9 класс

Инверсионный след высота образования. Концепция данного явления. Вовсе не дым от сгорающего топлива

Почему самолет оставляет след?

Иногда в небе видны длинные белые полосы, вроде очень узких облаков. Эти полосы сплетаются в причудливые узоры, устремляются вверх, а потом вдруг неожиданно обрываются. Каждый из нас знает, что это след самолёта, взвившегося высоко в небо. Отправившись, например, на такси в аэропорт , мы можем наблюдать, как взлетают и садятся множество самолётов, но почему же самолет, летящий низко, никакого следа за собой не оставляет, а самолет, взвившийся так высоко, что его совсем не видно, начинает оставлять следы?

След самолета - так называемый конденсационный след (инверсионный след) — видимый след из сконденсированного водяного пара, возникающий в атмосфере за движущимися летательными аппаратами при определённых состояниях атмосферы. Явление наблюдается наиболее часто в верхних слоях тропосферы, значительно реже — в тропопаузе и стратосфере. В отдельных случаях может наблюдаться и на небольших высотах.

Конденсационные следы относятся к отдельной группе облаков — техногенным, или искусственным облакам — Ci trac. (Cirrus tractus, cirrus — перистый, tractus — след).

Своё название след получил от процесса конденсации, который приводит к его появлению. Конденсация происходит только при таких условиях, когда количество водяного пара превышает то количество, которое необходимо для насыщения. Эти условия определяются точкой росы - температурой, при которой водяной пар, содержащийся в воздухе, достигает насыщения при данной удельной влажности и постоянном давлении. Степень насыщения характеризуется относительной влажностью - процентным отношением количества водяного пара, содержащегося в воздухе, к количеству, которое требуется для насыщения (при одной и той же температуре). Кроме этих условий, необходимо еще и наличие центров конденсации. При температуре до −30... −40 °C водяной пар при конденсации переходит в жидкую фазу, при температуре ниже −30... −40 °C водяной пар превращается сразу в ледяные кристаллы, минуя жидкую фазу. Также важную роль в формировании следа играет процесс испарения, приводящий к его исчезновению.

Существуют две основные причины возникновения условий для конденсации и появления следа: Первая — повышение влажности воздуха, когда к атмосферному водяному пару добавляется водяной пар, содержащийся в отработанных газах авиационного двигателя в результате сгорания топлива. Это повышает точку росы в ограниченном объеме воздуха (за двигателями). Если точка росы становится выше температуры окружающего воздуха, то по мере остывания отработанных газов избыточный водяной пар конденсируется. Количество водяного пара, выбрасываемого двигателем, зависит от его мощности и режима работы, то есть — от расхода топлива. Вторая причина — понижение давления и температуры воздуха над крылом и внутри вихрей, возникающих при обтекании различных частей самолета. Наиболее интенсивные вихри образуются на законцовках крыла и выпущенных закрылков, а также на концах лопастей воздушных винтов. Если при этом температура опускается ниже точки росы — избыток атмосферного водяного пара конденсируется в области над крылом и внутри вихрей. Степень понижения давления и температуры зависят от таких параметров, как масса летательного аппарата, коэффициент подъемной силы, величина индуктивного сопротивления и др. Часто наблюдаются следы, образованные в результате комбинации этих двух причин. Образованию конденсационного следа также способствуют центры конденсации в виде частиц не сгоревшего или не полностью сгоревшего (сажа) топлива. Наряду с конденсацией происходит и обратный процесс — испарение: частицы сконденсированного водяного пара испаряются, и след со временем исчезает. На скорость испарения влияют влажность окружающего след воздуха и агрегатное состояние частиц следа. Чем суше воздух, тем быстрее происходит испарение. Напротив — испарение не происходит в случае, когда водяной пар находится в состоянии насыщения. Сконденсированный водяной пар при температуре воздуха −30... −40 °C частично, а при температуре ниже −40 °C полностью превращается в кристаллы, испарение ледяных кристаллов происходит значительно медленнее, чем капель воды.

Таким образом, возможность появления и время существования конденсационного следа, равно как и его вид, зависят от влажности и температуры атмосферного воздуха (при прочих равных условиях). При низкой влажности и относительно высокой температуре след может отсутствовать вовсе, так как при таких условиях водяной пар не достигает состояния перенасыщения. Чем выше влажность и ниже температура, тем больше водяного пара конденсируется, тем медленнее происходит испарение, следовательно — след насыщеннее и длиннее. А при относительной влажности близкой к 100 % и низкой температуре — конденсируется наибольшее количество водяного пара, высокая влажность препятствует испарению частиц следа, что и влечет образование конденсационных следов, которые могут существовать достаточно долго, нередко превращаясь в перистые или перисто-кучевые облака. Поскольку водяной пар в атмосфере распределен неравномерно, это является причиной такого же «неравномерного» следа.

Конденсационные следы образуются не только на больших высотах полёта (отсюда и одно из ошибочных названий — «высотный след»). На ледовом аэродроме Полярной Станции «Скотт Амундсен» (высота 2830 м над уровнем моря), при определённых условиях (температура воздуха минус 50 градусов и ниже), этот след образуется уже на взлёте или при посадке, причём за турбовинтовыми самолётами (С-130 «Геркулес» из состава «Снежного Крыла» ВВС США), что делает ненужной дискуссию о ещё одном неверном названии — «реактивный след».

Конденсационные следы до сих пор являются демаскирующим фактором для деятельности военной авиации, поэтому вероятность их появления рассчитывается авиационными метеорологами по соответствующим методикам и экипажам выдаются рекомендации. Изменение высоты полёта в определённых пределах позволяет избежать или полностью устранить нежелательное влияние этого фактора.

Существует и антипод (противоположность) конденсационному следу — «обратный», «отрицательный» (очень редко встречаемые названия) след, образующийся при рассеивании элементов облачности (кристаллов льда) в пределах спутного следа при определённых условиях. Напоминает «обращение цвета» в графических редакторах компьютерных программ, когда голубое небо является облаком, а сам след — чистым голубым пространством. Отчётливо наблюдается при слоистой или кучевой облачности незначительной вертикальной мощности и отсутствии других (более высоких для Наблюдателя с Земли) слоёв облачности, маскирующих голубой фон верхних слоёв атмосферы. Наблюдается не реже конденсационных следов, но, из-за упомянутой специфики, реже ожидаем и менее иллюстрирован в изданиях об облаках и материалах Любителей наблюдений за этими явлениями.

Конденсационный след не следует путать со спутным следом. Спутный след — это возмущенная область воздуха, всегда образующаяся за движущимся летательным аппаратом. Однако, конденсационный след, взаимодействуя со спутным следом, рельефно выявляет вихревую структуру возмущенного воздуха.

По заявлениям климатологов, конденсационные следы оказывают влияние на климат, уменьшая температуру за счёт того, что вырождаются в перистые облака, тем самым увеличивая альбедо Земли.




















По материалам:

Большое количество разнообразных журналов, которые занимаются подборкой и анализом информации, касающейся достижений и проблем авиации, часто акцентируют внимание читателей на материальные аспекты работы и строения модернизированных устройств, таких как самолеты, ракеты, вертолеты и остальные летательные аппараты. Часто также подвергаются анализу все явления, которые происходят с внутренней и внешней структурой транспортного средства во время совершения полета. Обычно инверсионный след это отражает. Многие люди наблюдают за красивыми самолетами, которые в полете оставляют за собой ровную полосу.

Концепция данного явления

Инверсионный след формируется в тропопаузе. На его появление влияют пары воды, которые подвергаются усиленной конденсации. Они присутствуют в продуктах сгорания, так как во время сгорания равномерно расходуется углеводородное топливо. После выхода наружу и достаточного охлаждения яркий инверсионный след от самолета или другого летального аппарата в воздухе становится заметным.

Есть специальные авиашоу, которые целесообразно проводить только в солнечную погоду. Данные мероприятия организуются на аэродромах, имеющих статус наиболее крупных в мире. В это время большое количество зрителей восторженно наблюдают за движением множества самолетов, совершающих интересные маневры в воздухе. Главной отличительной чертой таких мероприятий является оставление яркого шлейфа от каждого транспортного средства. Часто делают так, чтобы каждый самолет отличался собственным цветом шлейфа, что помогает получить наиболее яркий и запоминающийся эффект.

В отличие от самолетов, ракеты постоянно оставляют за собой массивные, даже часто грозные следы, которые выглядят не только масштабно, но и имеют насыщенный цвет. Они выпускаются из самолетов, имеющих боевое назначение. Данную процедуру можно наблюдать не только при походе на специальные мероприятия, но и находясь на улице или включив телевизор на интересующем канале. Так можно увидеть инверсионный след.

Концевой вихрь крыла

Следует помнить, что самолет в полете оставляет за собой ограниченную и достаточно широкую область атмосферы, которая становится возмущенной, ее состав на долгое время переменяется. Данное явление часто именуют спутанным следом. Обычно он появляется под действием так как при работе они постоянно осуществляют взаимодействие с окружающей средой. Также в этом процессе принимают участие концевые вихри крыльев самолета.

Если сравнивать значительно негативное воздействие на окружающую среду, то первенство всегда отдается именно концевым вихрям крыльев. Есть множество условных обозначений спутанных следов, однако чаще всего они рисуются на специальных схемах в подобии листа с необычными краями, концы которых полностью скручены, то есть можно сравнить их с вихрями.

Процесс скручивания: научная аргументация

Процесс скручивания можно легко объяснить научным образом. Проявляется яркая разница давления между обеими сторонами крыльев самолета, то есть на их верхней и нижней поверхности. Воздух постепенно перераспределяется с нижней поверхности, так как на ней наблюдается наиболее повышенное давление, на верхнюю, чтобы оставаться в области с наименьшим давлением.

Данное перераспределение происходит через конец каждого крыла, из-за чего образуются мощные и очень заметные вихри. Имеет значение сила перепада давления, так как от него зависит Именно это значение оказывает сильное влияние на крыло. Чем данное воздействие сильнее, тем более мощными и рельефными образуются вихри.

Различные марки самолетов, предусматривающие концевой вихрь крыла

Скорость потоков воздуха иногда меняется, однако можно примерно определить, что если диаметр вихревого следа составляет около 8-15 м, следует говорить о значении 150 км/ч. Концевой вихрь может образовываться различным образом. Данный процесс зависит от марки, конфигурации самолета. Заслуживают внимание мощные истребители «Мираж 2000» и F-16C, если переходят в положение при полете с высоким углом атаки.

Процесс появления концевого вихря

Концевой вихрь визуализируется благодаря специальному трассер-генератору, отвечающему за должное представление дымного следа. Действие данного элемента обусловлено изменением в состоянии атмосферы, что продолжается довольно длительное время. Затем окружная скорость движения постепенно затихает, то есть визуальный объект теряется и исчезает.

Под действием времени окружная скорость вихря затухает, из-за чего визуальная картинка меняет очертания до тех пор, пока полностью не растворится. Ощутимая интенсивность вихря может продолжаться примерно до двух минут после того, как самолет пролетел конкретное место. Такой вихрь имеет возможность значительно воздействовать на режим полета самолета, который попал в область атмосферы, возмущенной от действия двигателя предыдущего транспортного средства.

Длительное наблюдение за концевым вихрем

Когда вихри подвергаются взаимодействию между собой, они медленно опускаются и расходятся, то есть ощутимое изменение в атмосфере исчезает. Инверсионный след самолета представляет собой отличный объект для того, чтобы наблюдать за его превращениями. Примерно через 30 - 40 секунд он начинает изменять очертания, так как на него усиленно влияет вихрь, который постепенно развивается. Когда пересекаются и инверсионный, и вихревой слои, создаются причудливые формы, которые можно заранее просчитать, так как на процесс их образования действуют различные закономерности.

Количество полос и высота инверсионного следа регулируется количеством и расположением двигателей в системе. При этом инверсионный след не только парит в воздухе, но и постоянно видоизменяется, создавая интересные контуры. Чаще всего наблюдается скручивание данного слоя под воздействием концевого вихря. Все трансформации слоя отражают разнообразные аэродинамические процессы, которые всегда образуются при осуществлении полета.

Отрывно-вихревые течения

Иногда пилоты вынуждены выполнять различные атаки, которые осуществляются с большим углом наклона, составляющим более 20 градусов. В этом случае характер обтекания контуров самолета на время значительно меняется. Начинают появляться отрывные области, которые преимущественно фиксируются около верхней поверхности крыла и фюзеляжа. В них сильно понижается давление, поэтому сразу начинается концентрация и приумножение атмосферной влаги. Благодаря данному аспекту наблюдать за совершением полета самолета можно без использования трассеров.

Условия для появления отрывно-вихревого эффекта

Если угол атаки слишком большой, вокруг самолета образуется значительный по величине ореол из облака. Когда самолет пролетает, данное облако автоматически переходит в вихревой инверсионный след от самолета. Обычно у бомбардировщиков возле крыльев образовываются области отрыва, из-за чего отчетливо наблюдается появление вихревого жгута. Так выглядит инверсионный след, фото которого всегда завораживают.

Горячие следы ракет

Иногда при приходится сталкиваться с такими случаями, когда наблюдается срывное течение в области газо-воздушного тракта, находящегося в силовой установке ракеты. Газовая струя, отходящая от отличается высокой температурой, поэтому иногда попадает в воздухозаборник самолета-носителя, что случается при постановке устройства на некоторые режимы.

Становится слишком неравномерным по температуре, так как подвергается воздействию газов повышенной температуры, из-за чего воздух, поступающий в двигатель, становится измененным. Образуется помпаж двигателя, то есть возникает срывное течение в системе. Чтобы выявить этот процесс, наблюдают за основными камерами сгорания, так как воздушный поток подвергается продольным колебаниям, проходя по тракту двигателя, а затем отмечается выбросом пламени из данных элементов. Так появляется инверсионный след от ракеты.

Особенности инверсионного следа при проведении испытаний

Часто пуски ракетного вооружения проводят в концепции осуществления испытаний. Исключением является бортовая аппаратура, которая служит для целей записывания и хранения информации. Часто самолет-фотограф выпускается вместе с носителем, при этом осуществляется процесс киносъемки, что позволяет зафиксировать все явление на камеру. Часто можно встретить такой инверсионный след от ракеты «Бук».

Часто осуществляется на относительно небольших скоростях, чтобы лучше зафиксировать весь процесс. При этом нередко образуется помпаж двигателя, так как горячие газы струями попадают в ракетный двигатель, что выводит из строя его воздухозаборник. Сразу отмечается выброс пламени, что характерно при возникновении помпажа. Так выражается инверсионный след FSX.

Из-за этого происшествия двигатель останавливается. Данные особенности после исследования помогли создать целый ряд различных систем, в задачи которых входит своевременная диагностика помпажа, предпринятие мер по его ликвидации, а также перевод двигателя на оптимальный режим работы с постоянным поддержанием его оптимального состояния. Ракетное вооружение в этом случае расширяет сферу применения, при этом на каждом режиме работы двигателя данные летательные аппараты способны показывать наиболее стабильное состояние.

в воздухе

Проводились испытания самолета «МиГ-29», которые заключались в дозаправке топлива. При одном из полетов был зафиксирован выброс топливной жидкости в атмосферу, чему предшествовала разгерметизация топливного трубопровода. С помощью самолета-фотографа была зафиксированная данная необычная ситуация. При этом определенная часть топлива попала в двигатель, что практически моментально привело к его остановке из-за помпажа.

Кроме выброса пламени, что всегда случается при помпаже двигателя, произошло воспламенение топлива, которое шло по воздушному каналу. После этого пламя охватило все топливо и вышло за пределы внутренней конструкции, однако практически мгновенно было снесено встречным потоком воздуха. Из-за данной ситуации проявилось необычное явление, которое назвали огненным шаром. Данный инверсионный след «Бук» также способен передать.

Яркий след форсажа

Современные истребительные самолеты обладают двигателем, который оснащен регулируемыми соплами, классифицирующимися как сверхзвуковые. Когда подключается форсажный режим работы, давление на срезе сопла значительно выше, чем этот показатель у окружающих воздушных масс. Если анализировать пространство на значительном расстоянии от сопла, давление постепенно уравнивается. Данный аспект при движении самолета приводит к повышенной продукции газа, что и приводит к тому, что образуется яркий инверсионный след от самолета, появляющийся при движении летательного аппарата.

Пролетающий в небе самолет – это красивое зрелище. Особенно когда он оставляет за собой след, который может тянуться через все небо . Со временем этот след исчезает, его разносят ветра, царящие в небе. Он может быть длинным или коротким, а иногда самолет не оставляет его вовсе. С чем связаны эти явления, почему след иногда остается, а иногда – нет, и из чего он состоит?

Многие любознательные люди задаются этими вопросами. Чтобы разобраться во всех нюансах, необходимо первоочередно понять, из чего же состоит этот след.

Вовсе не дым от сгорающего топлива


Кто-то может заявить, что этот след – не более чем дым, который остается при сгорании топлива, по аналогии с автомобильными выхлопами. Турбины самолета значительно мощнее автомобильного мотора, оттого они и порождают столько дыма. Но этот ответ будет в корне неверным, совершенно не грамотным.

Двигатели самолета действительно выбрасывают газы, оставшиеся от сгорания авиационного керосина, однако выхлоп самолета прозрачен. Ведь ни один самолет в исправном состоянии не дымит на взлетной полосе, при взлете или посадке. Если бы дело было в выхлопе, это стало бы очевидным сразу, и в аэропорту нечем бы было продохнуть. Но кое-что двигатели действительно выбрасывают.

Материалы по теме:

Почему самолет самый безопасный вид транспорта?

Наряду с прочими элементами газовоздушной смеси выхлопа выбрасывается и вода – в парообразном состоянии. Если самолет находится на небольшой высоте, этого обычно не видно. В ситуации же, когда самолет поднялся высоко, вода немедленно кристаллизуется, образуя белые облачка, которые тянутся за каждой турбиной. В этом заключается разгадка того следа, который тянется за самолетами.

Почему след виден не всегда?


Чем ниже температура за бортом, тем быстрее, полнее происходит процесс кристаллизации воды, выбрасываемой двигателями. Если самолет летит низко, о пониженных температурах речи не идет, следа не видно, или он едва заметен. Стоит помнить, что чем выше поднимается крылатая машина, тем ниже опускаются температуры. В высоких слоях показатель может фигурировать в районе -40 градусов, и вполне естественно, что влага здесь замерзает мгновенно и полностью, формируя густой след. В таких температурах замерзает даже дыхание человека – стоит вспомнить, что еще буквально 50-60 лет назад пилотам выдавали полушубки и теплую одежду для полетов в любое время года, чтобы они не замерзли в кабинах.

Клуб почемучек. Почему самолет оставляет след?

Частенько подняв голову к небу мы видим на нем белую полосу от летящего самолета. След, который он оставляет за собой, называется конденсационным. К слову, у нас часто называют его инверсионным следом, но в Википедии напротив "инверсионного" стоит пометка "устаревшее название". Поэтому я буду пользоваться термином "конденсационный". К тому же, это название "говорящее" - в самом этом названии заложен ответ на вопрос о том, что это такое. (Предложите ребенку назвать еще примеры "говорящих" названий, например, самолет, самовар, треугольник. Если ребенок знаком с латинскими корнями, то можно вспомнить и телескоп, и микрофон и т.п.).


След от самолета называется "конденсационным" потому, что он возникает в результате конденсации. Спросите малыша, знает ли он, что такое "конденсация"? Вряд ли много детей дошкольного возраста смогут ответить на этот вопрос. Тогда давайте спросим по-другому: видел ли малыш когда-нибудь, как запотевают зимой стекла в машине? Нравится ли ему рисовать на запотевшем окне пальцем забавные рожицы? Видел ли малыш как покрывается капельками зеркало в ванной после того, как кто-то принимал горячий душ? Вот это явление и есть конденсация.

Так называют переход пара в жидкое состояние. Чтобы оно случилось, нужно три составляющих: влажный воздух, ядра конденсации (какие-нибудь пылинки в воздухе) и перепад температуры. Например, что происходит у нас в ванной: влажный воздух - есть, пылинки в воздухе - есть, перепад температуры при соприкосновении теплого воздуха с холодным стеклом зеркала - есть! Значит будет и конденсат.

Давайте сделаем конденсат прямо сейчас. Для этого надо всего лишь налить воду в бутылку и положить ее в морозильник минут на 15-20. Когда вода охладится, надо достать ее и подержать при комнатной температуре. На поверхности бутылки тут же образуются мелкие капельки - конденсат. Если подержать бутылку в тепле подольше, то капли начнут увеличиваться и стекать по стенкам. Это пары воды, находящиеся в комнатном воздухе, при соприкосновении с холодной бутылкой оседают на нее каплями.

Где еще мы можем увидеть конденсат? Правильно - это же обычная роса! Помнит ли малыш, как он видел маленькие капельки на траве ранним утром? Теперь он может объяснить, откуда они там взялись. Влажный воздух был? Ядра конденсации были? Перепад температуры между холодным ночным воздухом и теплой поверхностью земли был? Вот водяной пар из воздуха и превратился в капельки воды - и получилась роса. Даже есть такой термин "точка росы". Он как раз и обозначает ту температуру, ниже которой водяной пар превращается в капли.

Роса. Фото из Википедии

А теперь вернемся к самолету. Когда самолет летит, из его двигателей вырывается струи горячего пара и газов от отработанного топлива. Попадая в холодный воздух (а на той высоте, на которой обычно летают самолеты, температура около -40 градусов, подробнее об этом в выпуске про то, как образуются облака), пар конденсируется вокруг частичек сжигаемого топлива и получаются мельчайшие капельки, вроде тумана, которые и образуют полосу на небе. Можно сказать, что получается этакое рукотворное длинное облако. Со временем оно рассеется или станет частью перистых облаков.

По следу самолета можно предсказывать погоду. Если след длинный и держится долго - значит воздух влажный и может пойти дождь, если короткий и быстро рассеивается, то будет сухо и ясно. Мы с моей дочкой Катей решили вести дневник наблюдений и проверить, насколько такой прогноз может быть точным. Присоединяйтесь к нашему эксперименту!


Кстати, конденсационные следы самолетов могут влиять на климат Земли. Если посмотреть на Землю со спутника, то можно увидеть, что в тех районах, где часто летают самолеты, все небо покрыто их следами. Одни ученые считают, что это хорошо - следы увеличивают отражательные свойства атмосферы, тем самым не давая солнечным лучам доходить до поверхности Земли. Так можно снизить температуру земной атмосферы и не допустить глобального потепления. Другие считают, что плохо - возникающие от конденсационного следа перистые облака препятствуют охлаждению атмосферы, тем самым вызывая ее потепление. Кто прав, а кто не прав, покажет время.

Моя Катя очень любит во время прогулки наблюдать за полетами самолетов. И всегда ей хочется знать, куда и откуда они летят. Хорошо, что в сети есть сервис, который в реальном времени показывает все самолеты, находящиеся в полете по всему миру. Его адрес http://www.flightradar24.com . Ведь так интересно посмотреть в окно, увидеть белую полоску конденсационного следа, и сразу же определить, что оставил его, например, Airbus A330-322, принадлежащий компании I-Fly, и летящий из Хургады в Москву.

Скриншот программы слежения за самолетами

Есть даже такое модное увлечение - авиационный споттинг (от англ. "spot" - "увидеть", "опознать"). Оно заключается в том, что люди наблюдают за полетами самолетов (обычно недалеко от аэропортов), определяют их типы, ведут реестры, фотографируют взлеты и посадки.
Если в вашем городе есть аэропорт, я предлагаю если не заняться споттингом, то просто съездить на экскурсию туда. Походить по зданию аэровокзала, узнать, где покупают билеты на самолет, как сдают и получают багаж, как проходят таможенный контроль. Проводите и встретьте несколько самолетов, приглядитесь к лицам людей, только что вернувшихся с неба. И даже если вы сами пока никуда не собираетесь лететь, вы почувствуете себя немного путешественниками.
Мы иногда ходим в Симферопольский аэропорт, если на улице плохая погода и гулять на свежем воздухе неприятно. И дети всегда в восторге от такого времяпрепровождения. А еще у нас в городе периодически организуют авиа-шоу . Вот где можно не только понаблюдать, но и потрогать самолет и даже посидеть у него в кабине.

А в конце выпуска я хочу предложить попробовать свои силы в создании самолетиков из бумаги в технике оригами. Даже если ваш малыш уже умеет делать всем известную модель самолета "Стрела", то существует еще множество других моделей. (Я когда-то выкладывала в блоге 21 схему для самолетиков). Возьмите получившиеся самолетики с собой на прогулку и устройте соревнования. Какой самолет красивее всего? Какой дальше всего летит? Какой дольше других планирует в воздухе? Уверенна, что пускать самолетики понравится не только мальчишкам и девчонкам, но даже их мамам и папам. Надеюсь, и Дане это занятие тоже будет интересно:)

Ответ :
 Ответ очевиден − по той же причине, по которой при дыхании на морозе появляется туман или иней. В турбинах самолета сгорает углеводородное топливо, а одним из продуктов горения является вода, точнее − ее пар, нагретый до высокой температуры. Горячие водяные пары, вылетая из сопла турбины, сразу начинают конденсироваться, образуя нитеобразное облако, состоящее из мельчайших капелек воды или кристалликов льда, так как температура на такой высоте ниже −40 °С . Иногда воздух на высоте бывает перенасыщен влагой, которая не может конденсироваться только из-за отсутствия так называемых ядер конденсации − мельчайших частиц, например пыли. В таких случаях пролетающий самолет, оставляя за собой частицы сажи − продукт неполного сгорания топлива, вызывает конденсацию перенасыщенных паров атмосферы. Поэтому по интенсивности белого следа от летящего самолета можно судить о влажности воздуха в верхних слоях тропосферы, а значит, и о предстоящей погоде. Быстро исчезающий или едва заметный след говорит о том, что воздух на высоте сухой, а погода будет безоблачной. А если белый след тянется через все небо, то следует ждать ухудшения погоды.
На фотографиях, сделанных со спутников, Земля во многих местах накрыта плотной белой сеткой следов от пролетевших самолeтов (фото с сайта fiz.1september.ru).

Было показано, что в некоторых случаях следы от летящего самолета превращаются в облака площадью от 4000 до 40000 квадратных километров, оказывая влияние на климат. Поэтому, например, прекращение на три дня полетов над территорией США после трагедии 11 сентября 2001 года резко увеличило прозрачность атмосферы, и в результате разница между средней дневной и ночной температурой выросла на 1 °С . Таким образом, белые следы от самолетов служат одним из факторов глобального «затемнения» планеты, противодействующего ее глобальному потеплению.