11 класс

Основные формулы по физике - колебания и волны. Логарифмический декремент затухания

Сила Кориолиса равна:

где - точечнаямасса ,-вектор угловой скорости вращающейся системы отсчёта,- вектор скорости движения точечной массы в этой системе отсчёта, квадратными скобками обозначена операциявекторного произведения .

Величина называется кориолисовым ускорением.

По физической природе

    Механические (звук ,вибрация )

    Электромагнитные (свет ,радиоволны , тепловые)

    Смешанного типа - комбинации вышеперечисленных

По характеру взаимодействия с окружающей средой

    Вынужденные - колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явлениерезонанса : резкое возрастание амплитуды колебаний при совпадениисобственной частоты осциллятора и частоты внешнего воздействия.

    Свободные (или собственные) - это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания всегдазатухающие ). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.

    Автоколебания - колебания, при которых система имеет запаспотенциальной энергии , расходующейся на совершение колебаний (пример такой системы -механические часы ). Характерным отличием автоколебаний от вынужденных колебаний является то, что их амплитуда определяется свойствами самой системы, а не начальными условиями.

    Параметрические - колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия.

    Случайные - колебания, при которых внешняя или параметрическая нагрузка является случайным процессом.

Гармонические колебания

где х А ω

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное

Скорость и ускорение при гармонических колебаниях.

Согласно определению скорости, скорость – это производная от координаты по времени

Таким образом, мы видим, что скорость при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания скорости опережают колебания смещения по фазе на p/2.

Величина - максимальная скорость колебательного движения (амплитуда колебаний скорости).

Следовательно, для скорости при гармоническом колебании имеем: ,

а для случая нулевой начальной фазы (см. график).

Согласно определению ускорения, ускорение – это производная от скорости по времени:

-

вторая производная от координаты по времени. Тогда: .

Ускорение при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания ускорения опережают колебания скорости на p/2 и колебания смещения наp(говорят, что колебания происходятв противофазе) .

Величина

Максимальное ускорение (амплитуда колебаний ускорения). Следовательно, для ускорения имеем: ,

а для случая нулевой начальной фазы: (см. график).

Из анализа процесса колебательного движения, графиков и соответствующих математических выражений видно, что при прохождении колеблющимся телом положения равновесия (смещение равно нулю) ускорение равно нулю, а скорость тела максимальна (тело проходит положение равновесия по инерции), а при достижении амплитудного значения смещения – скорость равна нулю, а ускорение максимально по модулю (тело меняет направление своего движения).

Гармонические колебания - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t;А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия;ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд;- полная фаза колебаний,- начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой)

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

До сих пор мы рассматривали собственные колебания, т. е. колебания, происходящие в отсутствие внешних воздействий. Внешнее воздействие было нужно лишь для того, чтобы вывести систему из состояния равновесия, после чего она предоставлялась самой себе. Дифференциальное уравнение собственных колебаний вообще не содержит следов внешнего воздействия на систему: это воздействие отражается лишь в начальных условиях.

Установление колебаний. Но очень часто приходится сталкиваться с колебаниями, которые происходят при постоянно присутствующем внешнем воздействии. Особенно важен и в то же время достаточно прост для изучения случай, когда внешняя сила имеет периодический характер. Общей чертой вынужденных колебаний, происходящих под действием периодической внешней силы, является то, что спустя некоторое время после начала действия внешней силы система полностью «забывает» свое начальное состояние, колебания приобретают стационарный характер и не зависят от начальных условий. Начальные условия проявляются только в период установления колебаний, который обычно называют переходным процессом.

Синусоидальное воздействие. Рассмотрим вначале наиболее простой случай вынужденных колебаний осциллятора под действием внешней силы, изменяющейся по синусоидальному закону:

Рис. 178. Возбуждение вынужденных колебаний маятника

Такое внешнее воздействие на систему можно осуществить различными способами. Например, можно взять маятник в виде шарика на длинном стержне и длинную пружину с малой жесткостью и прикрепить ее к стержню маятника недалеко от точки подвеса, как показано на рис. 178. Другой конец горизонтально расположенной пружины следует заставить двигаться по закону ? с помощью кривошипно-шатунного механизма, приводимого в движение электромотором. Действующая

на маятник со стороны пружины вынуждающая сила будет практически синусоидальна, если размах движения левого конца пружины В будет много больше амплитуды колебаний стержня маятника в точке закрепления пружины С.

Уравнение движения. Уравнение движения для этой и других подобных систем, в которых наряду с возвращающей силой и силой сопротивления на осциллятор действует вынуждающая внешняя сила, синусоидально изменяющаяся со временем, можно записать в виде

Здесь левая часть в соответствии со вторым законом Ньютона, является произведением массы на ускорение. Первый член в правой части представляет собой возвращающую силу, пропорциональную смещению из положения равновесия. Для подвешенного на пружине груза это упругая сила, а во всех других случаях, когда ее физическая природа иная, эту силу называют квазиупругой. Второе слагаемое есть сила трения, пропорциональная скорости, например сила сопротивления воздуха или сила трения в оси. Амплитуду и частоту со раскачивающей систему вынуждающей силы будем считать постоянными.

Разделим обе части уравнения (2) на массу и введем обозначения

Теперь уравнение (2) принимает вид

В отсутствие вынуждающей силы правая часть уравнения (4) обращается в нуль и оно, как и следовало ожидать, сводится к уравнению собственных затухающих колебаний.

Опыт показывает, что во всех системах под действием синусоидальной внешней силы в конце концов устанавливаются колебания, которые также происходят по синусоидальному закону с частотой вынуждающей силы со и с постоянной амплитудой а, но с некоторым сдвигом по фазе относительно вынуждающей силы. Такие колебания называются установившимися вынужденными колебаниями.

Установившиеся колебания. Рассмотрим вначале именно установившиеся вынужденные колебания, причем для простоты пренебрежем трением. В этом случае в уравнении (4) не будет члена, содержащего скорость:

Попробуем искать решение соответствующее установившимся вынужденным колебаниям, в виде

Вычислим вторую производную и подставим ее вместе с в уравнение (5):

Чтобы это равенство было справедливо в любой момент времени, коэффициенты при слева и справа должны быть одинаковы. Из этого условия находим амплитуду колебаний а:

Исследуем зависимость амплитуды а от частоты вынуждающей силы. График этой зависимости показан на рис. 179. При формула (8) дает Подставив сюда значения видим, что постоянная во времени сила просто смещает осциллятор в новое положение равновесия, сдвинутое от старого на Из (6) следует, что при смещение

как, очевидно, и должно быть.

Рис. 179. График зависимости

Фазовые соотношения. По мере роста частоты вынуждающей силы от 0 до установившиеся колебания происходят в фазе с вынуждающей силой а их амплитуда постоянно увеличивается, сначала медленно, а по мере приближения со к - все быстрее и быстрее: при амплитуда колебаний неограниченно возрастает

При значениях со, превосходящих частоту собственных колебаний формула (8) дает для а отрицательное значение (рис. 179). Из формулы (6) ясно, что при колебания происходят в противофазе с вынуждающей силой: когда сила действует в одну сторону, осциллятор смещен в противоположную. При неограниченном увеличении частоты вынуждающей силы амплитуда колебаний стремится к нулю.

Амплитуду колебаний во всех случаях удобно считать положительной, чего легко добиться, вводя сдвиг фаз между вынуждающей

силой и смещением:

Здесь а по-прежнему дается формулой (8), а сдвиг фазы равен нулю при и равен при Графики зависимости от частоты вынуждающей силы показаны на рис. 180.

Рис. 180. Амплитуда и фаза вынужденных колебаний

Резонанс. Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы имеет немонотонный характер. Резкое увеличение амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте осциллятора называется резонансом.

Формула (8) дает выражение для амплитуды вынужденных колебаний в пренебрежении трением. Именно с этим пренебрежением связано обращение амплитуды колебаний в бесконечность при точном совпадении частот Реально амплитуда колебаний в бесконечность, конечно же, обращаться не может.

Это означает, что при описании вынужденных колебаний вблизи резонанса учет трения принципиально необходим. При учете трения амплитуда вынужденных колебаний при резонансе получается конечной. Она будет тем меньше, чем больше трение в системе. Вдали от резонанса формулой (8) можно пользоваться для нахождения амплитуды колебаний и при наличии трения, если оно не слишком сильное, т. е. Более того, эта формула, полученная без учета трения, имеет физический смысл только тогда, когда трение все же есть. Дело в том, что само понятие установившихся вынужденных колебаний применимо только к системам, в которых есть трение.

Если бы трения совсем не было, то процесс установления колебаний продолжался бы бесконечно долго. Реально это означает, что полученное без учета трения выражение (8) для амплитуды вынужденных колебаний будет правильно описывать колебания в системе только спустя достаточно большой промежуток времени после начала действия вынуждающей силы. Слова «достаточно большой промежуток времени» означают здесь, что уже закончился переходный процесс, длительность которого совпадает с характерным временем затухания собственных колебаний в системе.

При малом трении установившиеся вынужденные колебания происходят в фазе с вынуждающей силой при и в противофазе при как и в отсутствие трения. Однако вблизи резонанса фаза меняется не скачком, а непрерывно, причем при точном совпадении частот смещение отстает по фазе от вынуждающей силы на (на четверть периода). Скорость изменяется при этом в фазе с вынуждающей силой, что обеспечивает наиболее благоприятные условия для передачи энергии от источника внешней вынуждающей силы к осциллятору.

Какой физический смысл имеет каждый из членов в уравнении (4), описывающем вынужденные колебания осциллятора?

Что такое установившиеся вынужденные колебания?

При каких условиях можно использовать формулу (8) для амплитуды установившихся вынужденных колебаний, полученную без учета трения?

Что такое резонанс? Приведите известные вам примеры проявления и использования явления резонанса.

Опишите сдвиг по фазе между вынуждающей силой и смещением при разных соотношениях между частотой со в вынуждающей силы и собственной частотой осциллятора.

Чем определяется длительность процесса установления вынужденных колебаний? Дайте обоснование ответа.

Векторные диаграммы. Убедиться в справедливости приведенных выше утверждений можно, если получить решение уравнения (4), описывающее установившиеся вынужденные колебания при наличии трения. Поскольку установившиеся колебания происходят с частотой вынуждающей силы со и некоторым сдвигом по фазе то решение уравнения (4), соответствующее таким колебаниям, следует искать в виде

При этом скорость и ускорение, очевидно, тоже будут изменяться со временем по гармоническому закону:

Амплитуду а установившихся вынужденных колебаний и сдвиг фазы удобно определять с помощью векторных диаграмм. Воспользуемся тем обстоятельством, что мгновенное значение любой изменяющейся по гармоническому закону величины можно представить как проекцию вектора на некоторое заранее выбранное направление, причем сам вектор равномерно вращается в плоскости с частотой со, а его неизменная длина равна

амплитудному значению этой осциллирующей величины. В соответствии с этим сопоставим каждому члену уравнения (4) вращающийся с угловой скоростью вектор, длина которого равна амплитудному значению этого члена.

Поскольку проекция суммы нескольких векторов равна сумме проекций этих векторов, то уравнение (4) означает, что сумма векторов, сопоставляемых членам, стоящим в левой части, равна вектору, сопоставляемому величине стоящей в правой части. Чтобы построить эти векторы, выпишем мгновенные значения всех членов левой части уравнения (4), учитывая соотношения

Из формул (13) видно, что вектор длины сопоставляемый величине опережает на угол вектор сопоставляемый величине Вектор длины сопоставляемый члену х, опережает на вектор длины т. е. эти векторы направлены в противоположные стороны.

Взаимное расположение этих векторов для произвольного момента времени показано на рис. 181. Вся система векторов вращается как целое с угловой скоростью со против часовой стрелки вокруг точки О.

Рис. 181. Векторная диаграмма вынужденных колебаний

Рис. 182. Вектор сопоставляемый внешней силе

Мгновенные значения всех величин получаются проецированием соответствующих векторов на заранее выбранное направление Вектор, сопоставляемый правой части уравнения (4), равен сумме векторов, изображенных на рис. 181. Это сложение показано на рис. 182. Применяя теорему Пифагора, получаем

откуда находим амплитуду установившихся вынужденных колебаний а:

Сдвиг фазы между вынуждающей силой и смещением как видно из векторной диаграммы на рис. 182, отрицателен, так как вектор длины отстает от вектора Поэтому

Итак, установившиеся вынужденные колебания происходят по гармоническому закону (10), где а и определяются формулами (14) и (15).

Рис. 183. Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы

Резонансные кривые. Амплитуда установившихся вынужденных колебаний пропорциональна амплитуде вынуждающей силы Исследуем зависимость амплитуды колебаний от частоты вынуждающей силы. При малом затухании у эта зависимость имеет очень резкий характер. Если то при стремлении со к частоте свободных колебаний амплитуда вынужденных колебаний а стремится к бесконечности, что совпадает с полученным ранее результатом (8). При наличии затухания амплитуда колебаний в резонансе уже не обращается в бесконечность, хотя и значительно превышает амплитуду колебаний под действием внешней силы той же величины, но имеющей частоту, далекую от резонансной. Резонансные кривые при разных значениях постоянной затухания у приведены на рис. 183. Для нахождения частоты резонанса сорез, нужно найти, при каком со подкоренное выражение в формуле (14) имеет минимум. Приравнивая производную этого выражения по со нулю (или дополняя его до полного квадрата), убеждаемся, что максимум амплитуды вынужденных колебаний имеет место при

Резонансная частота оказывается меньше частоты свободных колебаний системы. При малых 7 резонансная частота практически совпадает с При стремлении частоты вынуждающей силы к бесконечности, т. е. при амплитуда а, как видно из (14), стремится к нулю. При т. е. при действии постоянной внешней силы, амплитуда Если подставить сюда и получим Это есть статическое смещение осциллятора из положения равновесия под действием постоянной силы и смещение осциллятора происходит в противофазе с вынуждающей силой. В резонансе, как видно из (15), смещение отстает по фазе от внешней силы на Вторая из формул (13) показывает, что при этом внешняя сила изменяется в фазе со скоростью т. е. все время действует в направлении движения. Что именно так и должно быть, ясно из интуитивных соображений.

Резонанс скорости. Из формулы (13) видно, что амплитуда колебаний скорости при установившихся вынужденных колебаниях равна . С помощью (14) получаем

Рис. 184. Амплитуда скорости при установившихся вынужденных колебаниях

Зависимость амплитуды скорости от частоты внешней силы показана на рис. 184. Резонансная кривая для скорости хотя и похожа на резонансную кривую для смещения, но отличается от нее в некоторых отношениях. Так, при т. е. при действии постоянной силы, осциллятор испытывает статическое смещение из положения равновесия и скорость его после того, как закончится переходный процесс, равна нулю. Из формулы (19) видно, что амплитуда скорости при обращается в нуль. Резонанс скорости имеет место при точном совпадении частоты внешней силы с частотой свободных колебаний

Как строятся векторные диаграммы для установившихся вынужденных колебаний при синусоидальном внешнем воздействии?

Чем определяется частота, амплитуда и фаза установившихся вынужденных гармонических колебаний?

Опишите различия резонансных кривых для амплитуды смещения и амплитуды скорости. Какими характеристиками колебательной системы определяется острота резонансных кривых?

Как связан характер резонансной кривой с параметрами системы, определяющими затухание ее собственных колебаний?