11 класс

Классификация взрывов в зависимости от окруж среды. Характеристика разрушений сооружений и поражения людей при аварийных взрывах. Техногенные чрезвычайные ситуации

атомного ядра. Ядерный взрыв основан на сnособности оnределен­

ных изотоnов тяжелых элементов урана или nлутония к делению, nри котором ядра исходного вещества расnадаются, образуя ядра более легких элементов. При делении всех ядер, содержащихся в 50 г урана или nлутония, освобождается такое же количество энергии, как и nри детонации 1 000 т тринитротолуола.

Термоядерные взры вы

Существует другой тиn ядерной реакции - реакция синтеза лег­ ких ядер, соnровождающаяся выделением большого количества энер­

гии. Силы отталкивания одноименных электрических зарядов (все ядра имеют nоложительный электрический заряд) nреnятствуют nро­ теканию реакции синтеза, nоэтому для эффективного ядерного nре­ вращения такого тиnа ядра должны обладать высокой энергией. Такие условия могут быть созданы нагреванием веществ до очень высокой темnературы. Процесс синтеза, nротекающий nри высокой темnера­ туре, называют термоядерной реакцией. При синтезе ядер дейтерия (изотоnа водорода 2Н) освобождается nочти в три раза больше энер­ гии, чем nри делении такой же массы урана. Необходимая для синтеза темnература достигается nри ядерном взрыве урана или nлутония.

Таким образом, если nоместить в одном и том же устройстве де­ лящееся вещество и изотоnы водорода, то может быть осуществлена реакция синтеза, результатом которой будет взрыв огромной силы -

термоядерный взрыв.

2. 1.4. Взрывы в средах

Взрывы nроисходят в различных средах. В зависимости от места nервоначального выделения энергии взрывы nодразделяются:

воздушный взрыв - это взрыв заряда в газе в отсутствии отражающих nоверхностей;

nодземный взрыв - взрыв заряда в грунте;

nодводный взрыв - взрыв заряда в воде;

наземный взрыв - взрыв заряда на nоверхности грунта (nо­

верхностный).

Действие взрыва зависит от характеристик среды и от условий его осуществления, таких как глубина (высота) nод или над границей

раздела фаз.

Раздел 2 . Взры в

Воздушные взрывы

При взрыве в воздухе продукты взрыва движутся вслед за ударной

волной, < nодпитывая > ее. Затем характер ударной волны определяет­

ся запасом энергии, переданной ей продуктами взрыва в процессе их

расширения.

Для расчета избыточного давления используются многочислен­

ные методы,

учитывающие состав горючего вещества (индивидуаль­

ное вещество или смесь горючих веществ), место взрыва (открытое

пространство или закрытое помещение) и т. д. В качестве иллюстра­

ции приведем метод определения избыточного давления для воздуш­

ных взрывов по формуле М.А. Садовского:

0,084 - r - + 0,27

т - масса тротилового эквивалента взрывного вещества, кг;

r - расстояние до центра взрыва, м.

Более подробно ознакомимся с методами расчета подобных взры­

в разделе 3.

Подземные взрывы

При подземном взрыве происходит передача энергии внешней

среде путем прогрева ее выделяющейся теплотой. По грунту распро­

страняются тепловая и ударная волны.

Особенностью подземного взрыва является большая плотность

грунта, которая на три порядка больше плотности воздуха.

Ударная волна в грунте, в отличие от ударной волны в воздухе,

является неустойчивой, так как встречающийся на пути ударной

волны грунт имеет различную структуру (почва, скальные породы

Подземные взрывы являются контролируемыми взрывами. В за-

висимости от глубины заложения заряда в грунт принято различать:

камуфлетный подземный взрыв;

подземный взрыв с выбросом грунта.

Особенности таких взрывов заключаются в следуюшем:

при камуфлетнам взрыве не происходит раскрытия грунтового

канала (выброса грунта в атмосферу);

при подземном взрыве с выбросом грунта происходит раскры­

тие грунтового купола и образование воронки выброса.

Подводные взрывы

При подводном взрыве в момент выхода детонационной волны на поверхность начинает распространяться ударная волна. Вслед за

ударной волной движется граница раздела между продуктами детона­

ции и водой. При этом в воде образуется полость с газообразными

продуктами детонации, обладающими колоссальной энергией.

где G R- масса заряда взрывчатого вещества (ВВ), кг; расстояние от заряда ВВ до точки наблюдения, м.

2.2. Случай ные взрывы

В зависимости от причин, вызывающих взрыв, принято разделе­ ни взрывов на контролируемые и неконтролируемые.

Контролируемые взрывы используются для решения экономиче­

ских задач. Наиболее часто применяют такие взрывы для ведения гор­ ных разработок, в сейсморазведке, при строительстве подземных со­

оружений, в военных целях. Параметры контролируемых взрывов стро­ го регламентированы в соответствии с нормативными документами.

Неконтролируе.мые взрывы происходят случайно, поэтому их на­

зывают случайными.

Термин «случайный взрыв» включает широкий спектр взрывов, и

каждый из них в отдельных своих проявлениях отличается от остальных.

Причинами таких взрывов чаше всего являются процессы горения. Случайные взрывы происходят:

при изготовлении, хранении, транспортировке горючих, взры­ воопасных вешеств;

нарушении технологических режимов, поломке оборудования.

Чаще всего взрывы имеют место в химической, нефтеперерабаты­ вающей промышленности, при утечке природного газа и т. д.

Классификация случайных взрывов

Случайные взрывы объединены в груnnы, каждая из которых имеет отличительные особенности.

Случайные взрывы nодразделяются:

на взрывы газов, nаров и n ыли в замкнутых объемах без избыточного давления;

взрывы сосудов с газом nод давлением;

взрывы, вызванные горением;

взрывы емкостей с nереrретой жидкостью;

взрывы неограниченных облаков пара;

физические (nаровые) взрывы и др.

2.2. 1. Взрывы паров горючего и пыли в замкнутых

Такие взрывы, как nравило, nроисходят nри неисnравности обо­ рудования. Горючее nодтекает в ограждение, nары его смешиваются с воздухом и образуется горючая смесь, которая встуnает в контакт с уже имеющимиен nарами.

Взрывы случаются в жилых домах nри утечке газа. В результате nроисходят расnространение и значительное ускорение nламени, nриводящие к nожарам и значительным разрушениям.

Примером взрыва горючих nаров и газов является катастрофа, nроизошедшая 26 февраля 2006 г в г. Ангарске на лакокрасочном nредnриятии.

Наиболее расnространены взрывы nыли. Взрывы nыли в замкну­ том nространстве имеют более длительную историю, чем взрывы nа­ ров и газов. Это объясняется тем, что nары и газы в качестве тоnлива

начали исnользоваться относительно недавно. Взрывы же пыли nро­ исходят в котельных, на nредnриятиях химической nромышленности,

в фармацевтической индустрии, угольных шахтах, мукомольных nредnриятиях.

Взрыв nыли в замкнутом объеме может nривести к катастрофиче­ ским nоследствиям.

Практически все органические nыли и некоторые неорганичек ­ ские или металлические nыли сгорают в воздухе и могут nривести взрывам.

высокая концентрация пыли в замкнутых объемах (помещени­ ях реакторов, топочных устройствах, трубопроводах и пр.);

спонтанное воспламенение пыли.

Для того чтобы облако пыли взорвалось, необходима такая кон­ центрация пыли, при которой характерное расстояние поглощения и

рассеяния света составляет примерно 0,2 м. Подобные облака, как

правило, непрозрачны, и концентрация пыли в них выше переноси­ мой человеком. Такие условия могут достигаться лишь внутри трубо­

проводов и специального оборудования, т. е. в закрытых объемах. Взрывы пыли склонны к спонтанному воспламенению. Воспла­

менение возникает от источника зажигания (искра, открытый огонь и т. д.) при нижнем или верхнем концентрационных пределах воспла­ менения.

Пример. Рассмотрим типичную последовательность событий при взрыве пыли. Вначале происходит небольшой взрыв в какой-либо части помещения или оборудования. Затем возникают движение пыли и вибрация оборудования от ударной волны, образующейся от взрыва. Это приводит к тому, что слой пыли, находящейся в помеще­ нии, поднимается в воздух. Эта пыль является топливом для более сильного второго взрыва, который и вызывает основные разрушения.

В другой типичной ситуации масса пыли начинает тлеть либо из-за спонтанного воспламенения, например, когда слой пыли по­ крывает горячий участок оборудования (кожух электромотора, обой­ му электролампы). Рабочий, обнаружив очаг горения, пытается лик­ видировать его либо с помощью химического огнетушителя, либо струей воды. Это приводит к тому, что пыль разбрасывается и образу­ ется облако с большим количеством пыли, часть которой горит. Уси­ ление горения приводит к взрыву.

Для взрывов пыли в помещении, также как и для взрывов газов и паров, характерно существование двух предельных случаев. В замкну­

том объеме с малым отношением длины сосуда к диаметру (Ljd = \) следует ожидать простого взрыва за счет избыточного давления. В конструкциях с большим отношением Ljd может возникать ускоре­ ние пламени вплоть до детонационной скорости. В этом случае раз­ рушения носят локальный характер и оказываются достаточно серь­ езными. Осколки могут разбрасываться на значительное расстояние, а внешняя взрывная волна может быть очень сильной.

Взрыв - распространённое физическое явление, которое сыграло немалую роль в судьбе человечества. Он может разрушать и убивать, а также нести пользу, защищая человека от таких угроз, как наводнение и астероидная атака. Взрывы различаются по своей природе, но по характеру процесса они всегда разрушительны. Эта сила и является их главной отличительной особенностью.

Слово "взрыв" знакомо каждому. Однако на вопрос о том, что такое взрыв, можно ответить только исходя из того, применительно к чему это слово употребляется. Физически взрыв - это процесс экстремально быстрого выделения энергии и газов в сравнительно небольшом объёме пространства.

Стремительное расширение (тепловое или механическое) газа или иной субстанции, например, когда происходит взрыв гранаты, создаёт ударную волну (зону высокого давления), которая может обладать разрушительной силой.

В биологии под взрывом подразумевают быстрый и масштабный биологический процесс (например, взрыв численности, взрыв видообразования). Таким образом, ответ на вопрос о том, что такое взрыв, зависит от предмета исследования. Однако, как правило, под ним подразумевают именно классический взрыв, о котором и пойдёт речь далее.

Классификация взрывов

Взрывы могут иметь различную природу, мощность. Происходят в различных средах (включая вакуум). По природе возникновения взрывы можно разделить на:

  • физические (взрыв лопнувшего шарика и т. д.);
  • химические (например, взрыв тротила);
  • ядерные и термоядерные взрывы.

Химические взрывы могут протекать в твёрдых, жидких или газообразных веществах, а также воздушных взвесях. Главными при таких взрывах являются окислительно-восстановительные реакции экзотермического типа, либо экзотермические реакции разложения. Примером химического взрыва является взрыв гранаты.

Физические взрывы возникают при нарушении герметичности ёмкостей со сжиженным газом и другими веществами, находящимися под давлением. Также их причиной может стать тепловое расширение жидкостей или газов в составе твёрдого тела с последующим нарушением целостности кристаллической структуры, что приводит к резкому разрушению объекта и возникновению эффекта взрыва.

Мощность взрыва

Мощность взрывов может быть различной: от обычного громкого хлопка из-за лопнувшего воздушного шарика или взорванной петарды до гигантских космических взрывов сверхновых звёзд.

Интенсивность взрыва зависит от количества выделенной энергии и скорости её выделения. При оценке энергии химического взрыва используют такой показатель, как количество выделенной теплоты. Объём энергии при физическом взрыве определяется количеством кинетической энергии адиабатического расширения паров и газов.

Техногенные взрывы

На промышленном предприятии взрывоопасные объекты не редкость, а потому там могут возникнуть такие виды взрывов, как воздушный, наземный и внутренний (внутри технического сооружения). При добыче каменного угля нередкими являются взрывы метана, что особенно характерно для глубоких угольных шахт, где по этой причине имеется дефицит вентиляции. Причём различные угольные пласты имеют разное содержание метана, поэтому и уровень взрывной опасности на шахтах различен. Взрывы метана являются большой проблемой для глубоких шахт Донбасса, что требует усиления контроля и мониторинга его содержания в воздухе рудников.

Взрывоопасные объекты - это ёмкости со сжиженным газом или находящимся под давлением паром. Также военные склады, контейнеры с аммиачной селитрой и многие другие объекты.

Последствия взрыва на производстве могут быть непредсказуемые, в том числе трагические, среди которых лидирующее место занимает возможный выброс химикатов.

Применение взрывов

Эффект взрыва издавна используется человечеством в различных целях, которые можно разделить на мирные и военные. В первом случае речь идёт о создании направленных взрывов для разрушения подлежащих сносу строений, ледяных заторов на реках, при добыче полезных ископаемых, в строительстве. Благодаря им существенно снижаются трудозатраты, необходимые для осуществления поставленных задач.

Взрывчатое вещество - это химическая смесь, которая под действием определённых, легко достигаемых условий, вступает в бурную химическую реакцию, приводящую к быстрому выделению энергии и большого количества газа. По своей природе взрыв такого вещества подобен горению, только протекает оно с огромной скоростью.

Внешние воздействия, которые могут спровоцировать взрыв, бывают следующими:

  • механические воздействия (например, удар);
  • химический компонент, связанный с добавлением во взрывчатое вещество других составляющих, которые провоцируют начало взрывной реакции;
  • температурное воздействие (нагрев взрывчатого вещества или попадание на него искры);
  • детонация от близлежащего взрыва.

Степень реакции на внешние воздействия

Степень реакции взрывчатого вещества на любое из воздействий исключительно индивидуальна. Так, некоторые виды пороха легко воспламеняются при нагреве, но остаются инертными под действием химических и механических влияний. Тротил взрывается от детонации других взрывчатых веществ, а к остальным факторам он мало чувствителен. Гремучая ртуть подрывается при всех видах воздействий, а некоторые взрывчатые вещества могут даже взрываться самопроизвольно, что делает такие составы очень опасными и малопригодными для использования.

Как детонирует взрывчатое вещество

Различные взрывчатые вещества взрываются несколько по-разному. Например, для пороха характерна реакция быстрого воспламенения с выделением энергии в течение относительно большого промежутка времени. Поэтому он используется в военном деле для придания скорости патронам и снарядам без разрыва их оболочек.

При другом типе взрыва (детонационный) взрывная реакция распространяется по веществу со сверхзвуковой скоростью и она же является причиной. Это приводит к тому, что энергия выделяется в очень короткий промежуток времени и с огромной скоростью, поэтому металлические капсулы разрывает изнутри. Такой тип взрыва типичен для таких опасных взрывчатых веществ, как гексоген, тротил, аммонит и т. д.

Типы взрывчатых веществ

Особенности чувствительности к внешним воздействиям и показатели взрывной мощности позволяют разделить взрывчатые вещества на 3 основные группы: метательные, инициирующие и бризантные. К метательным относят различные виды пороха. В эту группу входят маломощные взрывные смеси для петард и фейерверков. В военном деле их используют для изготовления осветительных и сигнальных ракет, в качестве источника энергии для патронов и снарядов.

Особенностью инициирующих взрывчатых веществ является чувствительность к внешним факторам. При этом у них невысокая взрывная мощность и тепловыделение. Поэтому их используют в качестве детонатора для бризантных и метательных взрывчаток. Для исключения самоподрыва их тщательно упаковывают.

Бризантные взрывчатые вещества обладают наибольшей взрывной мощностью. Они используются в качестве начинки для бомб, снарядов, мин, ракет и т. д. Наиболее опасными из них является гексоген, тетрил, тэн. Менее мощным взрывчатым веществом является тротил и пластид. Среди наименее мощных - аммиачная селитра. Бризантные вещества с высокой взрывной мощностью обладают и большей чувствительность к внешним воздействиям, что делает их ещё более опасными. Поэтому их используют в комбинации с менее мощными либо другими компонентами, которые приводят к снижению чувствительности.

Параметры взрывчатых веществ

В соответствии с объемами и скоростью энерго- и газовыделения все взрывчатые вещества оценивают по таким параметрам, как бризантность и фугасность. Бризатность характеризует скорость энерговыделения, которая напрямую влияет на разрушающие способности взрывчатого вещества.

Фугасность определяет величину выделения газов и энергии, а значит и количество произведённой при взрыве работы.

По обоим параметрам лидирует гексоген, который является наиболее опасным взрывчатым веществом.

Итак, мы попытались дать ответ на вопрос о том, что такое взрыв. А также рассмотрели основные типы взрывов и способы классификации взрывчатых веществ. Надеемся, что прочитав эту статью, вы получили общее представление о том, что такое взрыв.

Взрывы, наиболее часто встречающиеся на практике, можно разделить на две основные группы: физические и химические (см. рис. 7.2).

К физическим взрывам относят процессы, приводящие к взрыву и не сопровождающиеся химическим превращением вещества.

К химическим взрывам относят процессы, химического превращения вещества, проявляющиеся горением и характеризующиеся выделением тепловой энергии за короткий промежуток времени и в таком объеме, что образуются волны давления, распространяющиеся от источника взрыва.

Причиной случайных взрывов чаще всего являются процессы го­рения. Взрывы такого рода чаще всего происходят при хранении, транспортировке и изготовлении ВВ. Они имеют место при обращении с ВВ и взрывоопасными веществами в химической и нефтехимической промышленности; при утечках природного газа в жилых домах; при изготовлении, транспортировке и хранении легколетучих или сжиженных горючих веществ; при промывке резервуаров для хранения жидкого топлива; при изготовлении, хранении и использовании горючих пылевых систем и некоторых самовозгорающихся твердых и жидких веществ.

Рис. 7.2. Классификация взрывов, наиболее часто встречающихся на практике

При физическом взрыве высвобождающаяся энергия является внутренней энергией сжатого или сжиженного газа (более строго, сжиженного пара). Сила таких взрывов зависитот внутреннего давления, а разрушения могут быть вызваны ударной волной от расширяющегося газа или осколками разорвавшегося резервуара. В ряде аварий отмечались физические взрывы, возникающие от полного разрушения автоцистерн. В зависимости от обстоятельств части такого резервуара разлетались на сотни метров.

То же может случиться (в меньших масштабах) с переносными баллонами для газа, если такой баллон упадет и сорвется вентиль, понижающий давление. Известны многочисленные случаи таких чисто физических взрывов сосудов со сжиженными газами под давлением, не превышающим 4 МПа.

К физическим взрывам следует отнести и явление так называемой физической (или термической) детонации, которая возникает при смешении горячей и холодной жидкостей, когда температура одной из них значительно превышает температуру кипения другой (например, при выливании расплавленного железа в воду). В образовавшейся парожидкостной смеси испарение может протекать взрывным образом вследствие развивающихся процессов тонкой фрагментации капель расплава, быстрого отвода от них и перегрева холодной жидкости. Физическая детонация сопровождается образованием ударной волны с избыточным давлением в жидкой фазе, достигающим в некоторых случаях сотен мегапаскалей. Указанное явление может стать причиной крупных аварий в ядерных реакторах и на промышленных предприятиях металлургической, химической и бумажной промышленности.


Источники энергии сжатых газов (паров) в замкнутых объемах аппаратуры могут быть как внешними, так и внут­ренними. Внешние – это электрическая энергия, используе­мая для сжатия газов и нагнетания жидкостей; теплоносите­ли, в том числе электрические, обеспечивающие нагрев жидкостей и газов в замкнутых объемах аппаратуры. К внутренним источникам относится энергия экзотермиче­ских физико-химических и тепломассообменных процессов в замкнутом объеме аппаратуры, приводящая к интенсив­ному испарению жидких сред или газообразованию, росту температуры и давления без внутренних взрывных явлений.

Химические взрывы делят на объемные (см. рис. 7.3) и взрывы конденсированных ВВ. Источником химического взрываявляются быстро протекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или тер­мического разложения нестабильных соединений. При не­которых обстоятельствах возможны неконтролируемые ре­акции, сопровождающиеся возрастанием давления в реак­ционном сосуде, который может полностью разрушиться, ес­ли нет предохранительного клапана. При этом могут обра­зоваться ударная волна и осколочное поле.

Рис. 7.3. Классификация объемных взрывов

Энергоносители химических взрывов могут быть твердыми, жидкими, газообразными веществами, а также аэровзвесями горючих веществ (жидких и твердых) в окис­лительной среде (часто в воздухе). Взрывы газовых смесей и аэровзвесей горючих веществ иногда называют объемны­ми взрывами. Твердые и жидкие энергоносители относятся в большинстве случаев к классу конденсированных ВВ. В состав этих веществ или их смесей вхо­дят восстановители и окислители или другие химически нест абильные соединения. При инициировании взрыва в этих веществах с огромной скоростью протекают экзотермические окислительно-восстановительные реакции или реакции термического разложения с выделением тепловой энергии(при взрывах конденсированного ВВ атомы углерода и водорода в молекулах вещества замеща­ется атомами азота).

Газообразные энергоносители представляют собой гомогенные смеси горючих газов (паров) с газообразными окислителями, такими как воздух, кислород, хлор и др., либо нестабильные газообразные соединения, такие как ацетилен, этилен (склонные к термическому разложению в отсутствии окислителей). Источником взрывов газовых смесей являются экзотермические реакции окисления горючего вещества или реакции разложения нестабильных соединений.

Двухфазные взрывоопасные аэровзвеси состоят измелкодисперсных горючих жидкостей («туманов») или твердых веществ (пыли) в окислительной среде, в основном, в воздухе. Источником энергии их взрывов также является тепло сгорания этих веществ.

Технологическая система взрывоопасна, если она обладает запасом потенциальной энергии, высвобождающейся с настолько большой скоростью, что она может генерировать воздушную ударную волну (ВУВ), способную вызвать крушения или поражения людей. Количество потенциальной энергии определяется соответствующими физико-химическими закономерностями энерговысвобождения.

Энергию взрыва парогазовых сред определяют по теплоте сгорания горючих веществ в смеси с воздухом (окислителем); конденсированных ВВ – по теплоте, выделяющейся при их детонации (реакции разложения); при физиче­ских взрывах систем со сжатыми газами и перегретыми жидкостями – по энергии адиабатического расширения па­рогазовых сред и перегрева жидкости.

Скорость высвобождения энергии в общем случае вы­ражается удельной мощностью , т. е. количеством энергии, выделяемой в единицу времени на единицу объема. При химических взрывах скорость энерговыделения можно оп­ределить по скоростям распространения детонации или пламени в газовой среде. Скорость распространения дето­нации в твердом или жидком ВВ приблизительно соответ­ствует скорости звука в веществе и находится в интервале 2 . 10 3 -9 . 10 3 м/с; при газовых физических и химических взрывах волны сжатия двигаются со скоростью, близкой к скорости звука в воздухе.

Химические взрывы, вызываемые экзотермическими реакциями разложения в конденсированных ВВ или неус­тойчивых соединениях в газовой фазе, сопровождаются об­разованием (увеличением) числа моль газов. Например, при взрыве 1 кг тринитротолуола (ТНТ), являющегося вещест­вом с отрицательным кислородным балансом, образуется приблизительно 20 моль газов (паров) (0,6 – СО; 10,0 – СО 2 ; 0,8 – Н 2 О; 6,0 – N 2 ; 0,4 – NH 3 ; 4,7 –СН 3 ОН; 1,0 – HCN) и 15 моль угле­рода. Большинство других бризантных ВВ (за исключением нитроглицерина) также являются веществами с отрицатель­ным кислородным балансом, т. е. числа атомов кислорода в их молекулах недостаточно для полного превращения имеющихся атомов углерода в СО 2 и водорода в Н 2 О.Спо­собность вещества к взрывному процессу подчиняется за­конам термохимии, согласно которым, если в данной реакции сумма теплот образования продуктов меньше теплоты образования исходного соединения, то это вещество потен­циально взрывоопасно. Например, если вещество А, разла­гающееся по реакции А → B + C + D, взрывоопасно, то долж­но соблюдаться условие:

q(A) ≥ q(B) + q(C) + q(D),

где q – эн­тальпия (теплота) образования; qимеет положительные зна­чения для соединений, образующихся с поглощением тепла (эндотермические процессы) и отрицательное для соедине­ний образующихся с выделением тепла (экзотермические процессы).

Таким образом можно оценить лишь способность вещества к взрывному процессу, а энергию и мощность взрыва определяют по скорости реакции.

Источниками энергии взрывов могут быть окислительно-восстановительные химические реакции, в которых
воздух или кислород взаимодействуют с восстановителем.
Наряду с горючими газами восстановителями могут быть
мелкодисперсные горючие твердые вещества (пыли) или
диспергированные жидкости. Окислительно-восстановительные реакции в этих условиях могут проте­кать как в замкнутых, так и незамкнутых объемах с доста­точно высокими скоростями, при которых генерируются ударные волны, способные вызвать ощутимые разрушения.

17. Как называется чрезвычайная ситуация, связанная с выходом изстроя гидротехнического сооружения или его части и неуправляемымперемещением больших масс воды, несущих разрушения и затопленияобширных территорий.а) Гидродинамическая авария;б) Гидродинамическая катастрофа;в) Гидродинамическая чрезвычайная ситуация.18. Какой сигнал используют для оповещения населения очрезвычайных ситуациях техногенного характера?а) «Внимание авария!»б) «Внимание всем!»в) «Внимание чрезвычайная ситуация!»19. Какой может быть эвакуация по времени начала проведения?а) Локальной, региональной, федеральной;б) Временной, среднесрочной, продолжительной;в) Упреждающей, экстренной.20. Как называются сооружения гражданской обороны, которыепредназначены для обеспечения надежной защиты укрываемых в нихлюдей от воздействия всех поражающих факторов ядерного взрыва,отравляющих веществ и бактериальных средств, высоких температур,от отравления продуктами горения и аварийно химически опаснымивеществами?а) Убежища;б) Противорадиационные укрытия;в) Щели.21. Что такое здоровье?а) Это состояние полного физического, духовного и социальногоблагополучия, а не только отсутствие болезнейб) Это состояние полного социального, духовного и физическогоблагополучия, а не только отсутствие болезней и физических дефектов.в) Это состояние полного благополучия, а не только отсутствие болезней ифизических дефектов.22. Как называется способность человека адаптироваться в природной,техногенной и социальной средах обитания?а) Физическое здоровье;б) Духовное здоровье;в) Социальное здоровье.23. Как называется составляющая здоровья человека и общества,характеризующая способностью создать и реализовать необходимыеусловия для рождения ребенка и воспитания здорового поколения?а) Репродуктивное здоровье;б) Социальное здоровье;в) Здоровье человека и общества.24. Какие факторы необходимы для того, чтобы сформировать системуздорового образа жизни человека?а) Соблюдение режима дня, рациональное питание, курение,неблагополучная экологическая обстановка в местах проживания;б) Занятия физической культурой, закаливание, хорошие взаимоотношения сокружающими людьми;в) Рациональное питание, неблагополучная экологическая обстановка вместах проживания.25. Что по определению Всемирной организации здравоохраненияявляется главным индикатором состояния здоровья населения?а) Здоровый образ жизни;б) Продолжительность жизни;в) Наследственность.26. Что такое наркотическая зависимость?а) Заболевание, которое возникает в результате употребления наркотическихсредств;б) Одна из разновидностей наркомании;в) Непреодолимая потребность человека в приеме наркотика.

В зависимости от содержания кислорода пламя классифицируют как окислительное,восстановительное и науглероживающие. 1) чем орудия труда человека отличаются от орудий, которыми пользуются обезьяны? 2) какие особенности строения тела давали человеку возможность играть

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Общая характеристика взрывных явле ний

Особую опасность с точки зрения возможных потерь и ущерба представляют взрывы.

Взрыв - это освобождение большого количества энергии в ограниченном объеме за короткий промежуток времени.

Взрыв приводит к образованию сильно нагретого газа (плазмы) с очень высоким давлением, который при моментальном расширении оказывает ударное механическое воздействие (давление, разрушение) на окружающие тела.

Взрыв в твердой среде сопровождается ее разрушением и дроблением, в воздушной или водной - вызывает образование воздушной или гидравлической ударных волн, которые и оказывают разрушающее воздействие на помещенные в них объекты.

В деятельности, не связанной с преднамеренными взрывами в условиях промышленного производства, под взрывом следует понимать быстрое, неуправляемое высвобождение энергии, которое вызывает ударную волну, движущуюся на некотором удалении от источника.

В результате взрыва вещество, заполняющее объем, в котором происходит высвобождение энергии, превращается в сильно нагретый газ (плазму) с очень высоким давлением, (до нескольких сотен тысяч атмосфер). Этот газ, моментально расширяясь оказывает ударной механическое воздействия на окружающую среду, вызвав ее движение. Взрыв в твердой среде вызывает ее дробление и разрушение в гидравлической и воздушной среде - вызывает образование гидравлической и воздушной ударной (взрывной) волны.

Взрывная волна - есть движение среды, порожденное взрывом, при котором происходит резкое повышение давления, плотности и температуры среды.

Фронт (передняя граница) взрывной волны распространяется по среде с большой скоростью, в результате чего область охваченная движением, быстро расширяется.

Посредством взрывной волны (или разлетающихся продуктов взрыва - в вакууме) взрыв производит механическое воздействие на объекты, находящиеся на различных удалениях от места взрыва. По мере увеличения расстояния от места взрыва механическое воздействие взрывной волны ослабевает. Таким образом, взрыв несет потенциальную опасность поражения людей и обладает разрушительной способностью.

Взрыв может быть вызван:

Детонацией конденсированных взрывчатых веществ (ВВ);

Быстрым сгоранием воспламеняющего облака газа или пыли;

Внезапным разрушением сосуда со сжатым газом или с перегретой жидкостью;

Смешиванием перегретых твердых веществ (расплава) с холодными жидкостями и т.д.

В зависимости от вида энергоносителей и условий энерговыделения, источниками энергии при взрыве могут быть как химические так и физические процессы.

Источником энергии химических взрывов являются быстропротекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или реакции термического разложения нестабильных соединений.

Источниками энергии сжатых газов (паров) в замкнутых объемах аппаратуры (оборудования) могут быть как внешние (энергия, используемая для сжатия тазов, нагнетания жидкостей; теплоносители, обеспечивающие нагрев жидкости и газов в замкнутом пространстве) так и внутренние (экзотермические физико-химические процессы и процессы тепломассообмена в замкнутом объеме), приводящие к интенсивному испарению жидкостей или газообразованию, росту температуры и давления без внутренних взрывных явлений.

Источником энергии ядерных взрывов являются быстропротекающие цепные ядерные реакции синтеза легких ядер изотопов водорода (дейтерия и трития) или деления тяжелых ядер изотопов урана и плутония. Физические взрывы возникают при смещении горячей и холодной жидкостей, когда температура одной из них значительно превосходит температуру кипения другой. Испарение в этом случае протекает взрывным образом. Возникающая при этом физическая детонация сопровождается возникновением ударной волны с избыточным давлением, достигающим в ряде случаев сотен МПа.

Энергоносителями химических взрывов могут быть твердые, жидкие, газообразные горючие вещества, а также аэровзвеси горючих веществ (жидких и твердых) в окислительной среде, в т.ч. и в воздухе.

взрыв энергия волна

2. Взрывчатые вещества

Твердые и жидкие энергоносители относятся в большинстве случаев к классу конденсированных взрывчатых веществ.

Взрывчатыми веществами называются химические соединения или смеси веществ, способные к быстрой химической реакции с выделением большого количества тепла и образованием газа.

В состав ВВ входят восстановители и окислители или другие химические нестабильные соединения. При инициировании взрыва в этих веществах с огромной скоростью протекают экзотермические окислительно-восстановительные реакции или реакции термического разложения с выделением тепловой энергии и большого количества газа. Эта реакция, возникнув в какой-либо точке заряда в результате нагревания, удара, трения, взрыва другого ВВ или иного внешнего воздействия распространяется о заряду путем тепло- или массообмена, (горение), ибо ударной волны (детонация).

ВВ обладают способностью к быстрому разложению, при котором энергия межмолекулярных связей выделяется в виде теплоты, причем - при повышений температуры скорость разложения ВВ увеличивается. При сравнительно низкой температуре скорость разложения ВВ невелика и ВВ в течении длительного времени может не претерпевать заметного изменения в своем состоянии. В этом случае между ВВ и окружающей средой устанавливается тепловое равновесие.

Если создаются условия, при которых теплота, выделяемая ВВ, не успевает отводится в окружающую среду, то благодаря повышению температуры развивается процесс самоускоряющегося химического разложения ВВ, который называется тепловым взрывом.

Возможен иной процесс осуществления взрыва, при котором химическая реакция распространяется по заряду ВВ последовательно от слоя к слою в виде волны. Движущийся по заряду с большой скоростью (>9 км/с) передний фронт этой волны представляет собой ударную волну - резкий переход вещества из исходного состояния в состояние с очень высоким давлением и температурой. ВВ, сжатое ударной волной, оказывается в состоянии, при котором химическое разложение протекает очень быстро.

Процесс химического превращения В1, который вводится ударной волной и сопровождается быстрым выделением энергии называется детонацией.

Скорость химической реакции при детонации обычно достигает нескольких км/сек. Тонна твердого ВВ может превратиться в плотный газ с очень высоким давлением за время 1*10 -4 сек. Давление достигает в этом случае нескольких сотен тысяч атмосфер.

Преимущество конденсированных и водонаполненных ВВ заключается в значительной концентрации энергии в единице объема.

Резко расширяясь, сжатый газ наносит по окружающим телам удар огромной силы. Происходит взрыв. Объекты, находящиеся вблизи заряда, подвергаются дроблению и сильнейшей пластической деформации (местное или бризантное действие взрыва). Объекты, находящиеся вдали от парада, испытывают меньшее разрушение, но зона, в которой оно происходит, гораздо больше (общее или фугасное действие взрыва). Бризантность ВВ определяется давлением, развивающемся при детонации, которое в свою очередь зависит от плотности заряда и скорости детонации. Фугасность (работоспособность) ВВ определяется теплотой, а также объемом газообразных продуктов, образующихся при взрыве.

Основными характеристиками ВВ являются:

Бризантность;

Фугасность (работоспособность);

Химическая и физическая стойкость (способность сохранять свои свойства, при хранении и обращении с ними);

Чувствительность к внешним воздействиям (минимальное количество энергии, необходимое для возбуждения взрыва);

Детонационная способность (критический диаметр детонации).

К взрывоопасным веществам относятся:

Некоторые вещества, не содержащие кислорода (азида, ацетилен, ацетиленида, диазосоединения, гидрозин, йодистый и хлористый азот, смеси горючих веществ с галогенами, соединения инертных газов и т.п.).

Из многих, способных к взрыву соединений, в качестве ВВ используются:

Нитросоединения (тринитротолуол, тетрил, гексоген, октоген, нитроглицерин, тэн, нитроклетчатка, нитрометан);

Соли азотной кислоты (нитрат аммония).

Как правило эти вещества применяются не в чистом виде, а в виде смесей.

По взрывчатым свойствам (условиям перехода горения в детонацию) ВВ подразделяют на:

Инициирующие (первичные);

Бризантные (вторичные);

Метательные (пороха).

Инициирующие ВВ характеризуются очень высокой скорость взрывного превращения, высокой чувствительностью, неустойчивым горением, быстрым его переходом в детонацию уже при атмосферном давлении. Взрыв может быть возбужден поджиганием, ударом или трением.

Основными представителями инициирующих ВВ являются азид свинца, гремучая ртуть, тетразен, тринитрорезорцинат свинца. Инициирующие ВВ используются для возбуждения взрывов других ВВ.

Бризантные ВВ более инертны, обладают меньшей чувствительностью к внешним воздействиям. Горение этих ВВ может перейти в детонацию только при наличии прочной оболочки, либо большого количества ВВ. Относительно безопасны в обращении. Основными представителями бризантных ВВ являются нитросоединения и взрывчатые смеси на основе нитратов, хлоратов, перхлоратов и жидкого кислорода: тринитротолуол, тетрил, гексоген, октоген др. Применяются при производстве взрывных работ и для снаряжения боеприпасов различных видов и назначения.

Метательные ВВ (пороха) обладают устойчивым горением, не детонируют в самих жестких условиях.

Все виды взрывов можно классифицировать на следующие три группы:

Неконтролируемое резкое высвобождение энергии за короткий промежуток времени и в ограничением пространстве (взрывные процессы);

Образование облаков топливно-воздушной смеси (ТВС) или других химических газообразных, пылеобразных веществ, их быстрые взрывные превращения (объемный взрыв);

Взрывы трубопроводов, сосудов, находящихся под высоким давлением или с перегретой жидкостью, прежде всего резервуаров со сниженным углеродным газом.

Взрывы проходят за счет высвобождения химической энергии (взрывчатке вещества), внутриядерной энергии (ядерный взрыв), электромагнитной анергии (искровой разряд, лазерная искра), энергии сжатых газов (при превышении давления газа в сосуде предела прочности этого сосуда - различных баллонов, трубопроводов и т.д.)

Наиболее часто взрывы происходят на взрывоопасных объектах (ВОО).

Взрывоопасный объект - это объект, на котором хранятся, используются, производятся, транспортируются вещества (продукты) приобретающие при определенных условиях способность к взрыву.

К взрывоопасным объектам относятся:

Предприятия оборонной, нефтедобывающей, нефтеперерабатывающей, нефтехимической, химической, газовой промышленности;

Предприятия хлебопродуктовой, текстильной и фармацевтической промышленности

Склады легковоспламеняющихся и горючих жидкостей и сжиженных газов.

Основными поражающими факторами взрыва являются:

1. воздушная ударная волна, возникающая при ядерных взрывах, взрывах инициирующих и детонирующих взрывчатых веществ, при взрывных превращениях топливо-воздушных смесей (ТВС), газовоздушных смесей (ГВС), взрывах резервуаров с перегретой жидкостью и резервуаров под давлением,

2. осколочные поля, создаваемые летящими обломками разного рода объектов технологического оборудования, строительных деталей.

При взрыве газо-воздушной среды образуется три полусферические области (зоны):

I - зона непосредственного бризантного действия газо-воздушного взрыва вблизи земли (зона полных разрушений);

II - зона действия продуктов взрыва;

III - зона действия воздушной ударной волны.

Эффективное воздействие в I зоне характеризуется разрушениями, которые возникают в результате резкого удара продуктов детонации, находящихся внутри газо-воздушной смеси окружающих предметов. Радиус этой зоны определяется по таблицам или по формуле Ч I = 1.7 Ч 0 .

При взрывах углеводорода, пропана и метана Ч 0 имеет значение 8.

Основными параметрами поражающих факторов являются:

1. - воздушной ударной волны - избыточное давление в её фронте.

2. - осколочного поля - количество осколков, их кинетическая энергия и радиус разлёта.

Ударная волна любых взрывов вызывает большие людские потери и разрушения элементов сооружений. Размеры зон поражения от взрывов возрастают с увеличением их мощности. Действие ударной волны на элементы сооружения характеризуется сложным комплексом нагрузок:

Прямое давление;

Давление отражения;

Давление обтекания;

Давление затекания;

Сопротивляемость элементов сооружений действию ударной волны принято характеризовать величиной избыточного давления во фронте ударной волны, в Рф. Избыточное давление в Рф используется как универсальная характеристика сопротивляемости элементов сооружения действию ударной волны и для определения степени их разрушения и повреждения.

Степень и характер повреждения сооружений при взрывах во время производственных аварий зависят от:

1. - мощности (тротилового эквивалента) взрыва;

2. - технических характеристик сооружения (конструкция, прочность, размер, форма - капитальные, временные, наземные, подземные и т.п.);

3. - планировки объекта (рассредоточение сооружений), характера застройки, ландшафта местности (рельеф, грунт, занесенность);

5. - метеоусловий (направление и сила взрыва, влажность, температура, наличие осадков).

Последствия взрывов

В результате действия поражающих факторов взрыва происходит разрушение или повреждение зданий, сооружений, технологического оборудования, транспортных средств, элементов коммуникаций и других объектов, гибель людей.

Размещено на Allbest.ru

Подобные документы

    Происхождение и классификация взрывчатых веществ. Основные свойства взрывчатых веществ. Особенности факторов поражения и зоны действия взрыва. Последствия воздействие взрыва на человека. Техника предотвращения взрывов. Действия населения при взрывах.

    реферат , добавлен 22.02.2008

    Понятие о взрывчатых материалах, стабильность их химического состава. Классификация складов взрывчатых веществ и боеприпасов. Поверхностные и подземные хранилища. Правила безопасности при перевозке взрывчатых материалов. Знаки опасности и их описание.

    курсовая работа , добавлен 03.12.2012

    Ядерный взрыв как процесс высвобождения большого количества тепловой и лучистой энергии в результате цепной ядерной реакции деления или реакции термоядерного синтеза. Его последствия и правила поведения. Негативное воздействие на жизнь, окружающую среду.

    презентация , добавлен 18.04.2016

    Понятие чрезвычайной ситуации техногенного характера. Классификация производственных аварий по их тяжести и масштабности. Пожары, взрывы, угрозы взрывов. Аварии с выбросом радиоактивных веществ, химически опасных веществ. Гидродинамические аварии.

    презентация , добавлен 09.02.2012

    Прогнозирование обстановки при чрезвычайных ситуациях природного харатера. Классификация зданий и сооружений по сейсмостойкости. Взрыв парогазовоздушного облака в неограниченном и ограниченном пространстве. Характеристики взрываемости некоторых газов.

    учебное пособие , добавлен 14.04.2009

    Основные меры воздействия на очаг пожара. Классификация веществ по горючести, пожаро- и взрывобезопасности. Схема горения вещества в воздухе. Структура инженерных решений по предупреждению пожаров и взрывов. Основные характеристики дымообразования.

    реферат , добавлен 03.05.2014

    Понятие и классификация экологических катастроф. Пожары на промышленных объектах. Аварии с выбросом (угрозой выброса) биологически опасных веществ. Опасность возникновения селей. Причины взрывов и авиакатастроф. Чрезвычайные ситуации на железной дороге.

    реферат , добавлен 19.09.2013

    Виды, классификация, причины возникновения, последствия, поражающие факторы и рекомендации по предотвращению пожаров и взрывов. Обеспечение безопасности при возникновении загорания, пожара и взрывоопасной ситуации. Способы и средства борьбы с огнем.

    реферат , добавлен 30.11.2009

    Пожароопасный объект. Основная техника для борьбы с огнем. Фронт сплошного пожара. Профилактика пожаров и взрывов, меры по снижению ущерба от них. Рекомендации населению по профилактике пожаров и взрывов, действиям в ходе ЧС.

    лекция , добавлен 16.03.2007

    Моделирование обстановки ЧС на ОЭ при взрыве конденсированных взрывчатых веществ, идентификация опасностей и вторичных поражающих факторов. Разработка комплекса организационных, инженерно-технических, специальных мероприятий по ПУФ данного объекта.