11 класс

Колебания. Гармонические колебания. Уравнение гармонических колебаний. Уравнение свободных незатухающих гармонических колебаний Уравнение гармонических колебаний напряжения

Колебаниями называются движения или процессы, которые характеризуются опреде-ленной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро-магнитные и др. Однако различные колебательные процессы описываются одинаковы-ми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы.

Колебания называются свободными , если они совершаются только под воздействием внутренних сил, действующих между элементами системы, после того как система выведена из положения равновесия внешними силами и предоставлена самой себе. Свободные колебания всегда затухающие колебания , ибо в реальных системах неизбежны потери энергии. В идеализированном случае системы без потерь энергии свободные колебания (продолжающиеся как угодно долго) называются собственными .

Простейшим типом свободных незатухающих колебаний являются гармонические колебания - колебания, при которых колеб-лющаяся величина изменяется со временем по закону синуса (косинуса). Колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому.

Гармонические колеба-ния описываются уравнением, которое называется уравнением гармонических колебаний:

где А - амплитуда колебаний, максимальное значение колеблющейся величины х ; - круговая (циклическая) частота собственных колебаний; - начальная фаза колебания в мо-мент времени t = 0; - фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до -1, то х может принимать значения от +A до -А .

Время T , за которое система совершает одно полное колебание, называется периодом колебаний . За время Т фаза колебания получает приращение 2π , т. е.

Откуда . (14.2)

Величина , обратная периоду колебаний

т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (14.2) и (14.3) получим

Единица частоты - герц (Гц): 1 Гц - частота, при кото-рой за 1с совершается одно полное колебание.

Системы, в которых могут происходить свободные колебания, называются осцилляторами . Какими же свойствами должна обладать система, чтобы в ней могли возникнуть свободные колебания? Механическая система должна иметь положение устойчивого равновесия , при выходе из которого появляется возвращающая сила, направленная к положению равновесия . Этому положению соответствуют, как известно, минимум потенциальной энергии системы. Рассмотрим несколько колебательных систем, удовлетворяющих перечисленным свойствам.

Изменения какой- либо величины описывают с помощью законов синуса или косинуса, то такие колебания называют гармоническими. Рассмотрим контур, из конденсатора (который перед включением в цепь зарядили) и катушки индуктивности (рис.1).

Рисунок 1.

Уравнение гармонических колебаний можно записать следующим образом:

$q=q_0cos({\omega }_0t+{\alpha }_0)$ (1)

где $t$-время; $q$ заряд, $q_0$-- максимальное отклонение заряда от своего среднего (нулевого) значения в ходе изменений; ${\omega }_0t+{\alpha }_0$- фаза колебаний; ${\alpha }_0$- начальная фаза; ${\omega }_0$- циклическая частота. За период фаза меняется на $2\pi $.

Уравнение вида:

уравнение гармонических колебаний в дифференциальном виде для колебательного контура, который не будет содержать активного сопротивления.

Любой вид периодических колебаний можно точности представить как сумму гармонических колебаний, так называемого гармонического ряда.

Для периода колебаний цепи, которая состоит из катушки и конденсатора мы получим формулу Томсона:

Если мы продифференцируем выражение (1) по времени, то можем получить формулу фунци $I(t)$:

Напряжение на конденсаторе, можно найти как:

Из формул (5) и (6) следует, что сила тока опережает напряжение на конденсаторе на $\frac{\pi }{2}.$

Гармонические колебания можно представлять как в виде уравнений, функций так и векторными диаграммами.

Уравнение (1) представляет свободные незатухающие колебания.

Уравнение затухающих колебаний

Изменение заряда ($q$) на обкладках конденсатора в контуре, при учете сопротивления (рис.2) будет описываться дифференциальным уравнением вида:

Рисунок 2.

Если сопротивление, которое входит в состав контура $R \

где $\omega =\sqrt{\frac{1}{LC}-\frac{R^2}{4L^2}}$ -- циклическая частота колебаний. $\beta =\frac{R}{2L}-$коэффициент затухания. Амплитуда затухающих колебаний выражается как:

В том случае, если при $t=0$ заряд на конденсаторе равен $q=q_0$, тока в цепи нет, то для $A_0$ можно записать:

Фаза колебаний в начальный момент времени (${\alpha }_0$) равна:

При $R >2\sqrt{\frac{L}{C}}$ изменение заряда не является колебаниями, разряд конденсатора называют апериодическим.

Пример 1

Задание: Максимальное значение заряда равно $q_0=10\ Кл$. Он изменяется гармонически с периодом $T= 5 c$. Определите максимально возможную силу тока.

Решение:

В качестве основания для решения задачи используем:

Для нахождения силы тока выражение (1.1) необходимо продифференцировать по времени:

где максимальным (амплитудным значением) силы тока является выражение:

Из условий задачи нам известно амплитудное значение заряда ($q_0=10\ Кл$). Следует найти собственную частоту колебаний. Ее выразим как:

\[{\omega }_0=\frac{2\pi }{T}\left(1.4\right).\]

В таком случае искомая величина будет найдена при помощи уравнений (1.3) и (1.2) как:

Так как все величины в условиях задачи представлены в системе СИ, проведем вычисления:

Ответ: $I_0=12,56\ А.$

Пример 2

Задание: Каков период колебаний в контуре, который содержит катушку индуктивности $L=1$Гн и конденсатор, если сила тока в контуре изменяется по закону: $I\left(t\right)=-0,1sin20\pi t\ \left(A\right)?$ Какова емкость конденсатора?

Решение:

Из уравнения колебаний силы тока, которое приведено в условиях задачи:

мы видим, что ${\omega }_0=20\pi $, следовательно, мы можем вычислить период Колебаний по формуле:

\ \

По формуле Томсона для контура, который содержит катушку индуктивности и конденсатор, мы имеем:

Вычислим емкость:

Ответ: $T=0,1$ c, $C=2,5\cdot {10}^{-4}Ф.$

Для возбуждения в контуре колебаний предварительно заряжают конденсатор, сообщая его обкладкам заряд ±q . Тогда в начальный момент времени t= 0 (рис. 19, а) между обкладками конденсатора возникнет электрическое поле. Если замкнуть конденсатор на катушку индуктивности, конденсатор начнет разряжаться, и в контуре потечет возрастающий со временем ток I . Когда конден­сатор полностью разрядится, энергия электрического поля конденсатора полностью перейдет в энер­гию магнитного поля катушки (рис. 19, б ). Начиная с этого момента ток в контуре будет убывать, и, следовательно, начнет ослабевать магнитное поле катушки, тогда в ней согласно закону Фарадея индуцируется ток, который течет в соответствии с правилом Ленца в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся осла­бить ток, который, в конце концов, обратится в нуль, а заряд на обкладках конденсатора достигнет максимума (рис. 19, в ). Далее те же процессы начнут протекать в обратном направлении (рис. 19, г ), и система к моменту времени t=Т (Т – период колебаний) придет в первоначальное состояние (рис. 19, а ). После этого начнется повторение рассмотренного цикла разряд­ки и зарядки конденсатора, то есть начнутся периодические незатухающие колебания величины заряда q на обкладках конденсатора, напряжения U C на конденсаторе и силы тока I , текущего через катушку индуктивности. Согласно закону Фарадея напряжение U C на конденсаторе определяется скоростью изменения силы тока в катушке индуктивности идеального контура, то есть:

Исходя из того, что U C =q/C , а I=dq/dt, получаем дифференциальное уравнение свободных незатухающих гармонических колебаний величины заряда q на обкладках конденсатора:

или .

Решением этого дифференциального уравнения является функция q (t ), то естьуравнение свободных незатухающих гармонических колебаний величины заряда q на обкладках конденсатора:

где q (t t ;

q 0 – амплитуда колебаний заряда на обкладках конденсатора;

– круговая (или циклическая) частота колебаний () ;

2 /T (T – период колебаний, формула Томсона );

– фаза колебаний в момент времени t ;

– начальная фаза колебаний, то есть фаза колебаний в момент времени t =0.

Уравнение свободных затухающих гармонических колебаний. В реальном колебательном контуре учитывается, что кроме катушки индуктивностью L, конденсатора емкостью С , в цепи также имеется резистор сопротивлением R ,отличным от нуля, что является причиной затухания колебаний в реальном колебательном контуре. Свободные затухающие колебания – колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается.


Для цепи реального колебательного контура напряжения на последовательно включенных конденсаторе емкостью С и резисторе сопротивлением R складываются. Тогда с учетом закона Фарадея для цепи реального колебательного контура можно записать:

,

где – электродвижущая сила самоиндукции в катушке;

U C – напряжение на конденсаторе (U C =q/C );

IR – напряжения на резисторе.

Исходя из того, что I=dq/dt, получаем дифференциальное уравнение свободных затухающих гармонических колебаний величины заряда q на обкладках конденсатора:

или ,

где – коэффициент затухания колебаний () , .

q (t ), то естьуравнение свободных затухающих гармонических колебаний величины заряда q на обкладках конденсатора:

где q (t ) – величина заряда на обкладках конденсатора в момент времени t ;

– амплитуда затухающих колебаний заряда в момент времени t ;

q 0 – начальная амплитуда затухающих колебаний заряда;

– круговая (или циклическая) частота колебаний ();

– фаза затухающих колебаний в момент времени t ;

– начальная фаза затухающих колебаний.

Период свободных затухающих колебаний в реальном колебательном контуре:

.

Вынужденные электромагнитные колебания . Чтобы в реальной колебательной системе получить незатухающие колебания, необходимо в процессе колебаний компенсировать потери энергии. Такая компенсация в реальном колебательном контуре возможна с помощью внешнего периодически изменяющегося по гармоническому закону переменного напряжения U (t ):

.

В этом случае дифференциальное уравнение вынужденных электромагнитных колебаний примет вид:

или .

Решением полученного дифференциального уравнения является функция q (t ):

В установившемся режиме вынужденные колебания происходят с частотой w и являют­ся гармоническими, а амплитуда и фаза колебаний определяются следующими выражениями:

; .

Отсюда следует, что амплитуда колебаний величины заряда имеет максимум при резонансной частоте внешнего источника :

.

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающего переменного напряжения к ча­стоте, близкой частоте , называется резонансом.

Тема 10. Электромагнитные волны

Согласно теории Максвелла электромагнитные поля могут существовать в виде электромагнитных волн, фазовая скорость распространения которых определяет­ся выражением:

,

где и – соответственно электрическая и магнитная постоянные,

e и m – соответственно электрическая и магнитная проницаемости среды,

с – скорость света в вакууме () .

В вакууме (e = 1, m = l) скорость распространения электромагнитных волн совпадает со скоростью света(с ), что согласуется с теорией Максвелла о том,

что свет представляет собой электромагнитные волны.

По теории Максвелла электромагнитные волны являются поперечными, то есть век­торы и напряженностей электрического и магнитного полей взаимно перпендикулярны и лежат в плоскости, перпендикулярной вектору

скорости рас­пространения волны, причем векторы , и образуют правовинтовую систему (рис. 20).

Из теории Максвелла следует также, что в электромагнитной волне векторы и колеблются в одинаковых фазах (рис. 20), то есть значения напряженностей Е и Н электрического и магнитного полей одновременно достигают максимума и одновременно обращаются в нуль, причем мгновенные значения Е и Н связаны соотношением: .

Уравнение плоской монохроматической электромагнитной волны (индексы у и z при Е и Н подчеркивают лишь то, что векторы и направлены вдоль взаимно перпендикулярных осей в соответствии с рис. 20).