9 класс

Число успехов в испытаниях бернулли. Повторные независимые испытания. Локальная теорема Лапласа

времени используют электрическую энергию. Чтобы получить грубое представление об ожидаемой нагрузке представим себе, что в любой момент времени каждому рабочему с одной и той же вероятностью p может потребоваться единица энергии. Если они работают независимо, то вероятность того, что энергия потребуется одновременноk рабочим, будет равнаb (k ;n ,p ). Здесь «испытанием» является проверка факта использования энергии в данный момент j -м рабочим (j = 1,2,...,n ), а «успехом» является положительный результат проверки. Так, если один рабочий потребляет энергию в среднем 12 минут в течение часа40 , следует положитьp = 1260= 0,2. В этом случае вероятность того, что не менее 7 из 10 рабочих

Другими словами, если снабжение рассчитано на 6 единиц энергии, то вероятность перегрузки равна 0.000864. Это означает, что одна перегрузка приходится в среднем на 10.000864≈ 1157 минут, т.е. примерно на 12 часов рабочего времени. Поэтому, если перегрузки наблюдаются чаще, то это должно явиться сигналом для усиленного контроля над производственным циклом.

Следующий пример имеет несколько иной характер. При бросании двух правильных игральных костей, вероятность появления 12 очков равна,

очевидно, 1 6 2 ≈ 0,0278 , т.е. в среднем одно появление за 36 бросаний. Если в

казино за игорным столом в процессе игры эта пропорция существенно нарушается, то это означает либо тот факт, что кости дефектны, и их надо заменить, либо что игра идет нечестно. В любом случае, возникает основание для более тщательного наблюдения за игрой на данном игорном столе.

6.2. Обобщенная схема Бернулли

Предположим, как и выше, что проводится серия из n независимых

40 Эта величина может определяться, например, производственным циклом или технологией производства.

между собой испытаний. Однако в отличие от предыдущего, мы предположим, что результатом каждого испытания может быть одно и только одно из k попарно несовместимых событийA 1 ,A 2 , ...,A k , причем вероятности появления каждого из этих событий в каждом отдельном испытании постоянны и равны соответственно

p 1 ,p 2 , ...,p k ;p j > 0;p 1 + p 2 + ...+ p k = 1.

Найдем вероятность того, что в результате n испытаний событиеA 1 появится

m 1 +m 2 +... +m k =n .

Прежде всего, отметим, что рассужденияпредыдущего пункта приводят нас к выводу о том, что вероятность каждой допустимой комбинации будет

pm 1

pm 2

P m k . С другой стороны, число допустимых комбинаций равно

способов, которыми можно n элементов разбить

k групп

m 1 ,m 2 ,...,m k

элементов соответственно. Это число, согласно

теореме 5.5,

m ! m!... m!

образом, искомая вероятность того, что

результате

независимых испытаний событие A 1 появится ровноm 1 раз, событиеA 2 – ровноm 2 раза и т.д., событиеA k появится ровноm k раз, будет равна

Pn (m1 , m2

p j> 0;

m j≥ 0;

M )=

pm 1

pm 2

P m k ;

m ! m!... m!

p 1 +p 2 +... +p k

m 1 +m 2 +... +m k =n .

p 1 = 0,4,p 2 = 0,35,p 3 = 0,25 . Какова вероятность того, что в матче из 12 партий у данного шахматиста будет 5 побед, 4 поражения и 3 ничьи?

Решение. Мы в точности находимся в ситуации обобщенной схемы Бернулли с n = 12. Подставляя значения из данных задачи в формулу (6.2),

получим: P 12 (5, 4, 3)= 5!4!3! 12! (0.4)5 (0.35)4 (0.25)3 ≈ 0.067 .

6.3. Некоторые следствия

Возвратимся к классической схеме Бернулли разд. 6.1 и поставим следующую задачу. Пусть целые числа a ,b таковы, что 0≤ a < b ≤ n . Чему равна вероятность того, что в результатеn независимых испытаний Бернулли число «успехов» будет заключено между числамиa иb ? Ответ на этот вопрос дается легко, поскольку допустимые комбинации для различных чисел «успехов» несовместимы. Соответствующая вероятность, очевидно, равна

P n (a , b ) = ∑ C n kp kq n− k=

C n ap aq n− a+ C n a+ 1 p a+ 1 q n− a− 1 + C n a+ 2 p a+ 2 q n− a− 2 + ... + C n bp bq n− b.

Замечание . Для обозначения вероятности числа успехов вn испытаниях Бернулли используются различные обозначения, в зависимости от контекста рассматриваемых задач. Так, черезP n (k < m ) часто обозначается вероятность того,чтоврезультатеn испытанийчислоk успеховбудетменьше ,чемm ;черезP n (m 1 ≤ k < m 2 ) обозначается вероятность того, в результатеn испытаний числоk успехов будетбольше либо равно m 1 , номеньше m 2 ; вместо обозначенияP n (a ,b ) может использоваться обозначениеP n (a ≤ k ≤ b ) и т.п. Как правило, проблем с однозначным пониманием смысла подобных обозначений в контексте той или иной конкретной задачи не возникает.

Наиболее вероятное число успехов. Вычислим теперь значение числа m= m0 , при котором функция b(m; n, p) достигает своего наибольшего значения. В этом случае число m0 называют наиболее вероятным числом

успехов (в n испытаниях).

Напомним, что функция b (m ;n ,p ) определяется как вероятностьm «успехов» вn испытаниях Бернулли с вероятность «успеха»p , и вычисляется

по формуле (6.1).

Рассмотрим величину

b (m ;n ,p )

(n− m+ 1) p

(n+ 1) p− m

b (m − 1;n ,p )

где учтено, что q = 1− p . Отсюда видно, что функцияb (m ;n ,p ) возрастает поm приm < (n + 1)p и убывает приm > (n + 1)p . Имея в виду, чтоm 0 должно быть неотрицательным целым числом, получаем, что наиболее вероятное число «успехов»m 0 есть (единственное) неотрицательное целое число, удовлетворяющее неравенству

(n + 1)p − 1< m 0 ≤ (n + 1)p .

Рассмотрим теперь несколько примеров .

1. Задача де Мере . Сколько раз нужно бросить пару игральных костей, чтобысвероятностьюболее½ ожидатьсуммуочков,равную12,хотябыодин раз?

Решение. Вероятность p «успеха», т. е. выпадения 12 очков, при каждом бросании одинакова и равнаp = 1 36 . Пустьn – искомое число бросаний,k – число «успехов». ТогдаP n (k ≥ 1)= 1− P n (k = 0) . Но

P n (k = 0)= C n 0 p 0 (1− p )n = (35 36 ) n ≈ (0.972)n .

Таким образом, требуемое значение n находится из неравенства

(0.972)n ≤ 0.5 .

Решая это неравенство, получаем: n ≥ 25.

2. Трое стрелков при стрельбе по мишени попадают в нее при одном выстреле с вероятностями 0.2, 0.3 и 0.4 соответственно. Кому из троих стрелять по мишени, определяют с помощью шести подбрасываний монеты,

причем если гербов выпадет больше, чем решек, то стреляет первый стрелок, если гербов выпадет меньше, чем решек, то стреляет второй стрелок, в противном случае – третий стрелок. Стреляющий производит 3 выстрела. Определить вероятность того, что две пули попадут в цель.

Решение. Пусть А – событие, состоящее в том, что в мишень попадут две пули. Обозначим черезB 1 ,B 2 ,B 3 – события, состоящие в том, что стреляет первый, второй и третий стрелок соответственно. Так как событияB 1 ,B 2 ,B 3 образуют полную группу событий, то по формуле полной вероятности (2.6) имеем:

P (A )= P (A /B 1 )P (B 1 )+ P (A /B 2 )P (B 2 )+ P (A /B 3 )P (B 3 ) .

Вычислим по отдельности вероятности, входящие в формулу (6.5). Начнем с вероятностей P (B j ) . Поскольку предоставление права стрельбы тому или иному стрелку зависит от результатов последовательности независимых испытаний – шести подбрасываний монеты, то соответствующие вероятности должны вычисляться в соответствии со схемой Бернулли. Именно, пусть «успех» – это выпадение герба; тогда в соответствии с условиями задачи:

P (B 1 )= P 6 (k ≥ 4)= C 6 4 (0.5)6 + C 6 5 (0.5)6 + C 6 6 (0.5)6 = 11 32 ;P (B 2 )= P 6 (k ≤ 2)= C 6 0 (0.5)6 + C 6 1 (0.5)6 + C 6 2 (0.5)6 = 11 32 ;P (B 3 )= P 6 (k = 3)= C 6 3 (0.5)6 = 5 16 .

P (A /B )= b (2; 3, 0,2)

(0,2)2 0,8= 0,096;

P (A /B )= b (2; 3, 0,3)

(0,3)2 0,7= 0,189 ;

P (A /B )= b (2; 3, 0,4)= C 2

(0,4)2 0,6= 0,288.

По формуле полной вероятности (6.5) получаем окончательно

P (A )= 0,188 .

3. Каждый из n = 50

приглашенных приходит на собрание с

Ранее в п. 1.4 введены понятия зависимых и независимых событий. С понятием независимых событий связано и имеет широкое применение понятие независимых опытов или испытаний.

Опыты α 1 , α 2 , … , α n называются независимыми, если любая комбинация их исходов является совокупностью независимых событий. Иначе, если в задаче проводится ряд многократно повторяющихся испытаний α 1 , α 2 , …, α n при неизменном комплексе условий и в каждом испытании некоторые событие А может наступить с некоторой вероятностью p = p (А ) не зависящей от других испытаний, и не наступить с вероятностью p (Ā ), то указанные испытания называются независимыми. Данная схема независимых испытаний носит название схемы Бернулли.

Схема названа в честь Якоба Бернулли – родоначальника семьи выдающихся швейцарских учёных. (Якоб Б., Иоганн Б., Николай Б., Даниил Б. и др.). Якоб Бернулли доказал так называемую теорему Бернулли – важный частный случай закона больших чисел (см. п. 3.11). Указанная теорема относится к рассматриваемой здесь последовательности независимых испытаний.

Примерами независимых испытаний являются: а) многократное (n раз) подбрасывание монеты; б) извлечение (n раз) одинаковых на ощупь шаров из урны с их последующим возвращением; в) любая совокупность независимых испытаний (опытов), в каждом из которых вероятность успешных исходов одинакова, например, серия выстрелов по мишени, выбор n деталей из их совокупности, изучение n анализов горной породы определённого свойства и т.д.

В схеме Бернулли наступление события А с вероятностью p = p (А ) условно называется успехом, а его ненаступление (противоположное событие Ā ) –неудачей. Вероятность неудачи в каждом опыте такого типа равна q = 1 – p .

На практике обычно возникают задачи со сложными событиями, в которых из n опытов, составляющих схему Бернулли, в m опытах (m < n ) событие А наступает (т.е завершается успехом), а в (n m ) опытах это событие не наступает (завершается неудачей). Пусть P n (k ) – обозначает вероятность того, что при производстве n опытов успех наступает в k опытах (успех реализуется k раз). Ставится следующая задача: пусть в n испыта-ниях, соответствующих схеме Бернулли, k испытаний завершились успехом. Требуется найти вероятность P n (k ) (читается: « P из n испытаний k успешных» ). Данная вероятность рассчитывается по формуле Бернулли, которой соответствует одноименная теорема.

Теорема Бернулли. Если вероятность p наступления события А в каждом из последовательности n испытаний α 1 , α 2 , … , α n постоянна, то вероятность того, что событие А наступит k раз и не наступит n k раз, вычисляется по формуле Бернулли:

P n (k ) = С n k p k q n-k , (2.1)

где q = 1- p .

Доказательство. Действительно, пусть события A į и Ā į – появление и непоявление соответственно события А в į -ом испытании α i (i = 1, 2, … , n ). Пусть также В k обозначает событие, состоящее в том, что в n независимых испытаниях событие А появилось k раз. При n = 3 и k = 2 событие В 2 выражается через элементарные события А į (į = 1, 2, 3) по формуле:

В 2 = А 1 А 2 Ā 3 + А 1 Ā 2 А 3 + Ā 1 А 2 А 3 .

В общем виде последняя формула будет такой

т.е каждый член суммы (2.2) соответствует появлению события А k раз и (n k ) раз непоявлений. Число всех комбинаций (слагаемых) в (2.2) равно числу способов выбора из n испытаний k испытаний, в которых событие А произошло, т.е числу сочетаний C n k . Вероятность каждой такой комбинации по теореме умножения вероятностей независимых событий равна p k × q n k , так как p (А į) = p , p (Ā į) = q , i = 1,2,…,n . Но комбинации в (2.2) являются несовместными событиями. Поэтому по теореме сложения вероятностей получим

Таким образом, имеет место формула Бернулли

P n (k) = C n k p k q n-k .

Что и требовалось доказать.

Замечание 1. Сформулированная выше теорема относится к случаю, когда в каждом испытании вероятность появления события А постоянна. Тогда для расчета вероятности P n (k ) справедлива формула Бернулли (2.1). Если же вероятности наступления события А в испытаниях α 1 , α 2 , … , α n разные, т.е. вероятности составляют значения p 1 , p 2 , … , p n , то тогда вместо (2.1) справедлива формула:

Замечание 6. Вероятность того, что в n опытах, проводящихся по схеме Бернулли, успех наступит от k 1 до k 2 раз , вычисляется по формулеP n (k )) для конкретных значений n и p . Так как аргумент k принимает лишь целые значения, график представляется в виде точек на плоскости (k , P n (k )). Для наглядности точки соединяются ломаной линией, и такой график называется полигоном распределения (рис.2.1). При p = 0,5, n = 6, как показано на рисунке 2.1, полигон симметричен относительно прямой x = np (если p близко к 0,5, то полигон близок к симметричному). При малых p полигон существенно асимметричен, и наивероятнейшими явля-ются частоты, близкие к нулю. На рисунке 2.2 изображен полигон распределения для p = 0,2 при числе испытаний n = 6. При больших p , близких к 1, наиболее вероятны максимальные значения. На рис. 2.3 показан полигон распределения, для p = 0,8 и n = 6.

Рис. 2.3.

Повторные независимые испытания называются испытаниями Бернулли, если каждое испытание имеет только два возможных исхода и вероятности исходов остаются неизменными для всех испытаний.

Обозначим эти вероятности как p и q . Исход с вероятностью p будем называть “успехом”, а исход с вероятностью q – “неудачей”.

Очевидно, что

Пространство элементарных событий для каждого испытания состоит из двух точек. Пространство элементарных событий для n испытаний Бернулли содержит точек, каждая из которых представляет один возможный исход составного опыта. Поскольку испытания независимы, то вероятность последовательности событий равна произведению вероятностей соответствующих исходов. Например, вероятность последовательности событий

{У, У, Н, У, Н, Н, Н}

равна произведению

Примеры испытаний Бернулли.

1. Последовательные бросания “правильной” монеты. В этом случае p = q = 1/2 .

При бросании несимметричной монеты соответствующие вероятности изменят свои значения.

2. Каждый результат опыта можно рассматривать как A или .

3. Если существует несколько возможных исходов, то из них можно выделить группу исходов, которые рассматриваются как “успех”, называя все прочие исходы “неудачей”.

Например, при последовательных бросаниях игральной кости под “успехом” можно понимать выпадение 5, а под “неудачей” – выпадение любого другого числа очков. В этом случае p = 1/6, q = 5/6.

Если же под “успехом” понимать выпадение четного, а под “неудачей” – нечетного числа очков, то p = q = 1/2 .

4. Повторные случайные извлечения шара из урны, содержащей при каждом испытании a белых и b черных шаров. Если под успехом понимать извлечение белого шара, то , .

Феллер приводит следующий пример практического применения схемы испытаний Бернулли. Шайбы, изготовляемые при массовом производстве, могут отличаться по толщине, но при проверке они классифицируются на годные и дефектные – в зависимости от того, находится ли толщина в предписанных границах. И хотя продукция по многим причинам не может вполне соответствовать схеме Бернулли, эта схема задает идеальный стандарт для промышленного контроля качества продукции, несмотря даже на то, что этот стандарт никогда не достигается вполне точно. Машины подвержены изменениям, и поэтому вероятности не остаются одними и теми же; в режиме работы машин имеется некоторое постоянство, в результате чего длинные серии одинаковых отклонений оказываются более вероятными, чем это было бы при действительной независимости испытаний. Однако с точки зрения контроля качества продукции желательно, чтобы процесс соответствовал схеме Бернулли, и важно то, что в некоторых пределах этого можно добиться. Целью текущего контроля является обнаружение уже на ранней стадии существенных отступлений от идеальной схемы и использование их как указаний на угрожающее нарушение правильности работы машины.

Практические задачи, связанные с оценкой вероятности наступления события в результате нескольких равноценных попыток могут анализироваться с применением формулы Бернулли или (при большом количестве таких попыток) с применением приближенной формулы Пуассона. Для работы с этим материалом Вам снова потребуется знание ..

Схема Бернулли состоит в следующем: производится последовательность испытаний, в каждом из которых вероятность наступления определенного события А одна и та же и равна р. Испытания предполагаются независимыми (т.е. считается, что вероятность появления события А в каждом из испытаний не зависит от того, появилось или не появилось это событие в других испытаниях). Наступление события А обычно называют успехом, а ненаступление - неудачей. Обозначим вероятность неудачи q=1-P(A)=(1-p). Вероятность того, что в n независимых испытаниях успех наступит ровно m раз, выражается формулой Бернулли :

Вероятность Р n (m) при данном n сначала увеличивается при увеличении m от 0 до некоторого значения m 0 , а затем уменьшается при изменении m от m 0 до n.

Поэтому m 0 , называют наивероятнейшим числом наступлений успеха в опытах. Это число m 0 , заключено между числами np-q и np+p (или, что то же самое, между числами n(p+1)-1 и n(p+1) ) .Если число np-q - целое число, то наивероятнейших чисел два: np-q и np+p.

Важное замечание. Если np-q< 0, то наивероятнейшее число выигрышей равно нулю.

Пример. Игральная кость бросается 4 раза. При каждом броске нас интересует событие А ={выпала шестерка}.

Решение: Здесь четыре испытания, и т.к. кубик симметричен, то

p=P(A)=1/6, q=1-p=5/6.

Вероятность того, что в 4 независимых испытаниях успех наступит ровно m раз (m < 4), выражается формулой Бернулли:


Посчитаем эти значения и запишем их в таблицу.

Самое вероятное число успехов в нашем случае m 0 =0.

Пример. Вероятность появления успеха равна 3/5. Найти наивероятнейшее число наступлений успеха, если число испытаний равно 19, 20.

Решение: при n =19 находим


Таким образом, максимальная вероятность достигается для двух значений m 0 , равных 11 и 12. Эта вероятность равна P 19 (11)=P 19 (12)=0,1797. При n=20 максимальная вероятность достигается только для одного значения m 0 , т.к.

Не является целым числом. Наивероятнейшее число наступлений успеха m 0 равно 12. Вероятность его появления равна P 20 (12)=0,1797. Совпадение чисел P 20 (12) и P 19 (12) вызвано лишь сочетанием значений n и p и не имеет общего характера.

На практике в случае, когда n велико, а p мало (обычно p < 0,1; npq < 10) вместо формулы Бернулли применяют приближенную формулу Пуассона


Пример 4. Радиоаппаратура состоит из 1000 элементов. Вероятность отказа одного элемента в течение года равна 0,002. Какова вероятность отказа двух элементов за год? Какова вероятность отказа не менее двух элементов за год?

Решение: будем рассматривать работу каждого элемента как отдельное испытание. Обозначим А ={отказ элемента за год}.

P(A)=p=0,002, l=np=1000*0,002=2


П о формуле Пуассона


Обозначим через P 1000 (> 2) вероятность отказа не менее двух элементов за год.
Переходя к противоположному событию, вычислим P 1000 (> 2) как.

(опять же согласно теореме 5.5) 48!(12!)4 способами. Следовательно, искомая вероятность равна

24 48!(13!) 4 = 2448!13 4 = 0,105... .

(12!)4 52! 52!

Любопытно, что при игре «в дурака» такая вероятность оказывается существенно меньше. Действительно, найдем вероятность того, что при раздачечетыремигрокампо6картизколодыв36карт,каждыйигрокполучит ровно по одному тузу. Поскольку раздается 24 карты из 36, то нам прежде всего надо знать число способов, которыми можно выбрать 24 карты из 36. Это число равно C 36 24 = 36!(24!12!) .

Далее, число способов, которыми можно разбить 24 карты на 4 группы по 6 карт согласно теореме 5.5 равно 24! (6!)4 . Таким образом, общее число способов, которыми можно раздать четырем игрокам по 6 карт из колоды в 36

карт, равно C 36 24 (6!) 24! 4 . Четыре туза могут быть распределены между четырьмя

игроками 4!= 24 способами. Число способов, которыми можно раздать четыремигрокампо5картизоставшихся32 карт, подсчитываетсяаналогично

предыдущему, и будет равно C 32 20 (5!) 20! 4 . Таким образом, искомая вероятность равна

24 C 20

32!12!64

(5!)4

≈ 0,022 .

(6!)4

§6. ИСПЫТАНИЯ БЕРНУЛЛИ. ФОРМУЛА ПУАССОНА

6.1. Схема независимых испытаний Бернулли

На практике часто встречается ситуация, хорошо иллюстрирующаяся

следующими примерами.

Некто несколько раз подряд бросает монету. Спрашивается, можно ли заранее оценить вероятность того, что в результате n бросаний герб выпадет ровноm раз? Или:n раз бросается игральная кость; требуется оценить вероятность того, что при этомm раз выпадет 5 или 6 очков.

Очевидно, что без дополнительных предположений относительно условий проведения эксперимента однозначно ответить на эти вопросы нельзя. Так, результат, несомненно, должен зависеть от того, является ли монета (или кость) правильной, т.е. однородной и симметричной. С другой стороны, возможно ли ответить на вопрос: сколько раз надо бросить монету (или кость), чтобы с достаточной степенью уверенности можно было утверждать, что данная монета (или кость) не является правильной ? Умение отвечать на такой вопрос весьма важно, например, для игорных заведений.

Естественно предположить, что если монета правильная, то вероятность появления герба при каждом бросании равна ½ . Аналогично, в случае правильной кости вероятность появления 5 или 6 очков при каждом бросании равна⅓ . Иными словами, если испытаний достаточно много, то герб при бросании монеты будет появляться примерно в половине исходов, а 5 или 6 очков на кости – в одной трети случаев.

Однако всеэти рассуждения основаны на интуиции. Мы жепостараемся в этом параграфе описать теоретическую модель, которая позволит нам вполне обоснованно ответить на все сформулированные выше вопросы. Модель, о которой пойдет речь ниже, впервые была предложена швейцарским математиком Якобом Бернулли (1654 1705), и получила его имя37 .

Схема независимых испытаний Бернулли. Будем производить последовательные испытания, в результате каждого из которых может

37 Основные результаты Я. Бернулли по теории вероятностей были опубликованы лишь после его смерти в 1713 г. Брат Я. Бернулли – Иоганн (1667-1748) и сын – Даниил (1700-1782) являлись членами Петербургской Императорской Академии Наук, и внесли большой вклад в развитие вариационного исчисления и теоретической механики.

наступить или не наступить некоторое событие А . Пусть при каждом отдельном испытании вероятность наступления событияА одна и та же и не зависит от наступления или ненаступления этого события при других испытаниях; обозначим эту вероятность черезp . Обычно говорят, чтоp – это вероятность «успеха»; соответственно величинаq = 1− p называется вероятностью «неудачи». Понятно, что эта терминология весьма условна.

Такая модель называется схемой (независимых) испытаний Бернулли.

Зададимся следующим вопросом: какова вероятность того, что при проведении n испытаний «успех» (т.е. появления событияА ) будет наблюдаться ровно вm случаях?38

Эта задача решается следующим образом. Представим себе все возможные комбинации из последовательных результатов наших испытаний. Так, например, в случае 3 испытаний возможны восемь таких комбинаций39 , а именно:

AAA; AAA; AAA; AAA;

AAA; AAA; AAA; AAA.

Выделим те комбинации, в которых событие А наступает ровноm раз (и, следовательно, не наступает ровноn ─ m раз); назовем для краткости такие комбинациидопустимыми . Определим вероятность появления каждой отдельной допустимой комбинации. Для этого заметим, что появление допустимой комбинации представляет собой произведениеn событий, а именно:m наступлений событияА при одних испытаниях иn ─ m его ненаступлений при других испытаниях. Вероятность наступления событияА при каждом отдельном испытании по условию равнаp ; вероятность его ненаступления равна, следовательно,q = 1− p . По условию наступления или ненаступления событияА при различных испытаниях представляют собой независимые события; следовательно, вероятность их произведения равна

38 Здесь естественно считать, что m = 0, 1, 2, …,n .

39 Здесь A означает событие, противоположное событиюА , т.е. «неудачу».

произведению их вероятностей, т. е. равна величине p m q n − m = p m (1− p )n − m . Заметимтеперь, чтособытие, состоящеевнаступлениисобытияА ровно

при m испытаниях, равносильно появлению хотя бы одной из допустимых комбинаций. Так как различные допустимые комбинации представляют собой несовместимые события, искомая вероятность появления событияА ровно вm испытаниях равна сумме вероятностей появления допустимых комбинаций. Поскольку вероятности появления допустимых комбинаций одинаковы, то вероятность их суммы равна величинеKp m q n − m , гдеK – число всех допустимых комбинаций. Это число равно, очевидно, числу различных способов, которыми можно выделитьm мест из общего числаn мест, иными

словами равно

числу сочетаний из n элементов поm , т.е. равно

C n m= C n n− m=

m!(n− m)!

Таким образом, вероятность появления ровно m «успехов» в последовательностиn независимых испытаний Бернулли равна

распределением Бернулли , определяется формулой (6.1) и дает значение вероятностиm «успехов» вn испытаниях Бернулли с вероятностью «успеха»p . При фиксированныхn иp она является функцией целочисленного неотрицательного аргументаm .

Испытания Бернулли – теоретическая схема, и только практика может показать, годна ли схема для описания данного физического опыта. Однако такая ситуация, как мы видели ранее, вполне естественна при построении вероятностных моделей. При всем этом во многих практических ситуациях использование схемы Бернулли оказывается вполне оправданным.

Приведем следующий поучительный пример . Американский ученый Уэлдон провел 26 306 серий испытаний по 12 бросаний одной и той же

игральной кости в каждой серии, вычисляя частоту появления события («успеха»), состоящего в выпадении на кости 5 или 6 очков. Результаты его опытов приведены в табл. 6.1.

Если кость считать правильной, то вероятность «успеха» должна быть равна ⅓ . Соответствующие теоретические значения функцииb (k ;12,13) даны во второй колонке. Эксперимент показал, однако, довольно существенное отличие от теоретических значений приp =⅓ , но хорошее согласование с теоретическими значениями функцииb (k ;12, 0.3377) дляp = 0.3377 . Этот результат естественно интерпретировать в том смысле, что игральная кость, использованная в эксперименте,не является правильной .

Это замечание имеет весьма важные практические приложения в вопросах, связанных с контролем за выполнением определенных нормативов (например, в производстве). В связи с этим рассмотрим следующий пример.

Таблица 6.1

Экспериментальная

Задача о снабжении энергией . Допустим, чтоn рабочих время от