11 класс

Локализация функций в коре переднего мозга кратко. Проблема локализации функций в коре головного мозга. Локализация функций в коре больших полушарий

В коре головного мозга различают зоны - поля Бродмана

1-я зона - двигательная - представлена центральной извилиной и лобной зоной впереди нее - 4, 6, 8, 9 поля Бродмана. При ее раздражении - различные двигательные реакции; при ее разрушении - нарушения двигательных функций: адинамия, парез, паралич (соответственно - ослабление, резкое снижение, исчезновение).

В 50-е годы ХХ в.установили, что в двигательной зоне различные группы мышц представлены неодинаково. Мышцы нижней конечности - в верхнем отделе 1-ой зоны. Мышцы верхней конечности и головы - в нижнем отделе 1-й зоны. Наибольшую площадь занимают проекция мимической мускулатуры, мышц языка и мелких мышц кисти руки.

2-я зона - чувствительная - участки коры головного мозга кзади от центральной борозды (1, 2, 3, 4, 5, 7 поля Бродмана). При раздражении этой зоны - возникают ощущения, при ее разрушении - выпадение кожной, проприо-, интерочувствительности. Гипостезия - снижение чувствительности, анестезия - выпадение чувствительности, парестезия - необычные ощущения (мурашки). Верхние отделы зоны - представлена кожа нижних конечностей, половых органов. В нижних отделах - кожа верхних конечностей, головы, рта.

1-я и 2-я зоны тесно связаны друг с другом в функциональном отношении. В двигательной зоне много афферентных нейронов, получающих импульсы от проприорецепторов - это мотосенсорные зоны. В чувствительной зоне много двигательных элементов - это сенсомоторные зоны - отвечают за возникновение болевых ощущений.

3-я зона - зрительная зона - затылочная область коры головного мозга (17, 18, 19 поля Бродмана). При разрушении 17 поля - выпадение зрительных ощущений (корковая слепота).

Различные участки сетчатки неодинаково проецируются в 17 поле Бродмана и имеют различное расположение при точечном разрушении 17 поля выпадает видение окружающей среды, которое проецируется на соответствующие участки сетчатки глаза. При поражении 18 поля Бродмана страдают функции, связанные с распознаванием зрительного образа и нарушается восприятие письма. При поражении 19 поля Бродмана - возникают различные зрительные галлюцинации, страдает зрительная память и другие зрительные функции.

4-я - зона слуховая - височная область коры головного мозга (22, 41, 42 поля Бродмана). При поражении 42 поля - нарушается функция распознавания звуков. При разрушении 22 поля - возникают слуховые галлюцинации, нарушение слуховых ориентировочных реакций, музыкальная глухота. При разрушении 41 поля - корковая глухота.

5-я зона - обонятельная - располагается в грушевидной извилине (11 поле Бродмана).

6-я зона - вкусовая - 43 поле Бродмана.



7-я зона - речедвигательная зона (по Джексону - центр речи) - у большинства людей (праворуких) располагается в левом полушарии.

Эта зона состоит из 3-х отделов.

Речедвигательный центр Брока - расположен в нижней части лобных извилин - это двигательный центр мышц языка. При поражении этой области - моторная афазия.

Сенсорный центр Вернике - расположен в височной зоне - связан с восприятием устной речи. При поражении возникает сенсорная афазия - человек не воспринимает устную речь, страдает произношение, та как нарушается восприятие собственной речи.

Центр восприятия письменной речи - располагается в зрительной зоне коры головного мозга - 18 поле Бродмана аналогичные центры, но менее развитые, есть и в правом полушарии, степень их развития зависит от кровоснабжения. Если у левши повреждено правое полушарие, функция речи страдает в меньшей степени. Если у детей повреждается левой полушарие, то его функцию на себя берет правое. У взрослых способность правого полушария воспроизводить речевые функции - утрачивается.

Лекция 12. ЛОКАЛИЗАЦИЯ ФУНКЦИЙ В КОРЕ БОЛЬШИХ ПОЛУШАРИЙ Корковые зоны. Проекционные корковые зоны: первичные и вторичные. Моторные (двигательные) зоны коры больших полушарий. Третичные корковые зоны.

Выпадения функций, наблюдаемые при поражении различных отделов коры (внутренней поверхности). 1 - расстройства обоняния (при одностороннем поражении не наблюдаются); 2 - расстройства зрения (гемианопсии); 3 - расстройства чувствительности; 4 - центральные параличи или парезы. Данные экспериментальных исследований по разрушению или удалению определенных участков коры и клинические наблюдения свидетельствуют о приуроченности функций к деятельности определенных участков коры. Участок коры большого мозга, обладающий некоторой специфической функцией, называется корковой зоной. Различают проекционные, ассоциативные корковые зоны и двигательные (моторные).

Проекционная корковая зона – это корковое представительство анализатора. Нейроны проекционных зон получают сигналы одной модальности (зрительных, слуховых и т. д.). Различают: - первичные проекционные зоны; - вторичные проекционные зоны, обеспечивающие интегративную функцию восприятия. В зоне того или иного анализатора выделяют также третичные поля, или ассоциативные зоны.

Первичные проекционные поля коры получают информацию, опосредованную через наименьшее количество переключений в подкорке (в таламусе, промежуточном мозге). На этих полях как бы спроецирована поверхность периферических рецепторов. Нервные волокна поступают в кору больших полушарий главным образом из таламуса (это афферентные входы).

Проекционные зоны анализаторных систем занимают наружную поверхность коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел включается также представительство вкусовой, обонятельной, висцеральной чувствительности

Первичные сенсорные области (поля Бродмана): зрительная - 17, слуховая - 41 и соматосенсорная - 1, 2, 3 (в совокупности их принято называть сенсорной корой), моторная (4) и премоторная (6) кора

Первичные сенсорные области (поля Бродмана): зрительная - 17, слуховая - 41 и соматосенсорная - 1, 2, 3 (в совокупности их принято называть сенсорной корой), моторная (4) и премоторная (6) кора Каждое поле коры мозга характеризуется особым составом нейронов, их расположением и связями между ними. Поля сенсорной коры, в которых происходит первичная переработка информации от сенсорных органов, резко отличаются от первичной моторной коры, ответственной за формирование команд для произвольных движений мышц.

В моторной коре преобладают нейроны, по форме напоминающие пирамиды, а сенсорная кора представлена преимущественно нейронами, форма тел которых напоминает зерна, или гранулы, почему их и называют гранулярными. Строение коры большого мозга I. молекулярный II. наружный зернистый III. наружный пирамидный IV. внутренний зернистый V. ганглиозный (гигантских пирамид) VI. полиморфный

Нейроны первичных проекционных зон коры обладающих в основном высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на оттенки цвета, направление движения, характер линий и т. п. Однако в первичны зонах отдельных областей коры находятся также нейроны мультимодального типа, реагирующие на несколько видов раздражителей и нейроны, реакция которых отражает воздействие неспецифических (лимбикоретикулярных) систем.

В первичных полях заканчиваются проекционные афферентные волокна. Так, поля 1 и 3, занимающие медиальную и латеральную поверхность задней центральной извилины, являются первичными проекционными полями кожной чувствительности поверхности тела.

Функциональная организация проекционных зон в коре основана на принципе топической локализации. Расположенные рядом друг с другом воспринимающие элементы на периферии (например, участки кожи) проецируются на корковой поверхности также рядом друг с другом.

В медиальной части представлены нижние конечности, а наиболее низко на латеральной части извилины расположены проекции рецепторных полей кожной поверхности головы. При этом участки поверхности тела, богато снабженные рецепторами (пальцы, губы, язык), проецируются на большую площадь коры, чем участки, имеющие меньшее количество рецепторов (бедро, спина, плечо).

Поля 17- 19, расположенные в затылочной доле, являются зрительным центром коры, 17 -е поле, занимающее сам затылочный полюс, является первичным. Прилежащие к нему 18 -е и 19 -е поля выполняют функцию вторичных полей и получают входы от 17 -го поля.

В височных долях расположены слуховые проекционные поля (41, 42). Рядом с ними на границе височной, затылочной и теменной долей расположены 37 -е, 39 -е и 40 -е, характерные только для коры головного мозга человека. У большей части людей в этих полях левого полушария расположен центр речи, отвечающий за восприятие устной и письменной речи.

Вторичные проекционные поля, получающие информацию из первичных, расположены рядом с ними. Для нейронов этих полей характерно восприятие сложных признаков раздражителей, однако при этом сохраняется специфичность, соответствующая нейронам первичных зон. Усложнение детекторных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. Во вторичных зонах (18 -е и 19 -е поля Бродмана) появляются детекторы более сложных элементов контура: края ограниченной длины линий, углов с различной ориентацией и др.

Моторные (двигательные) зоны коры больших полушарий - это участки двигательной коры, нейроны которой вызывают двигательный акт. Двигательные области коры расположены в прецентральной извилине лобной доли (впереди от проекционных зон кожной чувствительности). Эту часть коры занимают поля 4 и 6. Из V слоя этих полей берет начало пирамидный путь, заканчивающийся на мотонейронах спинного мозга.

Премоторная зона (поле 6) Премоторная зона коры расположена перед моторной зоной, она отвечает за тонус мышц и осуществляющую координированные движения головы и туловища. Главные эфферентные выходы из коры – аксоны пирамид V слоя. Это эфферентные, двигательные нейроны, участвующие в регуляции двигательных функций.

Третичные или межанализаторные зоны (ассоциативные) Префронтальная зона (поля 9, 10, 45, 46, 47, 11), теменно-височная (поля 39, 40) Афферентные и эфферентные проекционные зоны коры занимают относительно небольшую ее площадь. Большая часть поверхности коры занята третичными или межанализаторными зонами, называемыми ассоциативными. Они получают полимодальные входы от сенсорных областей коры и таламических ассоциативных ядер и имеют выходы на двигательные зоны коры. Ассоциативные зоны обеспечивают интеграцию сенсорных входов и играют существенную роль в психической деятельности (обучения, мышления).

Функции различных зон новой коры: 5 3 7 6 4 1 2 Память, потребности Запуск поведения 1. Затылочная доля – зрительная кора. 2. Височная доля – слуховая кора. 3. Передняя часть теменной доли – болевая, кожная и мышечная чувствительность. 4. Внутри боковой борозды (островковая доля) – вестибулярная чувствительность и вкус. 5. Задняя часть лобной доли – двигательная кора. 6. Задняя часть теменной и височной долей – ассоциативная теменная кора: объединяет потоки сигналов от разных сенсорных систем, речевые центры, центры мышления. 7. Передняя часть лобной доли – ассоциативная лобная кора: с учетом сенсорных сигналов, сигналов от центров потребностей, памяти и мышления принимает решения о запуске поведенческих программ («центр воли и инициативы»).

Отдельные крупные ассоциативные области расположены рядом с соответствующими сенсорными зонами. Некоторые ассоциативные зоны выполняют лишь ограниченную специализированную функцию и связаны с другим ассоциативными центрами, способными подвергать информацию дальнейшей обработке. Например, звуковая ассоциативная зона анализирует звуки, разделяя их на категории, а затем передает сигналы в более специализированные зоны, такие как речевая ассоциативная зона, где воспринимается смысл услышанных слов.

Ассоциативные поля теменной доли объединяют информацию, приходящую от соматосенсорной коры (от кожи, мышц, сухожилий и суставов относительно положения тела и его движений) - со зрительной и слуховой информацией, поступающей из зрительной и слуховой коры затылочной и височной долей. Эта объединённая информация помогает иметь точное представление о собственном теле во время передвижений в окружающем пространстве.

Область Вернике и область Брока - две области головного мозга, участвующие в процессе воспроизведения и понимание информации, связанной с речью. Обе области расположены вдоль Сильвиевой борозды (латеральной борозды полушарий мозга). Афазия – полная или частичная утрата речи, обусловленная локальными поражениями головного мозга.

Лекция 13

ЛОКАЛИЗАЦИЯ ФУНКЦИЙ В КОРЕ ПОЛУШАРИЙ БОЛЬШОГО МОЗГА

    Общие положения

    Ядра первой сигнальной системы

    Ядра второй сигнальной системы

Вопрос 1

Локализация функций в коре больших полушарий

Нервные клетки коры больших полушарий специализированы для восприятия различных видов раздражений и передачи импульсов на другие поля и ядра ЦНС. И.П. Павлов рассматривал кору полушарий большого мозга как совокупность корковых концов анализаторов. Различные анали­заторы тесно взаимосвязаны, поэтому в коре большого мозга осуществляются анализ и синтез, выработка ответных реакций, регулирующих любые вилы деятельности человека.

На основе строения и функций различных клеточных слоев вся кора разделена на 9 областей и 52 поля.

Области коры больших полушарий:

Предцентральная,

Постцентральная,

Островковая,

Височная,

Затылочная,

Верхняя теменная,

Нижняя теменная,

Лимбическая.

В коре большого мозга различают ядра и рассеянные вокруг них элементы.

Яд­ро – это место концентрации нервных клеток коры, составляющих точную проекцию всех элементов определенного периферического рецептора.

В ядрах коры происходят высший анализ, синтез и интеграция функций. Таким образом, кору полушарий большого мозга схематично можно представить как совокупность ядер различ­ных анализаторов, между которыми находятся рассеянные эле­менты, относящиеся к разным (смежным) анализаторам.

Рассмотрим положение некоторых корковых концов различных анализаторов (ядер) по отношению к извилинам и долям полушарий большого мозга у человека (в соответствии с цитоархитектоническими картами).

В 1909 году немецкий невролог Корбиниан Бродман опубликовал карты цитоархитектонических полей коры больших полушарий головного мозга. Бродман впервые создал карты коры. Впоследствии О. Фогт и Ц. Фогт (1919-1920 гг.) с учётом волоконного строения описали в коре головного мозга 150 миелоархитектонических участков. В Институте мозга АМН СССР И. Н. Филипповым и С. А. Саркисовым были созданы карты коры головного мозга, включающие 47 цитоархитектонических полей.

Рисунок 1 – Боковая поверхность мозга с пронумерованными полями Бродмана

Рисунок 2 – Центральная часть мозга с пронумерованными полями Бродмана.

Поля 3, 1 и 2 – соматосенсорная область, первичная зона, находятся в постцентральной извилине

Поле 4 – моторная область, располагается в пределах прецентральной извилины

Поле 5 – вторичная соматосенсорная зона, располагается в пределах верхней теменной дольки

Поле 6 – премоторная кора и дополнительная моторная кора (вторичная моторная зона), располагается в передних отделах прецентральной и задних отделах верхней и средней лобной извилин.

Поле 7 – третичная моторная зона, расположена в верхних отделах теменной доли между постцентральной извилиной и затылочной долей.

Поле 8 – располагается в задних отделах верхней и средней лобной извилин, включает в себя центр произвольных движений глаз

Поле 9 – дорсолатеральная префронтальная кора

Поле 10 – передняя префронтальная кора

Поле 11 – обонятельная область

Поле 17 – ядерная зона зрительного анализатора – зрительная область, первичная зона

Поле 18 – ядерная зона зрительного анализатора - центр восприятия письменной речи, вторичная зона

Поле 19 – ядерная зона зрительного анализатора, вторичная зона (оценка значения увиденного)

Поле 20 – нижняя височная извилина (центр вестибулярного анализатора)

Поле 21 – средняя височная извилина (центр вестибулярного анализатора)

Поле 22 – ядерная зона звукового анализатора

Поле 24 – детектор ошибок

Поле 28 – проекционные поля и ассоциативная зона обонятельной системы

Поле 32 – дорсальная зона передней поясной коры. рецепторная область эмоциональных переживаний.

Поле 37 – акустико-гностический сенсорный центр речи. это поле контролирует трудовые процессы речью, ответственно за понимание речи.

Поле 39 – ангулярная извилина, часть зоны Вернике (центр зрительного анализатора письменной речи)

Поле 40 – краевая извилина, часть зоны Вернике (двигательный анализатор сложных профессиональных, трудовых и бытовых навыков)

Поле 41 – ядерная зона звукового анализатора, первичная зона

Поле 42 – ядерная зона звукового анализатора, вторичная зона

Поле 43 – вкусовая область

Поле 44 – центр брока

Поле 45 – триангулярная часть поля Бродмана (музыкальный моторный центр)

Поле 46 – двигательный анализатор сочетанного поворота головы и глаз в разные стороны

Поле 47 – ядерная зона пения, речедвигательная его составляющая

Поле 52 – ядерная зона слухового анализатора, которая отвечает за пространственное восприятие звуков и речи

Среди ядер коры больших полушарий рассматривают ядра, которые име­ются как в коре полушарий большого мозга человека, так и животных. Они специализированы на восприятии, анализе и синтезе сигналов, поступающих из внешней и внутренней среды, составляющих, по определению И.П. Павлова, первую сигнальную систему действительности. Эти сигналы воспринимаются в виде ощущений, впечатлений и представлений.

Вторая сигнальная система имеется только у человека и обусловлена развитием речи. Речевые и мыслительные функции выполняются при участии всей коры, однако в коре большого мозга можно выделить определенные зоны, ответственные толь­ко за речевые функции. Так, двигательные анализаторы речи (устной и письменной) располагаются рядом с двигательной об­ластью коры, точнее в тех участках коры лобной доли, которые примыкают к предцентральной извилине.

Вопрос_2

Ядра первой сигнальной системы

Ядра первой сигнальной системы

1. Ядро коркового анализатора обшей (температурной, боле­вой, осязательной) и проприоцептивной чувствительности обра­зуют нервные клетки, залегающие в коре постцентральной из­вилины (поля 1, 2, 3) и верхней теменной дольки (поля 5 и 7). Проводящие чувствительные пути, следующие к коре большого мозга, перекрещиваются на уровне спинного мозга (пути болевой, температурной чувствительнос­ти, осязания и давления), и на уровне продолговатого мозга (пути проприоцептивной чувствительности коркового направления). Вследствие этого постцентральные извилины каждого из полушарий связаны с противоположной половиной тела.

2. Ядро двигательного анализатора находится в основном в так называемой двигательной области коры, к которой относятся предцентральная извилина (поля 4 и 6) и парацентральная долька на медиальной поверхности полушария. В 5-м слое (пластинке) коры предцентральной извилины залегают гигантопирамидальные нейроны (клетки Беца). И.П. Павлов относил их к вставочным и отмечал, что эти клетки своими отростками связаны с подкорковыми ядрами, двигательными клетками ядер черепных и спинномозговых нервов. В верхних участках предцентральной извилины и в парацентральной дольке расположе­ны клетки, импульсы от которых направляются к мышцам самых нижних отделов туловища и нижних конечностей. В нижней части предцентральной извилины находятся двига­тельные центры, регулирующие деятельность мышц лица.

3. Ядра анализатора, обеспечивающее функции сочетания поворота головы и глаз в противоположную сторону, расположе­но в задних отделах средней лобной извилины, в так называе­мой премоторной зоне (поле 8). Сочетанный поворот глаз и го­ловы регулируется не только при поступлении в кору лобной извилины проприоцептивных импульсов от мышц глазного яб­лока, но и при поступлении импульсов из сетчатки глаза в поле 17 затылочной доли, где находится ядро зрительного анализа­тора.

4. Ядро двигательного анализатора расположено в об­ласти нижней теменной дольки, в надкраевой извилине (глубо­кие слои цитоархитектонического поля 40). Функциональное значение этого ядра - синтез всех целенаправленных движений. Это ядро асимметрично. У прав­шей оно находится в левом, а у левшей - в правом полушарии.

Способность координировать сложные целенаправленные дви­жения приобретается индивидуумом в течение жизни в резуль­тате практической деятельности и накопления опыта. Целена­правленные движения происходят за счет образования времен­ных связей между клетками, расположенными в предцентральной и надкраевой извилинах. Поражение поля 40 не вызывает паралича, а приводит к потере способности производить слож­ные координированные целенаправленные движения - к апраксии (praxis - практика).

    Ядро кожного анализатора одного из частных видов чувст­вительности, которому присуща функция узнавания предметов на ощупь, - стреогнозии, находится в коре верхней те­менной дольки (поле 7). Корковый конец этого анализатора на­ходится в правом полушарии и представляет собой проекцию рецепторных полей левой верхней конечности. Так, ядро этого анализатора для правой верхней конечности находится в левом полушарии. Поражение поверхностных слоев коры в этом отде­ле мозга сопровождается утратой функции узнавания предметов на ощупь, хотя другие виды общей чувствительности при этом остаются сохранными.

    Ядро слухового анализатора расположено в глубине лате­ральной борозды, на обращенной к островку поверхности сред­ней части верхней височной извилины (там, где видны попереч­ные височные извилины, или извилины Гешля, - поля 41, 42, 52). К нервным клеткам, составляющим ядро слухового анализа­тора каждого из полушарий, подходят проводящие пути от ре­цепторов как левой, так и правой стороны. В связи с этим одно­стороннее поражение этого ядра не вызывает полной утраты способности воспринимать звуки. Двустороннее поражение со­провождается «корковой глухотой».

    Ядро зрительного анализатора расположено на медиаль­ной поверхности затылочной доли полушария большого мозга, по обеим сторонам от шпорной борозды (поля 17,18,19). Ядро зрительного анализатора правого полушария связано с прово­дящими путями от латеральной половины сетчатки правого глаза и медиальной половины сетчатки левого глаза. В коре за­тылочной доли левого полушария проецируются соответствен­но рецепторы латеральной половины сетчатки левого глаза и медиальной половины сетчатки правого глаза. Как и для ядра слухового анализатора, только двустороннее поражение ядер зрительного анализатора приводит к полной «корковой слепо­те». Поражение поля 18, находящегося несколько выше поля 17, сопровождается потерей зрительной памяти, но не слепо­той. Наиболее высоко по отношению к двум предыдущим в коре затылочной доли находится поле 19, поражение которого сопровождается утратой способности ориентироваться в не­знакомой обстановке.

8. Ядро обонятельного анализатора находится на нижней по­верхности височной доли полушария большого мозга, в области крючка и отчасти в области гиппокампа. Эти участки с точки зрения филогенеза относятся к наиболее древним частям коры большого мозга. Чувство обоняния и чув­ство вкуса тесно взаимосвязаны, что объясняется близким рас­положением ядер обонятельного и вкусового анализаторов. От­мечено также (В.М. Бехтерев), что вкусовое восприятие наруша­ется при поражении коры самых нижних отделов постцентраль­ной извилины (поле 43). Ядра вкусового и обонятельного ана­лизаторов обоих полушарий связаны с рецепторами как левой, так и правой стороны тела.

Вопрос 3

Ядра второй сигнальной системы

9. Ядро двигательного анализатора письменной реч и (анализа­тора произвольных движений, связанных с написанием букв и других знаков) находится в заднем отделе средней лобной изви­лины (поле 40). Оно тесно прилежит к тем отделам предцентральной извилины, которым присуща функция двигательного анализатора руки и сочетанного поворота головы и глаз в про­тивоположную сторону. Разрушение поля 40 не приводит к на­рушению всех видов движений, а сопровождается лишь утратой способности производить рукой точные и тонкие движения приначертании букв, знаков и слов (аграфия).

10. Ядро двигательного анализатора артикуляции речи (речедвигательный анализатор) располагается в задних отделах ниж­ней лобной извилины (поле 44, или центра Брока). Это ядро граничит с теми отделами предцентральной извилины, кото­рые являются анализаторами движений, производимых при сокращении мыши головы и шеи. Это понятно, так как в рече-двигательном центре осуществляется анализ движений всех мышц: губ, щек, языка, гортани, принимающих участие в акте устной речи (произношение слов и предложении). Поврежде­ние участка коры этой области (поле 44) приводит к двига­тельной афазии, т.е. утрате способности произносить слова. Такая афазия не связана с потерей функции мышц, участву­ющих в речеобразовании. Более того, при поражении поля 44 не утрачивается способность к произношению звуков или пе­нию.

В центральных отделах нижней лобной извилины (поле 45) находится ядро речевого анализатора, связанного с пением. По­ражение поля 45 сопровождается вокальной амузией - не­способностью к составлению и воспроизведению музыкальных фраз и аграмматизмом - утратой способности состав­лять осмысленные предложения из отдельных слов. Речь таких больных состоит из несвязанного по смысловому значению на­бора слов.

11. Ядро слухового анализатора устной речи тесно взаимосвя­зано с корковым центром слухового анализатора и располагает­ся, как и последний, в области верхней височной извилины. Это ядро находится в задних отделах верхней височной извили­ны, на стороне, обращенной к латеральной борозде полушария большого мозга (поле 42).

Поражение ядра не нарушает слухового восприятия звуков вообще, однако при этом утрачивается способность понимать слова, речь (словесная глухота, или сенсорная афазия). Функция этого ядра состоит в том, что человек не только слы­шит и понимает речь другого человека, но и контролирует свою собственную.

В средней трети верхней височной извилины (поле 22) нахо­дится ядро коркового анализатора, поражение которого сопро­вождается наступлением музыкальной глухоты: музыкальные фразы воспринимаются как бессмысленный набор различных шумов. Этот корковый конец слухового анализатора относится к центрам второй сигнальной системы, воспринимающим сло­весное обозначение предметов, действий, явлений, т.е. воспри­нимающим сигналы сигналов.

12. Ядро зрительного анализатора письменной речи располо­жено в непосредственной близости к ядру зрительного анализа­тора - в угловой извилине нижней теменной дольки (поле 39). Поражение этого ядра приводит к утрате способности воспри­нимать написанный текст, читать (алексия).

Кора больших полушарий - материальная основа психической деятельности человека. Кора - серое вещество толщиной от 1,5 до 5 мм, содержит 14 млрд нервных клеток и имеет шестислойное строение. Кора - огромный ядерный центр, ядро, распластанное по поверхности полушарий.

Более 130 лет идет спор - есть ли в коре центры или нет и в каком объеме они оказывают влияние на «курируемые» функции: 1. Отвечают ли эти центры буквально за все (центр туризма, любви к живописи, к театру и пр.), или их влияние менее детализировано. 2. Кора - это один сплошной экранный центр, отвечающий за все функции.

Очевидно, истина, как всегда, где-то посередине.

Основоположником детального изучения клеточного состава коры был русский ученый, киевлянин Владимир Алексеевич Бец. В 1874 г. он опубликовал результат исследований с помощью собственного метода серийных срезов и окраски кармином. Бец выявил различное строение коры в различных ее участках и разработал карту цитоархитектоники коры. В последующем были созданы и другие карты: Бродмана с 52 цитоархитектоническими полями, Фогта со 150 миелоархитектоническими полями и др. Исследования в настоящнее время продолжаются в Институте мозга в Москве и в других странах.

Представления о локализации функций в коре головного мозга имеют большое практическое значение для решения задач топики поражений в полушариях мозга. Повседневный клинический опыт показывает, что существуют определенные закономерности зависимости расстройств функций от расположения патологического очага. Исходя из этого, клиницист и решает задачи топической диагностики. Однако так дело обстоит с простыми функциями: движением и чувствительностью. Функции более сложные, филогенетически молодые, не могут быть узколокализованными; в осуществлении сложных функций участвуют весьма обширные области коры, даже вся кора.

Работы В.А. Беца были внимательно изучены И.П. Павловым. С учетом этих данных, Иваном Петровичем Павловым были созданы основы нового и прогрессивного учения о локализации функций в головном мозге. Павлов рассматривал кору полушарий большого мозга как совокупность корковых концов анализаторов. Павлов создал учение об анализаторах. По Павлову, анализатор - нервный механизм, анализирующий явления внешнего и внутреннего мира путем разложения сложного комплекса раздражений на отдельные элементы. Он начинается воспринимающим аппаратом и кончается в мозгу, то есть анализатор включает рецепторный аппарат, проводник нервных импульсов и корковый центр.

Павлов доказал, что корковый конец анализатора - это не строго очерченная зона. В нем есть ядро и рассеянные элементы. Ядро - место концентрации нервных клеток, где происходит высший анализ, синтез и интеграция. На его периферии, в рассеянных элементах, совершаются простые анализ и синтез. Площади рассеянных элементов соседних анализаторов перекрывают друг друга (рис.).

По Павлову - работа второй сигнальной системы неразрывно связана с функциями всех анализаторов, поэтому невозможно представить локализацию сложных функций второй сигнальной системы в ограниченных корковых полях. Павловым заложены основы учения о динамической локализации функций в коре. Представления о динамической локализации функций в коре предполагают возможность использования одних и тех же корковых структур в разнообразных сочетаниях для обслуживания различных сложных корковых функций. Так, ассоциативные пути объединяют анализаторы, способствуя высшей синтетической деятельности коры мозга. Сегодня ученые знают, что раздражение трансформируется в возбуждение, передающееся в корковый конец анализатора. Не ясно другое - где и как возбуждение трансформируется в ощущение? Какие структуры отвечают за это? Так, при раздражении зрительного поля в области шпорной борозды возникают «простые» галлюцинации в виде световых или цветовых пятен, искр, теней. Раздражение наружной поверхности затылочной доли дает «сложные» галлюцинации в виде фигур, движущихся предметов.

В двигательной зоне коры обнаружены клетки, дающие разряд импульсов на зрительные, слуховые, кожные раздражения, а в зрительной зоне коры выявлены нейроны, отвечающие электрическими разрядами на осязательные, звуковые, вестибулярные и обонятельные раздражители. Кроме того, были найдены нейроны, которые отвечают не только на «свой» раздражитель, как теперь говорят, раздражитель своей модальности, своего качества, но и на один-два чужих. Их назвали полисенсорными нейронами.

Данный раздел анатомии НС разделен на следующие подкатегории

Кора больших полушарий головного мозга - эволюционно наиболее молодое образование, достигшее у человека по отношению к остальной массе головного мозга наибольших величин. У человека масса коры больших полушарий составляет в среднем 78% от общей массы головного мозга. Кора больших полушарий имеет исключительно важное значение в регуляции жизнедеятельности организма, осуществлении сложных форм поведения и в становлении нервно-психических функций. Эти функции обеспечиваются не только всей массой коркового вещества, но и неограниченными возможностями ассоциативных связей между клетками коры и подкорковых образований, что создает условия для сложнейшего анализа и синтеза поступающей информации, для развития форм обучения, недоступных животным.

Говоря о ведущей роли коры больших полушарий в нейрофизиологических процессах, не следует забывать, что этот высший отдел может нормально функционировать лишь в тесном взаимодействии с подкорковыми образованиями. Противопоставление коры и нижележащих отделов мозга в значительной степени схематично и условно. В последние годы развиваются представления о вертикальной организации функций нервной системы, о кольцевых корково-подкорковых связях.

Клетки коркового вещества в значительно меньшей степени специализированы, чем ядра подкорковых образований. Отсюда следует, что компенсаторные возможности коры весьма высоки - функции пораженных клеток могут брать на себя другие нейроны; поражение довольно значительных участков коркового вещества может клинически проявляться очень стерто (так называемые клинические немые зоны). Отсутствие узкой специализации корковых нейронов создает условия для возникновения самых разнообразных межнейронных связей, формирования сложных «ансамблей» нейронов, регулирующих различные функции. В этом важнейшая основа способности к обучению. Теоретически возможное число связей между 14 млрд. клеток коры головного мозга настолько велико, что в течение жизни человека значительная часть их остается неиспользованной. Этим еще раз подтверждается неограниченность возможностей обучения человека.

Несмотря на известную неспецифичность корковых клеток, определенные группы их анатомически и функционально более тесно связаны с теми или иными специализированными отделами нервной системы. Морфологическая и функциональная неоднозначность различных участков коры позволяет говорить о корковых центрах зрения, слуха, осязания и т. д., которые имеют определенную локализацию. В работах исследователей XIX века этот принцип локализации был доведен до крайности: делались попытки выявления центров воли, мышления, способности понимать искусство и т. д. В настоящее время было бы неверно говорить о корковом центре как о строго ограниченной группе клеток. Необходимо отметить, что специализация нервных звеньев формируется в процессе жизнедеятельности.

По И. П. Павлову, мозговой центр, или корковый отдел анализатора, состоит из «ядра» и «рассеянных элементов». «Ядро» представляет собой относительно однородную в морфологическом отношении группу клеток с точной проекцией рецепторных полей. «Рассеянные элементы» находятся в окружности или в определенном отдалении от «ядра»: ими осуществляется более элементарный и менее дифференцированный анализ и синтез поступающей информации.

Из 6 слоев клеток коры верхние слои развиты у человека наиболее мощно по сравнению с аналогичными слоями у животных и формируются в онтогенезе значительно позже нижних слоев. Нижние слои коры имеют связи с периферическими рецепторами (IV слой) и с мускулатурой (V слой) и носят название «первичных», или «проекционных», корковых зон вследствие их непосредственной связи с периферическими отделами анализатора. Над «первичными» зонами надстраиваются системы «вторичных» зон (II и III слои), в которых преобладают ассоциативные связи с другими отделами коры, поэтому они называются также проекционно-ассоциативными.

В корковых представительствах анализаторов, таким образом, выявляются две группы клеточных зон. Такая структура обнаруживается в затылочной зоне, куда проецируются зрительные пути, в височной, где заканчиваются слуховые пути, в задней центральной извилине - корковом отделе чувствительного анализатора, в передней центральной извилине - корковом двигательном центре. Анатомическая неоднородность «первичных» и «вторичных» зон сопровождается и физиологическими различиями. Эксперименты с раздражением коры показали, что возбуждение первичных зон сенсорных отделов приводит к возникновению элементарных ощущений. Например, раздражение затылочных отделов вызывает ощущение мелькания световых точек, черточек и т. д. При раздражении вторичных зон возникают более сложные явления: обследуемый видит разнообразно оформленные предметы - людей, птиц и т. д. Можно предполагать, что именно во вторичных зонах осуществляются операции гнозиса и отчасти праксиса.

Кроме того, в корковом веществе выделяют третичные зоны, или зоны перекрытия корковых представительств отдельных анализаторов. У человека они занимают весьма значительное место и расположены прежде всего в теменно-височно-затылочной области и в лобной зоне. Третичные зоны вступают в обширные связи с корковыми анализаторами и обеспечивают тем самым выработку сложных, интегративных реакций, среди которых у человека первое место занимают осмысленные действия. В третичных зонах, следовательно, происходят операции планирования и контроля, требующие комплексного участия разных отделов мозга.

В раннем детском возрасте функциональные зоны коры перекрывают друг друга, границы их диффузны, и лишь в процессе практической деятельности происходит постоянная концентрация функциональных зон в очерченные, отделенные друг от друга центры. В клинике у взрослых больных наблюдаются весьма постоянные симптомокомплексы при поражении определенных участков коркового вещества и связанных с ними нервных путей

В детском возрасте в связи с незавершенной дифференциацией функциональных зон очаговое поражение коры больших полушарий может не иметь четкого клинического проявления, что следует помнить при оценке тяжести и границ поражения мозга у детей.

В функциональном отношении можно выделить основные интегративные уровни корковой деятельности.

Первая сигнальная система связана с деятельностью отдельных анализаторов и осуществляет первичные этапы гнозиса и праксиса, т. е. интеграцию сигналов, поступающих по каналам отдельных анализаторов, и формирование ответных действий с учетом состояния внешней и внутренней среды, а также прошлого опыта. К этому первому уровню можно отнести зрительное восприятие предметов с концентрацией внимания на определенных его деталях, произвольные движения с активным усилением или торможением их.

Более сложный функциональный уровень корковой деятельности объединяет системы различных анализаторов, включает в себя вторую сигнальную систем)", объединяет системы различных анализаторов, делая возможным осмысленное восприятие окружающего, отношение к окружающему миру «со знанием и пониманием». Этот уровень интеграции теснейшим образом связан с речевой деятельностью, причем понимание речи (речевой гнозис) и использование речи как средства обращения и мышления (речевой праксис) не только взаимосвязаны, но и обусловлены различными нейрофизиологическими механизмами, что имеет большое клиническое значение.

Высший уровень интеграции формируется у человека в процессе его созревания как социального существа, в процессе овладения теми навыками и знаниями, которыми располагает общество.

Третий этап корковой деятельности играет роль своеобразного диспетчера сложных процессов высшей нервной деятельности. Он обеспечивает целенаправленность тех или иных актов, создавая условия для наилучшего их выполнения. Это достигается путем «фильтрации» сигналов, имеющих в данный момент наибольшее значение, от сигналов второстепенных, осуществления вероятностною прогнозирования будущего и формирования перспективных задач.

Разумеется, сложная корковая деятельность не могла бы осуществляться без участия системы хранения информации. Поэтому механизмы памяти - один из важнейших компонентов этой деятельности. В этих механизмах существенное значение имеют не только функции фиксирования информации (запоминание), но и функции получения необходимых сведений из «хранилищ» памяти (воспоминание), а также функции переброски потоков информации из блоков оперативной памяти (то, что необходимо на данный момент) в блоки долговременной памяти и наоборот. В противном случае было бы невозможно усвоение нового, так как старые навыки и знания мешали бы этому.

Нейрофизиологические исследования последнего времени позволили установить, какие функции преимущественно свойственны определенным отделам коры больших полушарий. Еще в прошлом веке было известно, что затылочная область коры тесно связана со зрительным анализатором, височная область - со слуховым (извилины Гешля), вкусовым анализатором, передняя центральная извилина - с двигательным, задняя центральная извилина - с кожно-мышечным анализатором. Можно условно считать, что эти отделы связаны с первым типом, корковой деятельности и обеспечивают наиболее простые формы гнозиса и праксиса.

В формировании более сложных гностико-праксических функций активное участие принимают отделы коры, лежащие в теменно-височно-затылочной области. Поражение этих участков приводит к более сложным формам расстройств. В височной доле левого полушария находится гностический центр речи Вернике. Моторный же центр речи находится несколько кпереди от нижней трети передней центральной извилины (центр Брока). Помимо центров устной речи, различают сенсорный и моторный центры письменной речи и ряд других образований, так или иначе связанных с речью. Теменно-височно-затылочная область, где замыкаются пути, идущие от различных анализаторов, имеет важнейшее значение для формирования высших психических функций. Известный нейрофизиолог и нейрохирург У. Пенфилд назвал эту область интерпретационной корой. В этой области расположены также образования, принимающие участие в механизмах памяти.

Особое значение придается лобной области. По современным представлениям, именно этот отдел коры головного мозга принимает активное участие в организации целенаправленной деятельности, в перспективном планировании и целеустремленности, т. е. относится к третьему типу корковых функций.

Основные центры коры больших полушарий. Лобная доля. Двигательный анализатор располагается в передней центральной извилине и парацентральной дольке (поля 4, 6 и 6а по Бродману). В средних слоях расположен анализатор кинестетических раздражений, поступающих от скелетных мышц, сухожилий, суставов и костей. В V и отчасти VI слое располагаются гигантские пирамидные клетки Беца, волокна которых формируют пирамидный путь. Передняя центральная извилина имеет определенную соматотопическую проекцию и связана с противоположной половиной тела. В верхних отделах извилины проецируются мышцы нижних конечностей, в нижних - лица. Туловище, гортань, глотка представлены в обоих полушариях (рис. 55).

Центр поворота глаз и головы в противоположную сторону расположен в средней лобной извилине в премоторной области (поля 8, 9). Работа этого центра тесно связана с системой заднего продольного пучка, вестибулярными ядрами, образованиями стриопаллидарной системы, участвующей в регуляции торсии, а также с корковым отделом зрительного анализатора (поле 17).

В задних отделах верхней лобной извилины представлен центр, дающий начало лобно-мостомозжечковому пути (поле 8). Эта область коры больших полушарий участвует в обеспечении координации движений, связанных с прямохождением, сохранением равновесия стоя, сидя и регулирует работу противоположного полушария мозжечка.

Моторный центр речи (центр речевого праксиса) находится в задней части нижней лобной извилины - извилине Брока (поле 44). Центр обеспечивает анализ кинестетической импульсации от мышц речедвигательного аппарата, хранение и реализацию «образов» речевых автоматизмов, формирование устной речи, тесно связан с расположением кзади от него нижним отделом передней центральной извилины (проекционной зоной губ, языка и гортани) и с находящимся кпереди от него музыкальным моторным центром.

Музыкальный моторный центр (поле 45) обеспечивает определенную тональность, модуляцию речи, а также способность составлять музыкальные фразы и петь.

Центр письменной речи локализуется в заднем отделе средней лобной извилины в непосредственной близости от проекционной корковой зоны руки (поле 6). Центр обеспечивает автоматизм письма и функционально связан с центром Брока.

Теменная доля. Центр кожного анализатора располагается в задней центральной извилине полей 1, 2, 3 и коре верхней теменной области (поля 5 и 7). В задней центральной извилине проецируется тактильная, болевая, температурная чувствительность противоположной половины тела. В верхних отделах проецируется чувствительность ноги, в нижних отделах - чувствительность лица. В полях 5 и 7 представлены элементы глубокой чувствительности. Кзади от средних отделов задней центральной извилины располагается центр стереогнозиса (поля 7,40 и отчасти 39), обеспечивающего способность узнавания предметов на ощупь.

Кзади от верхних отделов задней центральной извилины располагается центр, обеспечивающий способность узнавания собственного тела, его частей, их пропорций и взаимоположения (поле 7).

Центр праксиса локализуется в нижней теменной дольке слева, надкраевой извилине (поля 40 и 39). Центр обеспечивает хранение и реализацию образов двигательных автоматизмов (функции праксиса).

В нижних отделах передней и задней центральных извилин располагается центр анализатора интероцептивных импульсов внутренних органов и сосудов. Центр имеет тесные связи с подкорковыми вегетативными образованиями.

Височная доля. Центр слухового анализатора располагается в средней части верхней височной извилины, на поверхности, обращенной к островку (извилина Гешля, поля 41, 42, 52). Указанные образования обеспечивают проекцию улитки, а также хранение и распознавание слуховых образов.

Центр вестибулярного анализатора (поля 20 и 21) располагается в нижних отделах наружной поверхности височной доли, является проек ционным, находится в тесной связи с нижнебазальными отделами височных долей, дающими начало затылочно-височному корково-мостомозжечковому пути.

Рис. 55. Схема локализации функций в коре больших полушарий (А - Г). I - проекционная двигательная зона; II - центр поворота глаз и головы в противоположную сторону; III - проекционная зона чувствительности; IV - проекционная зрительная зона; проекционные гностические зоны: V - слуха; VI - обоняния, VII - вкуса, VIII - гностическая зона схемы тела; IX - зона стереогноза; X - гностическая зрительная зона; XI - гностическая зона чтения; XII - гностическая речевая зона; XIII - зона праксиса; XIV - праксическая речевая зона; XV - праксическая зона письма; XVI - зона контроля за функцией мозжечка.

Центр обонятельного анализатора находится в филогенетически наиболее древней части коры мозга - в крючке и аммоновом роге (поле 11а, е) и обеспечивает проекционную функцию, а также хранение и распознавание обонятельных образов.

Центр вкусового анализатора располагается в ближайшем соседстве с центром обонятельного анализатора, т. е. в крючке и аммоновом роге, но, кроме того, в самом нижнем отделе задней центральной извилины (поле 43), а также в островке. Как и обонятельный анализатор, центр обеспечивает проекционную функцию, хранение и распознавание вкусовых образов.

Акустико-гностический сенсорный центр речи (центр Вернике) локализуется в задних отделах верхней височной извилины слева, в глубине латеральной борозды (поле 42, а также поля 22 и 37). Центр обеспечивает распознавание и хранение звуковых образов устной речи как собственной, так и чужой.

В непосредственной близости от центра Вернике (средняя треть верхней височной извилины - поле 22) располагается центр, обеспечивающий распознавание музыкальных звуков, мелодий.

Затылочная доля. Центр зрительного анализатора располагается в затылочной доле (поля 17, 18, 19). Поле 17 является проекционной зрительной зоной, поля 18 и 19 обеспечивают хранение и распознавание зрительных образов, зрительную ориентацию в непривычной обстановке.

На границе височной, затылочной и теменной долей располагается центр анализатора письменной речи (поле 39), который тесно связан с центром Вернике височной доли, с центром зрительного анализатора затылочной доли, а также с центрами теменной доли. Центр чтения обеспечивает распознавание и хранение образов письменной речи.

Данные о локализации функций получены либо в результате раздражения различных отделов коры в эксперименте, либо в результате анализа нарушений, возникающих вследствие поражения тех или иных участков коры. Оба эти подхода могут лишь указывать на участие определенных корковых зон в тех или иных механизмах, но вовсе не означают их строгой специализации, однозначной связи со строго определенными функциями.

В неврологической клинике, помимо признаков поражения участков коры больших полушарий, встречаются симптомы раздражения отдельных ее областей. Кроме того, в детском возрасте наблюдаются явления задержанного или нарушенного развития корковых функций, что в значительной степени видоизменяет «классическую» симптоматику. Существование разных функциональных типов корковой деятельности обусловливает различную симптоматику корковых поражений. Анализ этой симптоматики позволяет выявить характер поражения и его локализацию.

В зависимости от типов корковой деятельности можно среди корковых поражении различить нарушения гнозиса и праксиса на разных уровнях интеграции; речевые нарушения ввиду их практической важности; расстройства регуляции целенаправленности, целеустремленности нейрофизиологических функций. При каждом виде расстройств могут нарушаться и механизмы памяти, участвующей в данной функциональной системе. Кроме того, возможны более тотальные нарушения памяти. Помимо относительно локальных корковых симптомов, в клинике наблюдаются и более диффузные, проявляющиеся прежде всего в интеллектуальной недостаточности и в нарушениях поведения. Оба эти расстройства имеют особое значение в детской психиатрии, хотя по существу многие варианты таких нарушений можно считать пограничными между неврологией, психиатрией и педиатрией.

Исследование корковых функций в детском возрасте имеет ряд отличий от исследования других отделов нервной системы. Важно установить контакт с ребенком, поддерживать непринужденный тон беседы с ним. Поскольку многие диагностические задания, предъявляемые ребенку, весьма сложны, нужно стремиться, чтобы он не только понял задание, но и заинтересовался им. Иногда при обследовании чрезмерно отвлекаемых, моторно расторможенных или умственно отсталых детей приходится прилагать много терпения и изобретательности, чтобы выявить имеющиеся отклонения. Во многих случаях анализу корковых функций ребенка помогают сообщения родителей о его поведении дома, в школе, школьная характеристика.

При исследовании корковых функций важное значение имеет психологический эксперимент, суть которого заключается в предъявлении стандартизированных целенаправленных заданий. Отдельные психологические методики позволяют оценивать определенные стороны психической деятельности изолированно, другие - более комплексно. В их число входят и так называемые личностные тесты.

Гнозис и его расстройства . Гнозис в буквальном смысле слова означает узнавание. Наша ориентировка в окружающем мире связана с узнаванием формы, величины, пространственной соотнесенности предметов и, наконец, с пониманием их значения, которое заключено в названии предмета. Этот запас сведений об окружающем мире складывается из анализа и синтеза потоков сенсорных импульсов и откладывается в системах памяти. Рецепторный аппарат и передача сенсорных импульсов при поражениях высших гностических механизмов сохраняются, но интерпретация этих импульсов, сличение получаемых данных с образами, хранящимися в памяти, нарушаются. В результате возникает расстройство гнозиса - агнозия, суть которой в том, что при сохранности восприятия предметов теряется ощущение их «знакомости» и окружающий мир, ранее такой знакомый в деталях, становится чуждым, непонятным, лишенным значения.

Но гнозис нельзя себе представить как простое сопоставление, распознавание образа. Гнозис - это процесс непрерывного обновления, уточнения, конкретизации образа, хранимого в матрице памяти, под влиянием повторного сопоставления его с принимаемой информацией.

Тотальная агнозия, при которой наблюдается полная дезориентировка, встречается нечасто. Значительно чаще нарушается гнозис в какой-либо одной анализаторной системе, причем в зависимости от степени поражения выраженность агнозии различна.

Зрительные агнозии возникают при поражении затылочных отделов коры. Больной видит предмет, но не узнает его. Здесь могут быть различные варианты. В одних случаях больной правильно описывает внешние свойства предмета (цвет, форму, величину), однако узнать предмет не может. Например, яблоко больной описывает как «что-то круглое, розовое», не узнавая в яблоке яблоко. Но если дать больному этот предмет в руки, то он при ощупывании узнает его. Бывают случаи, когда больной не узнает знакомые лица. Некоторые больные с подобным расстройством вынуждены запоминать людей по каким-то другим признакам (одежда, родинка и т. д.). В других случаях агнозий больной узнает предмет, называет его свойства и функцию, но не может вспомнить, как он называется. Эти случаи относятся к группе речевых расстройств.

При некоторых формах зрительных агнозий нарушаются пространственная ориентировка, зрительная память. Практически уже при неузнавании предмета можно говорить о нарушениях механизмов памяти, поскольку воспринимаемый предмет не может быть сличен с его образом в гностической матрице. Но бывают и случаи, когда при повторном предъявлении предмета больной говорит, что уже видел его, хотя узнать по-прежнему не может. При нарушениях же пространственной ориентировки больной не только не узнает знакомых ему ранее лиц, домов и т. д., но и может много раз ходить по одному и тому же месту, не подозревая об этом.

Нередко при зрительных агнозиях страдает и узнавание букв, цифр, возникает потеря способности к чтению. Изолированный тип этого расстройства будет разобран при анализе речевой функции.

Для исследования зрительного гнозиса используют набор предметов. Предъявляя их обследуемому, просят определить, описать их внешний вид, сравнить, какие предметы больше, какие меньше. Применяют также набор картинок, цветных, однотонных и контурных. Оценивают не только узнавание предметов, лиц, но и сюжетов. Попутно можно проверить и зрительную память: предъявить несколько картинок, затем перемешать их с ранее не показываемыми и попросить ребенка выбрать знакомые картинки. При этом учитывают и время работы, настойчивость, утомляемость.

Следует иметь в виду, что дети узнают контурные картинки хуже, чем цветные и однотонные. Понимание сюжета связано с возрастом ребенка и степенью умственного развития. В то же время агнозии в классическом виде у детей встречаются редко вследствие незавершенной дифференциации корковых центров.

Слуховые агнозии. Возникают при поражении височной доли в области извилины Гешля. Больной не может узнавать знакомые ранее звуки: тиканье часов, звон колокольчика, шум льющейся воды. Возможны нарушения узнавания музыкальных мелодий - амузия. В ряде случаев нарушается определение направления звука. При некоторых видах слуховой агнозии больной не в состоянии различать частоту звуков, например ударов метронома.

Сенситивные агнозии обусловлены нарушением узнавания тактильных, болевых, температурных, проприоцептивных образов или их сочетаний. Они возникают при поражении теменной области. Сюда относится астереогноз, расстройства схемы тела. При некоторых вариантах астереогноза больной не только не может определить предмет на ощупь, но и не в состоянии определить форму предмета, особенность его поверхности. К сенситивным агнозиям относится также анозогнозия, при которой больной не осознает своего дефекта, например паралича. Фантомные ощущения можно отнести к нарушениям сенситивного гнозиса.

При обследовании детей следует иметь в виду, что маленький ребенок не всегда может правильно показать части своего тела; это же относится и к больным, страдающим слабоумием. В подобных случаях говорить о расстройстве схемы тела, конечно, не приходится.

Вкусовые и обонятельные агнозии встречаются редко. Кроме того, узнавание запахов очень индивидуально, во многом связано с личным опытом человека.

Праксис и его расстройства . Под праксисом понимают целенаправленное действие. Человек усваивает в процессе жизни массу специальных двигательных актов. Многие из этих навыков, формируясь при участии высших корковых механизмов, автоматизируются и становятся такой же неотъемлемой способностью человека, как и простые движения. Но при поражении корковых механизмов, участвующих в осуществлении этих актов, возникают своеобразные двигательные расстройства - апраксии, при которых нет ни параличей, ни нарушений тонуса или координации и даже возможны простые произвольные движения, но более сложные, чисто человеческие двигательные акты нарушаются. Больной вдруг оказывается не в состоянии выполнять такие, казалось бы, простые действия, как рукопожатие, застегивание пуговиц, причесывание, зажигание спички и т. д. Апраксия возникает прежде всего при поражении теменно-височно-затылочной области доминантного полушария. При этом страдают обе половины тела. Апраксия может возникать также при поражении субдоминантного правого полушария (у правшей) и мозолистого тела, связывающего оба полушария. В этом случае апраксия определяется только слева. При апраксии страдает план действия, т. е. составление непрерывной цепочки двигательных автоматизмов. Здесь уместно привести слова К. Маркса: «Человеческое действие тем и отличается от работы «наилучшей пчелы», что прежде чем строить, человек уже построил в своей голове. В конце процесса труда получается результат, который уже перед началом этого процесса имелся идеально, т. е. в представлении работника».

Вследствие нарушения плана действия при попытках выполнить задание больной совершает много ненужных движений. В отдельных случаях наблюдается парапраксия, когда выполняется действие, лишь отдаленно напоминающее данное задание. Иногда наблюдаются также персеверации, т. е. застревание на каких-либо действиях. Например, больного просят произвести манящее движение рукой. После выполнения этого задания предлагают погрозить пальцем, но больной по-прежнему выполняет первое действие.

В некоторых случаях при апраксии обычные, бытовые действия сохраняются, но утрачиваются профессиональные навыки (например, умение пользоваться рубанком, отверткой и т. д.).

По клиническим проявлениям различают несколько видов апраксии: моторную, идеаторную и конструктивную.

Моторная апраксия. Больной не может выполнять действий по заданию и даже по подражанию. Его просят разрезать бумагу ножницами, зашнуровать ботинок, разлиновать бумагу при помощи карандаша и линейки и т. д., но больной, хотя и понимает задание, не может его выполнить, проявляя полную беспомощность. Даже если показать, как это делается, больной все равно не может повторить движение. В отдельных случаях оказывается невозможным выполнение таких простых действий, как приседание, повороты, хлопание в ладоши.

Идеаторная апраксия. Больной не может выполнять действия по заданию с реальными и воображаемыми предметами (например, показать, как причесываются, размешивают сахар в стакане и т. д.), в то же время действия по подражанию сохранены. В некоторых случаях больной может автоматически, не задумываясь, выполнять определенные действия. Например, целенаправленно он не может застегнуть пуговицу, но выполняет это действие автоматически.

Конструктивная апраксия. Больной может выполнять различные действия по подражанию и по устному приказу, но оказывается не в состоянии создать качественно новый двигательный акт, сложить целое из частей, например, составить из спичек определенную фигуру, сложить пирамиду и т. д.

Некоторые варианты апраксии связаны с нарушением гнозиса. Больной не узнает предмета или у него нарушена схема тела, поэтому он не в состоянии выполнять заданий или выполняет их неуверенно и не совсем правильно.

Для исследования праксиса предлагают ряд заданий (присесть, погрозить пальцем, причесаться и т. д.). Предъявляют также задания на действия с воображаемыми предметами (просят показать, как едят, как звонят по телефону, как пилят дрова и т. д.). Оценивают, как больной может подражать показываемым действиям.

Для исследования гнозиса и праксиса применяют также специальные психологические методики. Среди них важное место занимают доски Сегена с углублениями разной формы, в которые нужно вложить соответствующие углублениям фигуры. Этот метод позволяет оценивать и степень умственного развития. Применяют также методику Косса: набор кубиков разной окраски. Из этих кубиков нужно сложить узор, соответствующий показанному на картинке. Более старшим детям предлагают также куб Линка: нужно из 27 по-разному окрашенных кубиков сложить куб, чтобы все его стороны были одинакового цвета. Больному показывают собранный куб, затем разрушают его и просят сложить заново.

В этих методиках большое значение имеет то, как выполняет ребенок задание: действует ли он по методу проб и ошибок или по определенному плану.

Рис. 56. Схема связей речевых центров и регуляции речевой деятельности.

1 - центр письма; 2 - центр Брока; 3 - центр праксиса; 4 - центр проприоцептивного гнозиса; 5 - центр чтения; 6 - центр Вернике; 7 - центр слухового гнозиса; 8 - центр зрительного гнозиса.

Важно помнить, что праксис формируется по мере созревания ребенка, поэтому маленькие дети не могут выполнять еще таких простых действий, как причесывание, застегивание пуговиц и т. д. Апраксии в их классическом виде, как и агнозии, встречаются преимущественно у взрослых.

Речь и ее нарушения. В осуществлении речевой функции, а также письма и чтения принимают участие зрительный, слуховой, двигательный и кинестетический анализаторы. Большое значение имеют сохранность иннервации мышц языка, гортани, мягкого неба, состояние придаточных пазух и полости рта, играющих роль резонаторных полостей. Кроме того, важна координация дыхания и произношения звуков.

Для нормальной речевой деятельности необходимо согласованное функционирование всего головного мозга и других отделов нервной системы. Речевые механизмы имеют сложную и многоступенчатую организацию (рис. 56).

Речь - важнейшая функция человека, поэтому в ее осуществлении принимают участие корковые речевые зоны, расположенные в доминантном полушарии (центры Брока и Вернике), двигательные, кинетические, слуховые и зрительные области, а также проводящие афферентные и эфферентные пути, относящиеся к пирамидной и экстрапирамидной системам, анализаторам чувствительности, слуха, зрения, бульбарные отделы мозга, зрительный, глазодвигательный, лицевой, слуховой, языкоглоточный, блуждающий и подъязычные нервы.

Сложность, многоступенчатость речевых механизмов обусловливает и разнообразие речевых расстройств. При нарушении иннервации речевого аппарата возникает дизартрия - нарушение артикуляции, которая может быть обусловлена центральным или периферическим параличом речедвигательного аппарата, поражением мозжечка, стриопаллидарной системы.

Различают также дислалию - фонетически неправильное произношение отдельных звуков. Дислалия может носить функциональный характер и при логопедических занятиях довольно успешно устраняется. Под алалией понимают задержку речевого развития. Обычно к VA годам ребенок начинает говорить, но иногда это происходит значительно позже, хотя ребенок хорошо понимает обращенную к нему речь. Задержка речевого развития влияет и на психическое развитие, поскольку речь - важнейшее средство информации для ребенка. Однако встречаются и случаи алалии, связанные со слабоумием. Ребенок отстает в психическом развитии, и поэтому у него не формируется речь. Эти различные случаи алалии необходимо дифференцировать, так как они имеют разный прогноз.

С развитием речевой функции в доминантном полушарии (у правшей-в левом, у левшей - в правом) формируются гностические и практические речевые центры, а впоследствии - центры письма и чтения.

Корковые речевые расстройства представляют собой варианты агнозий и апраксий. Различают экспрессивную (моторную) и импрессивную (сенсорную) речь. Корковое нарушение моторной речи является речевой апраксией, сенсорной речи - речевой агнозией. В некоторых случаях нарушается вспоминание нужных слов, т. е. страдают механизмы памяти. Речевые агнозии и апраксий называются афазиями.

Следует помнить, что нарушения речи могут быть следствием общей апраксий (апраксия туловища, конечностей) или оральной апраксий, при которой больной теряет навык открывать рот, надувать щеки, высовывать язык. Эти случаи не относятся к афазиям; речевая апраксия здесь возникает вторично как проявление общих праксических расстройств.

Речевые расстройства в детском возрасте в зависимости от причин их возникновения можно разделить на следующие группы:

I. Речевые нарушения, связанные с органическим поражением центральной нервной системы. В зависимости от уровня поражения речевой системы они делятся на:

1) афазии-распад всех компонентов речи в результате поражения корковых речевых зон;

2) алалии - системное недоразвитие речи вследствие поражений корковых речевых зон в доречевом периоде;

3) дизартрии - нарушение звукопроизносительной стороны речи в результате нарушения иннервации речевой мускулатуры.

В зависимости от локализации поражения выделяют несколько форм дизартрии.

II. Речевые нарушения, связанные с функциональными изменениями

центральной нервной системы:

1) заикание;

2) мутизм и сурдомутизм.

III. Речевые нарушения, связанные с дефектами строения артикуляционного аппарата (механические дислалии, ринолалия).

IV. Задержки речевого развития различного генеза (при недоношенности, соматической ослабленности, педагогической запущенности и т. д.).

Сенсорная афазия (афазия Вернике), или словесная «глухота», возникает при поражении левой височной области (средние и задние отделы верхней височной извилины). А. Р. Лурия выделяет две формы сенсорной афазии: акустико-гностическую и акустико-мнестическую.

Основу дефекта при акустико-гностической форме составляет нарушение слухового гнозиса. Больной не дифференцирует на слух сходные по звучанию фонемы при отсутствии глухоты (рассматривается фонематический анализ), в результате чего искажается и нарушается понимание смысла отдельных слов и предложений. Выраженность этих нарушений может быть различной. В наиболее тяжелых случаях обращенная речь вообще не воспринимается и кажется речью на иностранном языке. Эта форма возникает при поражении задней части верхней височной извилины левого полушария - поле 22 Бродмана.