – ?, 7 ) s X – ?, 8 ) ϑ X – ?, 9 )P (x 1 <X <x 2) – ?

Решение : Выполнить самостоятельно в качестве Упражнения 2.2 .

Ответы : 1 ) c = 1 / (b a ) ; 2 ) F (x ) = (x a ) / (b a ) ; 3 ) E (X ) = (a + b )/2 ;

4 ) Mo(X ) – не определена; 5 ) Me(X ) = E (X ) ; 6 ) D (X ) = (b a ) 2 / 12 ;

7 ) s x = (b a ) /() ;8 ) ϑ X = (b a ) / 4 ; 9 ) P (x 1 < X < x 2) = (x 2 – x 1)/(b a ) , когда ]x 1 ; x 2 [ [a ;b ] .

Графики плотности и функции равномерного распределения представлены на следующих рисунках (Рис.19 и 20 ).

f (x ) F (x )

c

S =1 c =1/

0 a E (X ) b X 0 a E (X ) b X

Рис. 2.19 Плотность равномерного Рис. 2.20 Функция равномерного

Главная характеристика рассеивания вариационного ряда называется дисперсией

Главная характеристика рассеивания вариационного ряда называется дисперсией . Выборочная дисперсия D в рассчитывается по следующей формуле:

где x i – i -ая величина из выборки, встречающаяся m i раз; n – объём выборки; – выборочная средняя; k – количество различных значений в выборке. В рассматриваемом примере: x 1 =72, m 1 =50; x 2 =85, m 2 =44; x 3 =69, m 3 =61; n =155; k =3; . Тогда:

Заметим, что чем больше значение дисперсии, тем сильнее отличие значений измеряемой величины друг от друга. Если в выборке все значения измеряемой величины равны между собой, то дисперсия такой выборки равна нулю.

Дисперсия обладает особыми свойствами.

Свойство 1. Значение дисперсии любой выборки неотрицательно, т.е. .

Свойство 2. Если измеряемая величина постоянна X=c, то дисперсия для такой величины равна нулю: D [ c ]= 0.

Свойство 3. Если все значения измеряемой величины x в выборке увеличить в c раз, то дисперсия данной выборки увеличится в c 2 раз: D [ cx ]= c 2 D [ x ], где c = const .

Иногда вместо дисперсии используют выборочное среднее квадратическое отклонение , которое равно арифметическому квадратному корню из выборочной дисперсии: .

Для рассмотренного примера выборочное среднее квадратическое отклонение равно .

Дисперсия позволяет оценить не только степень различия измеряемых показателей внутри одной группы, но может быть использована и для определения отклонения данных между разными группами. Для этого используется несколько видов дисперсии.

Если в качестве выборки берётся какая-либо группа, то дисперсия данной группы называется групповой дисперсией . Чтобы выразить численно различия между дисперсиями нескольких групп, существует понятие межгрупповой дисперсии . Межгрупповой дисперсией называется дисперсия групповых средних относительно общей средней:

где k – число групп в общей выборке, - выборочная средняя для i -ой группы, n i – объём выборки i -ой группы, - выборочная средняя для всех групп.

Рассмотрим пример.

Средняя оценка за контрольную работу по математике в 10 «А» классе составила 3.64, а в 10 «Б» классе 3.52. В 10 «А» учится 22 человека, а в 10 «Б» - 21. Найдём межгрупповую дисперсию.

В данной задаче выборка разбивается на две группы (два класса). Выборочная средняя для всех групп равна:

.

В таком случае межгрупповая дисперсия равна:

Поскольку межгрупповая дисперсия близка к нулю, то мы можем сделать вывод, что оценки одной группы (10 «А» класса) в малой степени отличаются от оценок второй группы (10 «Б» класса). Иными словами, с точки зрения межгрупповой дисперсии рассмотренные группы в незначительной степени отличаются по заданному признаку.

Если общая выборка (например, класс учеников) разбита на несколько групп, то помимо межгрупповой дисперсии можно рассчитать ещё внутригрупповую дисперсию . Такая дисперсия является средней величиной для всех групповых дисперсий.

Внутригрупповая дисперсия D внгр рассчитывается по формуле:

где k – количество групп в общей выборке, D i – дисперсия i -ой группы объёма n i .

Существует взаимосвязь между общей (D в ), внутригрупповой (D внгр ) и межгрупповой (D межгр ) дисперсиями:

D в = D внгр + D межгр .

Для математико-статистического анализа результатов выборки знать только характеристики положения недостаточно. Одна и та же величина среднего значе­ния может характеризовать совершенно различные выборки.

Поэтому кроме них в статистике рассматривают также характеристики рассеяния (вариации, или колеблемости ) результатов .

1. Размах вариации

Определение. Размахом вариации называется разница между наибольшим и наименьшим результатами выборки, обозначается R и определяется

R =X max - X min .

Информативность этого показателя невелика, хотя при малых объёмах вы­борки по размаху легко оценить разницу между лучшим и худшим результатами спортсменов.

2. Дисперсия

Определение. Дисперсией называется средний квадрат отклонения значений признака от среднего арифметического.

Для несгруппированных данных дисперсия определяется по формуле

где Х i – значение признака, - среднее арифметическое.

Для данных, сгруппированных в интервалы, дисперсия определяется по формуле

,

где х i – среднее значение i интервала группировки, n i – частоты интервалов.

Для упрощения расчётов и во избежание погрешностей вычисления при округ­лении результатов (особенно при увеличении объёма выборки) используются также другие формулы для определения дисперсии. Если среднее арифметическое уже вычислено, то для несгруппированных данных используется следующая фор­мула:

 2 =
,

для сгруппированных данных:

.

Эти формулы получаются из предыдущих раскрытием квадрата разности под знаком суммы.

В тех случаях, когда среднее арифметическое и дисперсия вычисляются од­новременно, используются формулы:

для несгруппированных данных:

 2 =
,

для сгруппированных данных:

.

3. Среднее квадратическое (стандартное ) отклонение

Определение. Среднее квадратическое (стандартное ) отклонение характе­ризует степень отклонения результатов от среднего значения в абсолютных единицах, т. к. в отличие от дисперсии имеет те же единицы измерения, что и результаты измерения. Иначе говоря, стандартное отклонение показывает плотность распределения результатов в группе около среднего значения, или однородность группы.

Для несгруппированных данных стандартное отклонение можно определить по формулам

 =
,

 =
или =
.

Для данных, сгруппированных в интервалы, стандартное отклонение определяется по формулам:

,

или
.

4. Ошибка средней арифметической (ошибка средней)

Ошибка средней арифметической характеризует колеблемость средней и вычисляется по формуле:

.

Как видно из формулы, с увеличением объёма выборки ошибка средней уменьшается пропорционально корню квадратному из объёма выборки.

5. Коэффициент вариации

Коэффициент вариации определяется как отношение среднего квадратического отклонения к среднему арифметическому, выраженное в процентах:

.

Считается, что если коэффициент вариации не превышает 10 %, то выборку можно считать однородной, то есть полученной из одной генеральной совокупности.