По литературе

Дисперсионный анализ критерий фишера. Пропущенные ячейки и проверка специфического эффекта. Исходный файл данных описывает совокупность людей с разным уровнем дохода, образования, возраста и пола. Рассмотрим, как влияют уровень образования, возраст и пол

Общие определения

Целью дисперсионного анализа (ANOVA – Analysis of Variation) является проверка значимости различия между средними в разных группах с помощью сравнения дисперсий этих групп. Разделение общей дисперсии на несколько источников (связанных с различными эффектами в плане), позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью.

Проверяемая гипотеза состоит в том, что различия между группами нет. При истинности нулевой гипотезы, оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. При ложности - значимо отклоняться.

В целом дисперсионный анализ может быть разделён на несколько видов:

  • одномерный (одна зависимая переменная) и многомерный (несколько зависимых переменных);

  • однофакторный (одна группирующая переменная) и многофакторный (несколько группирующих переменных) с возможным взаимодействием между факторами;

  • с простыми измерениями (зависимая переменная измеряется лишь один раз) и с повторными (зависимая переменная измеряется несколько раз).

В STATISITICA реализованы все известные модели дисперсионного анализа.

В STATISITICA дисперсионный анализ можно провести с помощью модуля Дисперсионный анализ в блоке STATISITICA Base (Анализ -> Дисперсионный анализ(ДА)) . Для построения модели специального вида используется полная версия Дисперсионного анализа, представленная в модулях Общие линейные модели , Обобщённые линейные и нелинейные модели , Общие регрессионные модели , Общие модели частных наименьших квадратов из блока Углубленные методы анализа (STATISTICA Advanced Linear/Non-Linear Models ).

в начало

Пошаговый пример в STATISTICA

Мы будем иллюстрировать возможности дисперсионного анализа в STATISITICA , рассматривая пошаговый модельный пример.

Исходный файл данных описывает совокупность людей с разным уровнем дохода, образования, возраста и пола. Рассмотрим, как влияют уровень образования, возраст и пол на уровень дохода.

По возрасту все люди были разделены на четыре группы:

  • до 30 лет;

  • от 31 до 40 лет;

  • от 41 до 50 лет;

  • от 51 года.

По уровню образования произошло деление на 5 групп:

  • незаконченное среднее;

  • среднее;

  • среднее профессиональное;

  • незаконченное высшее;

  • высшее.

Так как данные модельные, то полученные результаты будут носить в основном качественный характер и иллюстрировать способ проведения анализа.

Шаг 1. Выбор анализа

Выберем дисперсионный анализ из меню: Анализ -> Углубленные методы анализа -> Общие линейные модели .

Рис. 1. Выбор дисперсионного анализа из выпадающего меню STATISTICA

Далее откроется окно, в котором представлены различные виды анализа. Выбираем Вид анализа Факторный Дисперсионный анализ .


Рис. 2. Выбор вида анализа

В этом окне также можете выбрать способ построения модели: диалоговый режим или использовать мастер анализа. Выберем диалоговый режим.

Шаг 2. Задание переменных

Из открытого файла данных выберем переменные для анализа, щелкните кнопку Переменные , выберете:

Доход – зависимая переменная,

Уровень образования , Пол и Возраст – категориальные факторы (предикторы).

Заметим, что Коды факторов в этом простом примере можно не задавать. При нажатии на кнопку OK , STATISTICA задаст их автоматически.


Рис. 3. Задание переменных

Шаг 3. Изменение опций

Обратимся к вкладке Опции в окне GLM Факторный ДА .


Рис. 4. Вкладка Опции

В этом диалоговом окне вы можете:

  • выбрать случайные факторы;

  • задать тип параметризации модели;

  • указать тип сумм квадратов (SS), имеется 6 различных сумм квадратов (SS);

  • включить проведение кросс-проверки.

Оставим все установки по умолчанию (этого достаточно в большинстве случаев) и нажмём кнопку ОК .

Шаг 4. Анализ результатов – просмотр всех эффектов

Результаты анализа можно посмотреть в окне Результаты с помощью вкладок и группы кнопок. Рассмотрим, например, вкладку Итоги .


Рис. 5. Окно анализа результатов: вкладка Итоги

С этой вкладки можно получить доступ ко всем основным результатам. Воспользуйтесь остальными вкладками для получения дополнительных результатов. Кнопка Меньше позволяет изменить диалоговое окно результатов, удалив вкладки, которые, как правило, не используются.

При нажатии кнопки Проверить все эффекты получаем следующую таблицу.


Рис. 6. Таблица всех эффектов

Эта таблица выводит основные результаты анализа: суммы квадратов, степени свободы, значения F-критерия, уровни значимости.

Для удобства исследования значимые эффекты (p<.05) выделены красным цветом. Два главных эффекта (Уровень образования и Возраст ) и некоторые взаимодействия в данном примере являются значимыми (p<.05).

Шаг 5. Анализ результатов – просмотр заданных эффектов

Чтобы посмотреть, каким образом средний уровень дохода различается по категориям, удобнее всего воспользоваться графическими средствами. При нажатии на кнопку Все эффекты/графики появится следующее диалоговое окно.


Рис. 7. Окно Таблица всех эффектов

В окне перечислены все рассматриваемые эффекты. Статистически значимые эффекты помечены *.

Например, выберем эффект Возраст , в группе Отображать укажем Таблицу и нажмём ОК . Появится таблица, в которой для каждого уровня эффекта приведено среднее значение зависимой переменной (Доход) , величина стандартной ошибки и границы доверительных пределов.


Рис. 8. Таблица с описательными статистиками по уровням переменной Возраст

Эту таблицу удобно представить в графическом виде. Для этого выберем График в группе Отображать диалогового окна Таблица всех эффектов и нажмём ОК . Появится соответствующий график.


Рис. 9. График зависимости среднего дохода от возраста

Из графика ясно видно, что между группами людей разного возраста есть разница в уровне дохода. Чем выше возраст, тем больше доход.

Аналогичные операции проведём для взаимодействия нескольких факторов. В диалоговом окне выберем Пол *Возраст и нажмём ОК .


Рис. 10. График зависимости среднего дохода от пола и возраста

Получен неожиданный результат: для опрошенных людей в возрасте до 50 лет уровень дохода растёт с возрастом и не зависит от пола; для опрошенных людей старше 50 лет женщины имеют значимо больший доход, чем мужчины.

Стоит построить полученный график в разрезе уровня образования. Возможно, такая закономерность нарушается в некоторых категориях или, наоборот, носит универсальный характер. Для этого выберем Уровень образования * Пол * Возраст и нажмём ОК .


Рис. 11. График зависимости среднего дохода от пола, возраста, уровня образования

Видим, что полученная зависимость не характерна для среднего и среднего профессионального образования. В остальных случаях она справедлива.

Шаг 6. Анализ результатов – оценка качества модели

Выше в основном использовались графические средства дисперсионного анализа. Рассмотрим некоторые другие полезные результаты, которые можно получить.

Во-первых, интересно посмотреть, какую долю изменчивости объясняют рассматриваемые факторы и их взаимодействия. Для этого во вкладке Итоги нажмём на кнопку Общая R модели . Появится следующая таблица.

Рис. 12. Таблица SS модели и SS остатков

Число в столбце Множеств. R2 – квадрат множественного коэффициента корреляции; оно показывает, какую долю изменчивости объясняет построенная модель. В нашем случае R2 = 0.195, что говорит о невысоком качестве модели. В самом деле, на уровень дохода влияют не только факторы, внесённые в модель.

Шаг 7. Анализ результатов – анализ контрастов

Часто требуется не только установить различие в среднем значении зависимой переменной для разных категорий, но и установить величину различия для заданных категорий. Для этого следует исследовать контрасты.

Выше было показано, что уровень дохода для мужчин и женщин значимо отличается для возраста от 51, в остальных случаях различие не значимо. Выведем разницу в уровне дохода для мужчин и женщин в возрасте выше 51 года и между 40 и 50 годами.

Для этого перейдём во вкладку Контрасты и выставим все значения следующим образом.


Рис. 13. Вкладка Контрасты

При нажатии кнопки Вычислить появится несколько таблиц. Нас интересует таблица с оценками контрастов.


Рис. 14. Таблица Оценки контрастов

Можно сделать следующие выводы:

  • для мужчин и женщин старше 51 года разница в уровне дохода составляет 48,7 тыс. долл. Разница значима;

  • для мужчин и женщин в возрасте от 41 до 50 лет разница в уровне дохода составляет 1,73 тыс. долл. Разница не значима.

Аналогично можно задать более сложные контрасты или воспользоваться одним из заранее заданных наборов.

Шаг 8. Дополнительные результаты

Используя остальные вкладки окна результатов можно получить следующие результаты:

  • средние значения зависимой переменной для выбранного эффекта – вкладка Средние ;

  • проверка апостериорных критериев (post hoc) – вкладка Апостериорные ;

  • проверка сделанных для проведения дисперсионного анализа предположений – вкладка Предположения ;

  • построение профилей отклика/желательности – вкладка Профили ;

  • анализ остатков – вкладка Остатки ;

  • вывод матриц, используемых в анализе – вкладка Матрицы ;

  • Дисперсионный анализ – анализ изменчивости результативного признака под влиянием каких-либо контролируемых переменных факторов. (В зарубежной литературе именуется ANOVA – «Analisis of Variance»).

    Результативный признак называют также зависимым признаком, а влияющие факторы – независимыми признаками.

    Ограничение метода: независимые признаки могут измеряться по номинальной, порядковой или метрической шкале, зависимые – только по метрической. Для проведения дисперсионного анализа выделяют несколько градаций факторных признаков, а все элементы выборки группируют в соответствии с этими градациями.

    Формулировка гипотез в дисперсионном анализе.

    Нулевая гипотеза: «Средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы».

    Альтернативная гипотеза: «Средние величины результативного признака в разных условиях действия фактора различны».

    Дисперсионный анализ можно подразделить на несколько категорий в зависимости:

    от количества рассматриваемых независимых факторов;

    от количества результативных переменных, подверженных действию факторов;

    от характера, природы получения и наличия взаимосвязи сравниваемых выборок значений.

    При наличии одного фактора, влияние которого исследуется, дисперсионный анализ именуется однофакторным, и распадается на две разновидности:

    - Анализ несвязанных (то есть – различных) выборок . Например, одна группа респондентов решает задачу в условиях тишины, вторая – в шумной комнате. (В этом случае, к слову, нулевая гипотеза звучала бы так: «среднее время решения задач такого-то типа будет одинаково в тишине и в шумном помещении», то есть не зависит от фактора шума.)

    - Анализ связанных выборок , то есть, двух замеров, проведенных на одной и той же группе респондентов в разных условиях. Тот же пример: в первый раз задача решалась в тишине, второй – сходная задача – в условиях шумовых помех. (На практике к подобным опытам следует подходить с осторожностью, поскольку в действие может вступить неучтенный фактор «научаемость», влияние которого исследователь рискует приписать изменению условий, а именно, - шуму.)

    В случае если исследуется одновременное воздействие двух или более факторов, мы имеем дело с многофакторным дисперсионным анализом, который также можно подразделить по типу выборки.

    Если же воздействию факторов подвержено несколько переменных, - речь идет о многомерном анализе . Проведение многомерного дисперсионного анализа предпочтительнее одномерного только в том случае, когда зависимые переменные не являются независимыми друг от друга и коррелируют между собой.

    Обобщенно задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака выделить три частные вариативности:

      вариативность, обусловленную действием каждой из исследуемых независимых переменных (факторов).

      вариативность, обусловленную взаимодействием исследуемых независимых переменных.

      вариативность случайную, обусловленную всеми неучтенными обстоятельствами.

    Для оценки вариативности, обусловленной действием исследуемых переменных и их взаимодействием вычисляется отношение соответствующего показателя вариативности и случайной вариативности. Показателем этого соотношения является F – критерий Фишера.

    Чем в большей степени вариативность признака обусловлена действием влияющих факторов или их взаимодействием, тем выше эмпирические значения критерия .

    В формулу расчета критерия входят оценки дисперсий, и, следовательно, этот метод относится к разряду параметрических.

    Непараметрическим аналогом однофакторного дисперсионного анализа для независимых выборок является критерий Краскела-Уоллеса. Он подобен критерию Манна-Уитни для двух независимых выборок, за тем исключением, что он суммирует ранги для каждой из групп.

    Кроме этого, в дисперсионном анализе может быть применен медианный критерий. При его использовании для каждой группы определяются число наблюдений, которые превышают медиану, вычисленную по всем группам, и число наблюдений, которые меньше медианы, после чего строится двумерная таблица сопряженности.

    Критерий Фридмана является непараметрическим обобщением парного t-критерия для случая выборок с повторными измерениями, когда количество сравниваемых переменных больше двух.

    В отличие от корреляционного анализа, в дисперсионном анализе исследователь исходит из предположения, что одни переменные выступают как влияющие (именуемые факторами или независимыми переменными), а другие (результативные признаки или зависимые переменные) – подвержены влиянию этих факторов. Хотя такое допущение и лежит в основе математических процедур расчета, оно, однако, требует осторожности при выводах о причине и следствии.

    Например, если мы выдвигаем гипотезу о зависимости успешности работы должностного лица от фактора Н (социальной смелости по Кэттелу), то не исключено обратное: социальная смелость респондента как раз и может возникнуть (усилиться) вследствие успешности его работы – это с одной стороны. С другой: следует отдать себе отчет в том, как именно измерялась «успешность»? Если за ее основу взяты были не объективные характеристики (модные нынче «объемы продаж» и проч.), а экспертные оценки сослуживцев, то имеется вероятность того, что «успешность» может быть подменена поведенческими или личностными характеристиками (волевыми, коммуникативными, внешними проявлениями агрессивности etc.).

    ДИСПЕРСИОННЫЙ АНАЛИЗ

    в математической статистике - статистический метод, предназначенный для выявления влияния отдельных факторов на результат эксперимента, а также для последующего планирования аналогичных экспериментов. Первоначально Д. а. был предложен Р. Фишером для обработки результатов агрономич. опытов по выявлению условий, при к-рых испытываемый сорт сельскохозяйственной культуры дает максимальный урожай. Современные приложения Д. а. охватывают широкий задач экономики, социологии, биологии и техники и трактуются обычно в терминах статистич. теории выявления систематич. различий между результатами непосредственных измерений, выполненных при тех пли иных меняющихся условиях.

    Если значения неизвестных постоянных a 1 , ... , a I могут быть измерены с помощью различных методов или измерительных средств М 1 ,. .., M J , и в каждом случае систематич. ошибка b ij может, вообще говоря, зависеть как от выбранного метода Mj, так и от неизвестного измеряемого значения а i , то результаты таких измерений представляют собой суммы вида

    где К- количество независимых измерений неизвестной величины а i методом M j , a у ijk - случайная ошибка k-го измерения величины а i методом M j (предполагается, что все y ijk - независимые одинаково распределенные случайные величины, имеющие нулевое математич. ожидание: Е у ijk =0). Такая линейная наз. двухфакторной схемой Д. а.; первый - истинное значение измеряемой величины, второй - метод измерения, причем в данном случае для каждой возможной комбинации значений первого и второго факторов осуществляется одинаковое количество Кнезависимых измерений (это допущение для целей Д. а. не является существенным и введено здесь лишь ради простоты изложения).

    Примером подобной ситуации могут служить спортивные соревнования I спортсменов, мастерство к-рых оценивается J судьями, причем каждый участник соревнований выступает Краз (имеет К"попыток"). В этом случае а i - истинное значение показателя мастерства спортсмена с номером i, b ij - систематич. ошибка, вносимая в оценку мастерства i -го спортсмена судьей с номером j, x ijk - оценка, выставленная j -м судьей г-му спортсмену после выполнений последним k-й попытки, а y ijk - соответствующая случайная . Подобная типична для так наз. субъективной экспертизы качества нескольких объектов, осуществляемой группой независимых экспертов. Другой пример - статистич. исследование урожайности сельскохозяйственной культуры в зависимости от одного из J сортов почвы и J методов ее обработки, причем для каждого сорта г почвы и каждого метода обработки с номером J осуществляется kнезависимых экспериментов (в этом примере b ij - истинное значение урожайности для г-го сорта почвы при j-м способе обработки, x ijk - соответствующая экспериментально наблюдаемая урожайность в k-м опыте, а y ijk - ее случайная ошибка, возникающая из-за тех или иных случайных причин; что же касается величин а i , то в агрономич. опытах их разумно считать равными нулю).

    Положим c ij =a i +b ij , и пусть с i *, с *j и с ** - результаты осреднений с ij по соответствующим индексам, т. е.

    Пусть, кроме того, a=c ** , b i = с i* - с ** , g j = с *j -с ** и d ij = с ij - с i* - с *j +c ** . Идея Д. а. основана на очевидном тождестве

    Если символом (c ij )обозначить размерности IJ , получаемый из матрицы ||с ij || порядка IXJ с помощью какого-либо заранее фиксированного способа упорядочивания ее элементов, то (1) можно записать в виде равенства где все векторы имеют IJ , причем a ij =a, b ij =b i , g ij =g j . Так как четыре вектора в правой части (2) ортогональны, то a ij =a - наилучшее приближение функции c ij от аргументов i и j постоянной величиной [в смысле минимальности суммы квадратов отклонений ]. В том же смысле a ij +b ij =a+b i - наилучшее c ij функцией, зависящей лишь от i, a ij +g ij =a+g j - наилучшее приближение c ij функцией, зависящей лишь от j, a a ij +b ij +g ij =a+b i +g j - наилучшее приближение c ij суммой функций, из к-рых одна (напр., a+b i ) зависит лишь от г, а другая - лишь от j. Этот факт, установленный Р. Фишером (см. ) в 1918, позднее послужил основой теории квадратичных приближений функций.

    В примере, связанном со спортивными соревнованиями, d ij выражает "взаимодействие" г-го спортсмена и j-го судьи (положительное значение б/у означает "подсуживание", т. с. систематич. завышение /-м судьей оценки мастерства i-го спортсмена, а отрицательное значение б/у означает "засуживание", т. е. систематич. снижение оценки). Равенство всех б/у нулю - необходимое требование, к-рое надлежит предъявлять к работе группы экспертов. В случае же агрономич. опытов такое равенство рассматривается как гипотеза, подлежащая проверке по результатам экспериментов, поскольку основная цель здесь - отыскание таких значений i и j, при к-рых функция (1) достигает максимального значения. Если эта гипотеза верна, то

    и значит, выявление наилучших "почвы" и "обработки" может быть осуществлено раздельно, что приводит к существенному сокращению числа экспериментов (напр., можно при каком-либо одном способе обработки испытать все Iсортов "почвы" и определить наилучший сорт, а затем на этом сорте опробовать все J способов "обработки" и найти наилучший способ; общее количество экспериментов с повторениями будет равно (I+J) К). Если же гипотеза {все d ij =0} неверна, то для определения max c ij необходим описанный выше "полный план", требующий при Кповторениях IJК экспериментов.

    В ситуации спортивных соревнований функция g ij =g j может трактоваться как систематич. ошибка, допускаемая j-м судьей по отношению ко всем спортсменам. В конечном счете g j - характеристика "строгости" или "либеральности" j-го судьи. В идеале хотелось бы, чтобы все g j были нулевыми, но в реальных условиях приходится мириться с наличием ненулевых значений g j и учитывать это обстоятельство при подведении итогов экспертизы (напр., за основу сравнения мастерства спортсменов можно принять не последовательности истинных значений a+b 1 +g j , ..., a+b I +g j , a лишь результаты упорядочиваний этих чисел по их величине, поскольку при всех j=1, . . . , J такие упорядочивания будут одинаковыми). Наконец, сумма двух оставшихся функций a ij +b ij =a+b i зависит лишь от iи поэтому может быть использована для характеризации мастерства г-го спортсмена. Однако здесь нужно помнить, что Поэтому упорядочивание всех спортсменов по значениям a+b i (или по a+ + b i +g j при каждом фиксированном j) может не совпадать с упорядочиванием по значениям a i . При практической обработке экспертных оценок этим обстоятельством приходится пренебрегать, так как Упомянутый полный план экспериментов не позволяет оценивать отдельно a i и b i* . Таким образом, a+b i =a i + b i* характеризует не только мастерство i -го спортсмена, но и в той или иной мере экспертов к этому мастерству. Поэтому, напр., результаты субъективных экспертных оценок, осуществленных в разное время (в частности, на нескольких Олимпийских играх), едва ли можно считать сопоставимыми. В случае же агрономич. опытов подобные трудности не возникают, поскольку все a i =0 и значит, a+b i =b i* .

    Истинные значения функций a, b i , g i и d ij неизвестны и выражаются в терминах неизвестных функций c ij . Поэтому первый этап Д. а. заключается в отыскании статистич. оценок для c ij по результатам наблюдений x ijk .Несмещенная и имеющая минимальную дисперсию для c ij выражается формулой

    Так как a, b i , g j и d ij - линейные функции от элементов матрицы ||c ij ||, то несмещенные линейные оценки для этих функций, имеющие минимальную дисперсию, получаются в результате замены аргументов c ij соответствующими оценками, c ij , т. е. причем случайные векторы и определенные так же, как введенные выше (a ij ), (b ij ), (g ij ). и (d ij ), обладают свойством ортогональности, и значит, они представляют собой некоррелированные случайные векторы (иными словами, любые две компоненты, принадлежащие разным векторам, имеют нулевой корреляции). Кроме того, любая вида

    некоррелирована с любой из компонент этих четырех векторов. Рассмотрим пять совокупностей случайных величин {x ijk }, {x ijk -x ij* }, Так как

    то дисперсии эмпирич. распределений, соответствующих указанным совокупностям, выражаются формулами

    Эти эмпирич. дисперсии представляют собой суммы квадратов случайных величин, любые две из к-рых некоррелированы, если только они принадлежат разным суммам; при этом относительно всех y ijk справедливо тождество

    объясняющее происхождение термина "Д. а."" Пусть и пусть

    в таком случае

    где s 2 - дисперсия случайных ошибок y ijk .

    На основе этих формул и строится второй этап Д. а., посвященный выявлению влияния первого и второго факторов на результаты эксперимента (в агрономич. опытах первый фактор - сорт "почвы", второй - способ "обработки"). Напр., если требуется проверить гипотезу отсутствия "взаимодействия" факторов, к-рая выражается равенствомто разумно вычислить дисперсионное отношение s 2 3 /s 2 0 = F 3 . Если это отношение значимо отличается от единицы, то проверяемая гипотеза отвергается. Точно так же для проверки гипотезы полезно отношение s 2 2 /s 2 0 = F 2 , к-рое надлежит также сравнить с единицей; если при этом известно, чтото вместо F 2 целесообразно сравнить с единицей отношение

    Аналогичным образом можно построить статистику, позволяющую дать заключение о справедливости или ложности гипотезы

    Точный смысл понятия значимого отличия указанных отношений от единицы может быть определен лишь с учетом закона распределения случайных ошибок y ijk . В Д. а. наиболее обстоятельно изучена ситуация, в к-рой все y ijk распределены нормально. В этом случае - независимые случайные векторы, а - независимые случайные величины, причем

    отношения подчиняются нецентральным распределениям хи-квадрат с f m степенями свободы и параметрами нецентральности l т, m =0, 1, 2, 3, где

    Если параметр нецентральности равен нулю, то нецентральное хи-квадрат совпадает с обычным распределением хи-квадрат. Поэтому в случае справедливости гипотезы l 3 =0 отношение подчиняется F-распре делению (распределению дисперсионного отношения) с параметрами f 3 и f 0 . Пусть х- такое число, для к-рого события {F 3 >x} равна заданному значению е, называемому уровнем значимости (таблицы функции х= х (e; f 3 , f 0) имеются в большинстве пособий по математич. статистике). Критерием для проверки гипотезы l 3 =0 служит правило, согласно к-рому эта гипотеза отвергается, если наблюдаемое значение F 3 превышает х;в противном случае гипотеза считается не противоречащей результатам наблюдений. Аналогичным образом конструируются критерии, основанные на статистиках F 2 и F* 2 .

    Дальнейшие этапы Д. а. существенно зависят не только от реального содержания конкретной задачи, но также и от результатов статистич. проверки гипотез на втором этапе. Напр., в условиях агрономич. опытов справедливость гипотезы l 3 =0, как указано выше, позволяет более экономно спланировать аналогичные дальнейшие эксперименты (если помимо гипотезы l 3 =0 справедлива также и гипотеза l 2 =0, то это означает, что урожайность зависит лишь от сорта "почвы", и поэтому в дальнейших опытах можно воспользоваться схемой однофакторного Д. а.); если же гипотеза l 3 =0 отвергается, то разумно проверить, нет ли в данной задаче неучтенного третьего фактора? Если сорта "почвы" и способы ее "обработки" варьировались не в одном и том же месте, а в различных географич. зонах, то таким фактором могут быть климатич. или географич. условия, и "обработка" наблюдений потребует применения трехфакторного Д. а.

    В случае экспертных оценок статистически подтвержденная справедливость гипотезы l 3 = 0 дает основание для упорядочивания сравниваемых объектов (напр., спортсменов) по значениям величин i=l, . .. , I.

    Если же гипотеза l 3 =0 отвергается (в задаче о спортивных соревнованиях это означает статистич. обнаружение "взаимодействия" нек-рых спортсменов и судей), то естественно попытаться перевычнслить все результаты заново, предварительно исключив из рассмотрения x ijk с такими парами индексов (i, j ), для к-рых абсолютные значения статистич. оценок d ij превышают нек-рый заранее установленный допустимый уровень. Это означает, что из матрицы ||x ij* || вычеркиваются нек-рые элементы, и значит, план Д. а. становится неполным.

    Модели современного Д. а. охватывают широкий круг реальных экспериментальных схем (напр., схемы неполных планов, со случайно или неслучайно отобранными элементами x ij* ). Соответствующие этим схемам статистич. выводы во многих случаях находятся в стадии разработки. В частности, еще (к 1978) далеки от окончательного решения те задачи, в к-рых результаты наблюдений x ijk =c ij +y ijk не являются одинаково распределенными случайными величинами; еще более трудная задача возникает в случае зависимости величин x ijk . Неизвестно проблемы выбора факторов (даже в линейном случае). Суть этой проблемы заключается в следующем: пусть с=с ( и, v )- и пусть u=u (z, w u=u (z, w )- какие-либо линейные функции от переменных г и w. Фиксируя значения z 1 , . .., z I и w 1 , . . ., w J , можно при каждом заданном выборе линейных функций ии u. определить c ij формулой и построить Д. а. этих величин по результатам соответствующих наблюдений x ijk . Проблема заключается в отыскании таких линейных функций u и u, к-рым соответствует минимальное значение суммы квадратов

    где (предполагается, что функция с( и, v )неизвестна). В терминах Д. а. эта проблема сводится к статистич. отысканию таких факторов z=z (u, v w-w (u, v ), к-рым соответствует "наименьшее взаимодействие".

    Лит. : Fisher R. A., Statistical methods for research workers, Edinburgh, 1925; Шеффе Г., Дисперсионный анализ, пер. с англ., М., 1963; Xальд А., Математическая с техническими приложениями, пер. с англ., М., 1956; Снедекор Д ж. У., Статистические методы в применении к исследованиям в сельском хозяйстве и биологии, пер. с англ., М., 1961.

    Л. Н. Большее.


    Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

    Смотреть что такое "ДИСПЕРСИОННЫЙ АНАЛИЗ" в других словарях:

      Метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of… … Википедия

      - (analysis of variance) Статистический метод, основанный на разложении общей дисперсии (variance) какой либо характеристики населения на составные части, коррелирующие с другими характеристиками, и остаточную вариацию (residual variation). В… … Экономический словарь

      Один из методов математической статистики, применяемый для анализа результатов наблюдений, зависящих от различных, одновременно действующих факторов, к рые не поддаются, как правило, количеств. описанию. Рассмотрим простейшую из задач Д. а. Пусть … Физическая энциклопедия

      Дисперсионный анализ - раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного, экономического эксперимента). Д.а. возник как средство обработки результатов… … Экономико-математический словарь

      дисперсионный анализ - — дисперсионный анализ Раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного,… … Справочник технического переводчика

    В практической деятельности врачей при проведении медико-биологических, социологических и экспериментальных исследований возникает необходимость установить влияние факторов на результаты изучения состояния здоровья населения, при оценке профессиональной деятельности, эффективности нововведений.

    Существует ряд статистических методов, позволяющих определить силу, направление, закономерности влияния факторов на результат в генеральной или выборочной совокупностях (расчет критерия I, корреляционный анализ, регрессия, Χ 2 - (критерий согласия Пирсона и др.). Дисперсионный анализ был разработан и предложен английским ученым, математиком и генетиком Рональдом Фишером в 20-х годах XX века.

    Дисперсионный анализ чаще используют в научно-практических исследованиях общественного здоровья и здравоохранения для изучения влияния одного или нескольких факторов на результативный признак. Он основан на принципе "отражения разнообразий значений факторного(ых) на разнообразии значений результативного признака" и устанавливает силу влияния фактора(ов) в выборочных совокупностях.

    Сущность метода дисперсионного анализа заключается в измерении отдельных дисперсий (общая, факториальная, остаточная), и дальнейшем определении силы (доли) влияния изучаемых факторов (оценки роли каждого из факторов, либо их совместного влияния) на результативный(е) признак(и).

    Дисперсионный анализ - это статистический метод оценки связи между факторными и результативным признаками в различных группах, отобранный случайным образом, основанный на определении различий (разнообразия) значений признаков. В основе дисперсионного анализа лежит анализ отклонений всех единиц исследуемой совокупности от среднего арифметического. В качестве меры отклонений берется дисперсия (В)- средний квадрат отклонений. Отклонения, вызываемые воздействием факторного признака (фактора) сравниваются с величиной отклонений, вызываемых случайными обстоятельствами. Если отклонения, вызываемые факторным признаком, более существенны, чем случайные отклонения, то считается, что фактор оказывает существенное влияние на результативный признак.

    Для того, чтобы вычислить дисперсию значения отклонений каждой варианты (каждого зарегистрированного числового значения признака) от среднего арифметического возводят в квадрат. Тем самым избавляются от отрицательных знаков. Затем эти отклонения (разности) суммируют и делят на число наблюдений, т.е. усредняют отклонения. Таким образом, получают значения дисперсий.

    Важным методическим значением для применения дисперсионного анализа является правильное формирование выборки. В зависимости от поставленной цели и задач выборочные группы могут формироваться случайным образом независимо друг от друга (контрольная и экспериментальная группы для изучения некоторого показателя, например, влияние высокого артериального давления на развитие инсульта). Такие выборки называются независимыми.

    Нередко результаты воздействия факторов исследуются у одной и той же выборочной группы (например, у одних и тех же пациентов) до и после воздействия (лечение, профилактика, реабилитационные мероприятия), такие выборки называются зависимыми.

    Дисперсионный анализ, в котором проверяется влияние одного фактора, называется однофакторным (одномерный анализ). При изучении влияния более чем одного фактора используют многофакторный дисперсионный анализ (многомерный анализ).

    Факторные признаки - это те признаки, которые влияют на изучаемое явление.
    Результативные признаки - это те признаки, которые изменяются под влиянием факторных признаков.

    Для проведения дисперсионного анализа могут использоваться как качественные (пол, профессия), так и количественные признаки (число инъекций, больных в палате, число койко-дней).

    Методы дисперсионного анализа:

    1. Метод по Фишеру (Fisher) - критерий F (значения F см. в приложении N 1);
      Метод применяется в однофакторном дисперсионном анализе, когда совокупная дисперсия всех наблюдаемых значений раскладывается на дисперсию внутри отдельных групп и дисперсию между группами.
    2. Метод "общей линейной модели".
      В его основе лежит корреляционный или регрессионный анализ, применяемый в многофакторном анализе.

    Обычно в медико-биологических исследованиях используются только однофакторные, максимум двухфакторные дисперсионные комплексы. Многофакторные комплексы можно исследовать, последовательно анализируя одно- или двухфакторные комплексы, выделяемые из всей наблюдаемой совокупности.

    Условия применения дисперсионного анализа:

    1. Задачей исследования является определение силы влияния одного (до 3) факторов на результат или определение силы совместного влияния различных факторов (пол и возраст, физическая активность и питание и т.д.).
    2. Изучаемые факторы должны быть независимые (несвязанные) между собой. Например, нельзя изучать совместное влияние стажа работы и возраста, роста и веса детей и т.д. на заболеваемость населения.
    3. Подбор групп для исследования проводится рандомизированно (случайный отбор). Организация дисперсионного комплекса с выполнением принципа случайности отбора вариантов называется рандомизацией (перев. с англ. - random), т.е. выбранные наугад.
    4. Можно применять как количественные, так и качественные (атрибутивные) признаки.

    При проведении однофакторного дисперсионного анализа рекомендуется (необходимое условие применения):

    1. Нормальность распределения анализируемых групп или соответствие выборочных групп генеральным совокупностям с нормальным распределением.
    2. Независимость (не связанность) распределения наблюдений в группах.
    3. Наличие частоты (повторность) наблюдений.

    Нормальность распределения определяется кривой Гаусса (Де Мавура), которую можно описать функцией у = f(х), так как она относится к числу законов распределения, используемых для приближенного описания явлений, которые носят случайный, вероятностный характер. Предмет медико-биологических исследований - явления вероятностного характера, нормальное распределение в таких исследованиях встречается весьма часто.

    Принцип применения метода дисперсионного анализа

    Сначала формулируется нулевая гипотеза, то есть предполагается, что исследуемые факторы не оказывают никакого влияния на значения результативного признака и полученные различия случайны.

    Затем определяем, какова вероятность получить наблюдаемые (или более сильные) различия при условии справедливости нулевой гипотезы.

    Если эта вероятность мала*, то мы отвергаем нулевую гипотезу и заключаем, что результаты исследования статистически значимы. Это еще не означает, что доказано действие именно изучаемых факторов (это вопрос, прежде всего, планирования исследования), но все же маловероятно, что результат обусловлен случайностью.
    __________________________________
    * Максимальную приемлемую вероятность отвергнуть верную нулевую гипотезу называют уровнем значимости и обозначают α = 0,05.

    При выполнении всех условий применения дисперсионного анализа, разложение общей дисперсии математически выглядит следующим образом:

    D oбщ. = D факт + D ост. ,

    D oбщ. - общая дисперсия наблюдаемых значений (вариант), характеризуется разбросом вариант от общего среднего. Измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Общее разнообразие складывается из межгруппового и внутригруппового;

    D факт - факторная (межгрупповая) дисперсия, характеризуется различием средних в каждой группе и зависит от влияния исследуемого фактора, по которому дифференцируется каждая группа. Например, в группах различных по этиологическому фактору клинического течения пневмонии средний уровень проведенного койко-дня неодинаков - наблюдается межгрупповое разнообразие.

    D ост. - остаточная (внутригрупповая) дисперсия, которая характеризует рассеяние вариант внутри групп. Отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неуточненных факторов и не зависящую от признака - фактора, положенного в основание группировки. Вариация изучаемого признака зависит от силы влияния каких-то неучтенных случайных факторов, как от организованных (заданных исследователем), так и от случайных (неизвестных) факторов.

    Поэтому общая вариация (дисперсия) слагается из вариации, вызванной организованными (заданными) факторами, называемыми факториальной вариацией и неорганизованными факторами, т.е. остаточной вариацией (случайной, неизвестной).

    Классический дисперсионный анализ проводится по следующим этапам:

    1. Построение дисперсионного комплекса.
    2. Вычисление средних квадратов отклонений.
    3. Вычисление дисперсии.
    4. Сравнение факторной и остаточной дисперсий.
    5. Оценка результатов с помощью теоретических значений распределения Фишера-Снедекора (приложение N 1).

    АЛГОРИТМ ПРОВЕДЕНИЯ ДИСПЕРСИОННОГО АНАЛИЗА ПО УПРОЩЕННОМУ ВАРИАНТУ

    Алгоритм проведения дисперсионного анализа по упрощенному способу позволяет получить те же результаты, но расчеты выполняются значительно проще:

    I этап. Построение дисперсионного комплекса

    Построение дисперсионного комплекса означает построение таблицы, в которой были бы четко разграничены факторы, результативный признак и подбор наблюдений (больных) в каждую группу.

    Однофакторный комплекс состоит из нескольких градаций одного фактора (А). Градации - это выборки из разных генеральных совокупностей (А1, А2, АЗ).

    Двухфакторный комплекс - состоит из нескольких градаций двух факторов в комбинации между собой. Этиологические факторы заболеваемостью пневмонией те же (А1, А2, АЗ) в сочетании с разными формами клинического течения пневмонии (Н1 - острое, Н2 - хроническое).

    Результативный признак (количество койко-дней в среднем) Этиологические факторы развития пневмоний
    А1 А2 А3
    Н1 Н2 Н1 Н2 Н1 Н2
    М = 14 дней

    II этап. Вычисление общей средней (М обш)

    Вычисление суммы вариант по каждой градации факторов: Σ Vj = V 1 + V 2 + V 3

    Вычисление общей суммы вариант (Σ V общ) по всем градациям факторного признака: Σ V общ = Σ Vj 1 + Σ Vj 2 + Σ Vj 3

    Вычисление средней групповой (М гр.) факторного признака: М гр. = Σ Vj / N,
    где N - сумма числа наблюдений по всем градациям факторного I признака (Σn по группам).

    III этап. Расчет дисперсий:

    При соблюдении всех условий применения дисперсионного анализа математическая формула выглядит следующим образом:

    D oбщ. = D факт + D ост.

    D oбщ. - общая дисперсия, характеризуется разбросом вариант (наблюдаемых значений) от общего среднего;
    D факт. - факторная (межгрупповая) дисперсия, характеризует разброс групповых средних от общего среднего;
    D ост. - остаточная (внутригрупповая) дисперсия, характеризует рассеяние вариант внутри групп.

    1. Вычисление факториальной дисперсии (D факт.): D факт. = Σ h - H
    2. Вычисление h проводится по формуле: h = (Σ Vj) / N
    3. Вычисление Н проводится по формуле: H = (Σ V) 2 / N
    4. Вычисление остаточной дисперсии: D ост. = (Σ V) 2 - Σ h
    5. Вычисление общей дисперсии: D oбщ. = (Σ V) 2 - Σ H

    IV этап. Расчет основного показателя силы влияния изучаемого фактора Показатель силы влияния (η 2) факторного признака на результат определяется долей факториальной дисперсии (D факт.) в общей дисперсии (D oбщ.), η 2 (эта) - показывает какую долю занимает влияние изучаемого фактора среди всех других факторов и определяется по формуле:

    V этап. Определение достоверности результатов исследования методом Фишера проводят по формуле:


    F - критерий Фишера;
    F st. - табличное значение (см.приложение 1).
    σ 2 факт, σ 2 ост. - факториальная и остаточная девиаты (от лат. de - от, via - дорога) - отклонение от средней линии, определяются по формулам:


    r - число градаций факторного признака.

    Сравнение критерия Фишера (F) со стандартным (табличным) F проводят по графам таблицы с учетом степеней свободы:

    v 1 = n - 1
    v 2 = N - 1

    По горизонтали определяют v 1 по вертикали - v 2 , на их пересечении определяют табличное значение F, где верхнее табличное значение р ≥ 0,05, а нижнее соответствует р > 0,01, и сравнивают с вычисленным критерием F. Если значение вычисленного критерия F равно или больше табличного, то результаты достоверны и Н 0 не отвергается.

    Условие задачи:

    На предприятии Н. повысился уровень травматизма в связи с чем врач провел исследование отдельных факторов, среди которых изучался стаж работы работающих в цехах. Выборки сделаны на предприятии Н. из 4 цехов с близкими условиями и характером труда. Уровни травматизма рассчитаны на 100 работающих за прошлый год.

    При исследовании фактора рабочего стажа получены следующие данные:

    На основании данных проведённого исследования была выдвинута нулевая гипотеза (Н 0) о влиянии стажа работы на уровень травматизма работников предприятия А.

    Задание
    Подтвердите или опровергните нулевую гипотезу методом одно-факторного дисперсионного анализа:

    1. определите силу влияния;
    2. оцените достоверность влияния фактор.

    Этапы применения дисперсионного анализа
    для определения влияния фактора (стажа работы) на результат (уровень травматизма)

    Вывод. В выборочном комплексе выявлено, что сила влияния стажа работы на уровень травматизма составляет 80% в общем числе других факторов. Для всех цехов завода можно с вероятностью 99,7% (13,3 > 8,7) утверждать, что стаж работы влияет на уровень травматизма.

    Таким образом, нулевая гипотеза (Н 0) не отвергается и влияние стажа работы на уровень травматизма в цехах завода А считается доказанным.

    Значение F (критерий Фишера) стандартного при р ≥ 0,05 (верхнее значение) при р ≥ 0,01 (нижнее значение)

    1 2 3 4 5 6 7 8 9 10 11
    6 6,0
    13,4
    5,1
    10,9
    4,8
    9,8
    4,5
    9,2
    4,4
    8,8
    4,3
    8,5
    4,2
    8,3
    4,1
    8,1
    4,1
    8,0
    4,1
    7,9
    4,0
    7,8
    7 5,6
    12,3
    4,7
    9,6
    4,4
    8,5
    4,1
    7,9
    4,0
    7,5
    3,9
    7,2
    3,8
    7,0
    3,7
    6,8
    3,7
    6,7
    3,6
    6,6
    3,6
    6,5
    8 5,3
    11,3
    4,6
    8,7
    4,1
    7,6
    3,8
    7,0
    3,7
    6,6
    3,6
    6,4
    3,5
    6,2
    3,4
    6,0
    3,4
    5,9
    3,3
    5,8
    3,1
    5,7
    9 5,1
    10,6
    4,3
    8,0
    3,6
    7,0
    3,6
    6,4
    3,5
    6,1
    3,4
    5,8
    3,3
    5,6
    3,2
    5,5
    3,2
    5,4
    3,1
    5,3
    3,1
    5,2
    10 5,0
    10,0
    4,1
    7,9
    3,7
    6,6
    3,5
    6,0
    3,3
    5,6
    3,2
    5,4
    3,1
    5,2
    3,1
    5,1
    3,0
    5,0
    2,9
    4,5
    2,9
    4,8
    11 4,8
    9,7
    4,0
    7,2
    3,6
    6,2
    3,6
    5,7
    3,2
    5,3
    3,1
    5,1
    3,0
    4,9
    3,0
    4,7
    2,9
    4,6
    2,9
    4,5
    2,8
    4,5
    12 4,8
    9,3
    3,9
    6,9
    3,5
    6,0
    3,3
    5,4
    3,1
    5,1
    3,0
    4,7
    2,9
    4,7
    2,9
    4,5
    2,8
    4,4
    2,8
    4,3
    2,7
    4,2
    13 4,7
    9,1
    3,8
    6,7
    3,4
    5,7
    3,2
    5,2
    3,0
    4,9
    2,9
    4,6
    2,8
    4,4
    2,8
    4,3
    2,7
    4,2
    2,7
    4,1
    2,6
    4,0
    14 4,6
    8,9
    3,7
    6,5
    3,3
    5,6
    3,1
    5,0
    3,0
    4,7
    2,9
    4,5
    2,8
    4,3
    2,7
    4,1
    2,7
    4,0
    2,6
    3,9
    2,6
    3,9
    15 4,5
    8,7
    3,7
    6,4
    3,3
    5,4
    3,1
    4,9
    2,9
    4,6
    2,8
    4,3
    2,7
    4,1
    2,6
    4,0
    2,6
    3,9
    2,5
    3,8
    2,5
    3,7
    16 4,5
    8,5
    3,6
    6,2
    3,2
    5,3
    3,0
    4,8
    2,9
    4,4
    2,7
    4,2
    2,7
    4,0
    2,6
    3,9
    2,5
    3,8
    2,5
    3,7
    2,5
    3,6
    17 4,5
    8,4
    3,6
    6,1
    3,2
    5,2
    3,0
    4,7
    2,8
    4,3
    2,7
    4,1
    2,6
    3,9
    2,6
    3,8
    2,5
    3,8
    2,5
    3,6
    2,4
    3,5
    18 4,4
    8,3
    3,5
    6,0
    3,2
    5,1
    2,9
    4,6
    2,8
    4,2
    2,7
    4,0
    2,6
    3,8
    2,5
    3,7
    2,7
    3,6
    2,4
    3,6
    3,4
    3,5
    19 4,4
    8,2
    3,5
    5,9
    3,1
    5,0
    2,9
    4,5
    2,7
    4,2
    2,6
    3,9
    2,5
    3,8
    2,5
    3,6
    2,4
    3,5
    2,4
    3,4
    2,3
    3,4
    20 4,3
    8,1
    3,5
    5,8
    3,1
    4,9
    2,9
    4,4
    2,7
    4,1
    2,6
    3,9
    2,5
    3,7
    2,4
    3,6
    2,4
    3,4
    2,3
    3,4
    2,3
    3,3

    1. Власов В.В. Эпидемиология. - М.: ГЭОТАР-МЕД, 2004. 464 с.
    2. Архипова ГЛ., Лаврова И.Г., Трошина И.М. Некоторые современные методы статистического анализа в медицине. - М.: Метроснаб, 1971. - 75 с.
    3. Зайцев В.М., Лифляндский В.Г., Маринкин В.И. Прикладная медицинская статистика. - СПб.: ООО "Издательство ФОЛИАНТ", 2003. - 432 с.
    4. Платонов А.Е. Статистический анализ в медицине и биологии: задачи, терминология, логика, компьютерные методы. - М.: Издательство РАМН, 2000. - 52 с.
    5. Плохинский Н.А. Биометрия. - Издательство Сибирского отделения АН СССР Новосибирск. - 1961. - 364 с.

    5.1. Что такое дисперсионный анализ?

    Дисперсионный анализ разработан в 20-х годах XX века английским математиком и генетиком Рональдом Фишером. По данным опроса среди ученых, где выяснялось, кто сильнее всего повлиял на биологию XX века, первенство получил именно сэр Фишер (за свои заслуги он был награжден рыцарским званием - одним из высших отличий в Великобритании); в этом отношении Фишер сравним с Чарльзом Дарвином, оказавшим наибольшее влияние на биологию XIX века.

    Дисперсионный анализ (Analis of variance) является сейчас отдельной отраслью статистики. Он основан на открытом Фишером факте, что меру изменчивости изучаемой величины можно разложить на части, соответствующие влияющим на эту величину факторам и случайным отклонениям.

    Чтобы понять суть дисперсионного анализа, мы выполним однотипные расчеты дважды: «вручную» (с калькулятором) и с помощью программы Statistica. Для упрощения нашей задачи мы будем работать не с результатами действительного описания разнообразия зеленых лягушек, а с вымышленным примером, который касается сравнения женщин и мужчин у людей. Рассмотрим разнообразие роста 12 взрослых человек: 7 женщин и 5 мужчин.

    Таблица 5.1.1. Пример для однофакторного дисперсионного анализа: данные о поле и росте 12 людей

    Проведем однофакторный дисперсионный анализ: сравним, статистически значимо или нет отличаются ли мужчины и женщины в охарактеризованной группе по росту.

    5.2. Тест на нормальность распределения

    Дальнейшие рассуждения основываются на том, что распределение в рассматриваемой выборке нормальное или близкое к нормальному. Если распределение далеко от нормального, дисперсия (варианса) не является адекватной мерой его его изменчивости. Впрочем, дисперсионный анализ относительно устойчив к отклонениям распределения от нормальности.

    Тест этих данных на нормальность можно провести двумя разными способами. Первый: Statistics / Basic Statistics/Tables / Descriptive statistics / Вкладка Normality. Во вкладке Normality можно выбрать используемые тесты нормальности распределения. При нажатии на кнопку Frequency tables появится частотная таблица, а кнопки Histograms - гистограмма. На таблице и гистограмме будут приведены результаты различных тестов.

    Второй способ связан с использованием соответствующих возможнойтсей при построении гистограмм. В диалоге построения гистограмм (Grafs / Histograms...) следует выбрать вкладку Advanced. В ее нижней части есть блок Statistics. Отметим на ней Shapiro-Wilk test и Kolmogorov-Smirnov test, как это показано на рисунке.

    Рис. 5.2.1. Статистические тесты на нормальность распределения в диалоге построения гистограмм

    Как видно по гистограмме, распределение роста в нашей выборке отличается от нормального (в середине - «провал»).


    Рис. 5.2.2. Гистограмма, построенная с параметрами, указанными на предыдущем рисунке

    Третья строка в заголовке графика указывает параметры нормального распределения, к которому оказалось ближе всего наблюдаемое распределение. Генеральное среднее составляет 173, генеральное стандартное отклонение - 10,4. Внизу во врезке на графике указаны результаты тестов на нормальность. D - это критерий Колмогорова-Смирнова, а SW-W - Шапиро-Вилка. Как видно, для всех использованных тестов отличия распределения по росту от нормального распределения оказались статистически незначимыми (p во всех случаях больше, чем 0,05).

    Итак, формально говоря, тесты на соответствие распределения нормальному не «запретили» нам использовать параметрический метод, основанный на предположении о нормальном распределении. Как уже сказано, дисперсионный анализ относительно устойчив к отклонениям от нормальности, поэтому мы им все-таки воспользуемся.

    5.3. Однофакторный дисперсионный анализ: вычисления «вручную»

    Для характеристики изменчивости роста людей в приведенном примере вычислим сумму квадратов отклонений (в английском обозначается как SS , Sum of Squares или ) отдельных значений от среднего: . Среднее значение для роста в приведенном примере составляет 173 сантиметра. Исходя из этого,

    SS = (186–173) 2 + (169–173) 2 + (166–173) 2 + (188–173) 2 + (172–173) 2 + (179–173) 2 + (165–173) 2 + (174–173) 2 + (163–173) 2 + (162–173) 2 + (162–173) 2 + (190–173) 2 ;

    SS = 132 + 42 + 72 + 152 + 12 + 62 + 82 + 12 + 102 + 112 + 112 + 172;

    SS = 169 + 16 + 49 + 225 + 1 + 36 + 64 + 1 + 100 + 121 + 121 + 289 = 1192.

    Полученная величина (1192) - мера изменчивости всей совокупности данных. Однако они состоят из двух групп, для каждой из которых можно выделить свою среднюю. В приведенных данных средний рост женщин - 168 см, а мужчин - 180 см.

    Вычислим сумму квадратов отклонений для женщин:

    SS f = (169–168) 2 + (166–168) 2 + (172–168) 2 + (179–168) 2 + (163–168) 2 + (162–168) 2 ;

    SS f = 12 + 22 + 42 + 112 + 32 + 52 + 62 = 1 + 4 + 16 + 121 + 9 + 25 + 36 = 212.

    Также вычислим сумму квадратов отклонений для мужчин:

    SS m = (186–180) 2 + (188–180) 2 + (174–180) 2 + (162–180) 2 + (190–180) 2 ;

    SS m = 62 + 82 + 62 + 182 + 102 = 36 + 64 + 36 + 324 + 100 = 560.

    От чего зависит исследуемая величина в соответствии с логикой дисперсионного анализа?

    Две вычисленные величины, SS f и SS m , характеризуют внутригрупповую вариансу, которую в дисперсионном анализе принято называть «ошибкой». Происхождение этого названия связано со следующей логикой.

    От чего зависит рост человека в рассматриваемом примере? Прежде всего, от среднего роста людей вообще, вне зависимости от их пола. Во вторую очередь - от пола. Если люди одного пола (мужского) выше, чем другого (женского), это можно представить в виде сложения с «общечеловеческой» средней какой-то величины, эффекта пола. Наконец, люди одного пола отличаются по росту в силу индивидуальных отличий. В рамках модели, описывающей рост как сумму общечеловеческой средней и поправки на пол, индивидуальные отличия необъяснимы, и их можно рассматривать как «ошибку».

    Итак, в соответствии с логикой дисперсионного анализа, исследуемая величина определяется следующим образом: , где x ij - i-тое значение изучаемой величины при j-том значении изучаемого фактора; - генеральное среднее; F j - влияние j-того значения изучаемого фактора; - «ошибка», вклад индивидуальности объекта, к которому относится величина x ij .

    Межгрупповая сумма квадратов

    Итак, SS ошибки = SS f + SS m = 212 + 560 = 772. Этой величиной мы описали внутригрупповую изменчивость (при выделении групп по полу). Но есть и вторая часть изменчивости - межгрупповая, которую мы назовем SS эффекта (поскольку речь идет об эффекте разделения совокупности рассматриваемых объектов на женщин и мужчин).

    Среднее каждой группы отличается от общей средней. Вычисляя вклад этого отличия в общую меру изменчивости, мы должны умножить отличие групповой и общей средней на число объектов в каждой группе.

    SS эффекта = = 7×(168–173) 2 + 5×(180–173) 2 = 7×52 + 5×72 = 7×25 + 5×49 = 175 + 245 = 420.

    Здесь проявился открытый Фишером принцип постоянства суммы квадратов: SS = SS эффекта + SS ошибки , т.е. для данного примера, 1192 = 440 + 722.

    Средние квадраты

    Сравнивая в нашем примере межгрупповую и внутригрупповую суммы квадратов, мы можем увидеть, что первая связана с варьированием двух групп, а вторая - 12 величин в 2 группах. Количество степеней свободы (df ) для какого-то параметра может быть определено как разность количества объектов в группе и количества зависимостей (уравнений), которое связывает эти величины.

    В нашем примере df эффекта = 2–1 = 1, а df ошибки = 12–2 = 10.

    Мы можем разделить суммы квадратов на число их степеней свободы, получив средние квадраты (MS , Means of Squares). Сделав это, мы можем установить, что MS - ни что иное, как вариансы («дисперсии», результат деления суммы квадратов на число степеней свободы). После этого открытия мы можем понять структуру таблицы дисперсионного анализа. Для нашего примера она будет иметь следующий вид.

    Эффект

    Ошибка

    МS эффекта и МS ошибки являются оценками межгрупповой и внутригрупповой вариансы, и, значит, их можно сравнить по критерию F (критерию Снедекора, названному в честь Фишера), предназначенному для сравнения варианс. Этот критерий представляет собой просто частное от деления большей вариансы на меньшую. В нашем случае это 420 / 77,2 = 5,440.

    Определение статистической значимости критерия Фишера по таблицам

    Если бы мы определяли статистическую значимость эффекта вручную, по таблицам, нам было бы необходимо сравнить полученное значение критерия F с критическим, соответствующим определенному уровню статистической значимости при заданных степенях свободы.


    Рис. 5.3.1. Фрагмент таблицы с критическими значениями критерия F

    Как можно убедиться, для уровня статистической значимости p=0,05 критическое значение критерия F составляет 4,96. Это означает, что в нашем примере действие изучавшегося пола зарегистрировано с уровнем статистической значимости 0,05.

    Полученный результат можно интерпретировать так. Вероятность нулевой гипотезы, согласно которой средний рост женщин и мужчин одинаков, а зарегистрированная разница в их росте связана со случайностью при формировании выборок, составляет менее 5%. Это означает, что мы должны выбрать альтернативную гипотезу, заключающуюся в том, что средний рост женщин и мужчин отличается.

    5.4. Однофакторный дисперсионный анализ (ANOVA) в пакете Statistica

    В тех случаях, когда расчеты производятся не вручную, а с помощью соответствующих программ (например, пакета Statistica) величина p определяется автоматически. Можно убедиться, что она несколько выше критического значения.

    Чтобы проанализировать обсуждаемый пример с помощью простейшего варианта дисперсионного анализа, нужно запустить для файла с соответствующими данными процедуру Statistics / ANOVA и выбрать в окне Type of analysis вариант One-way ANOVA (однофакторный дисперсионный анализ), а в окне Specification method - вариант Quick specs dialog.


    Рис. 5.4.1. Диалог General ANOVA/MANOVA (Дисперсионный анализ)

    В открывшемся окне быстрого диалога в поле Variables нужно указать те столбцы, которые содержат данные, изменчивость которых мы изучаем (Dependent variable list; в нашем случае - столбец Growth), а также столбец, содержащие значения, разбивающие изучаемую величину на группы (Catigorical predictor (factor); в нашем случае - столбец Sex). В данном варианте анализа, в отличие от многофакторного анализа, может рассматриваться только один фактор.


    Рис. 5.4.2. Диалог One-Way ANOVA (Однофакторный дисперсионный анализ)

    В окне Factor codes следует указать те значения рассматриваемого фактора, которые нужно обрабатывать в ходе данного анализа. Все имеющиеся значения можно посмотреть с помощью кнопки Zoom; если, как в нашем примере, нужно рассматривать все значения фактора (а для пола в нашем примере их всего два), можно нажать кнопку All. Когда заданы обрабатываемые столбцы и коды фактора, можно нажать кнопку OK и перейти в окно быстрого анализа результатов: ANOVA Results 1, во вкладку Quick.

    Рис. 5.4.3. Вкладка Quick окна результатов дисперсионного анализа

    Кнопка All effects/Graphs позволяет увидеть, как соотносятся средние двух групп. Над графиком указывается число степеней свободы, а также значения F и p для рассматриваемого фактора.


    Рис. 5.4.4. Графическое отображение результатов дисперсионного анализа

    Кнопка All effects позволяет получить таблицу дисперсионного анализа, аналогичную описанной выше (с некоторыми существенными отличиями).


    Рис. 5.4.5. Таблица с результатами дисперсионного анализа (сравните с аналогичной табличей, полученной "вручную")

    В нижней строке таблицы указана сумма квадратов, количество степеней свободы и средние квадраты для ошибки (внутригрупповой изменчивости). На строку выше - аналогичные показатели для исследуемого фактора (в данном случае - признака Sex), a также критерий F (отношение средних квадратов эффекта к средним квадратам ошибки), и уровень его статистической значимости. То, что действие рассматриваемого фактора оказалось статистически значимым, показывает выделение красным цветом.

    А в первой строке приведены данные по показателю «Intercept». Эта строка таблицы представляет загадку для пользователей, приобщающихся к пакету Statistica в его 6-й или более поздней версии. Величина Intercept (пересечение, перехват), вероятно, связана с разложением суммы квадратов всех значений данных (т.е. 1862 + 1692 … = 360340). Указанное для нее значение критерия F получено путем деления MS Intercept /MS Error = 353220 / 77,2 = 4575,389 и, естественно, дает очень низкое значение p . Интересно, что в Statistica-5 эта величина вообще не вычислялась, а руководства по использованию более поздних версий пакета никак не комментируют ее введение. Вероятно, лучшее, что может сделать биолог, работающий с пакетом Statistica-6 и последующих версий, это попросту игнорировать строку Intercept в таблице дисперсионного анализа.

    5.5. ANOVA и критерии Стьюдента и Фишера: что лучше?

    Как вы могли заметить, те данные, которые мы сравнивали с помощью однофакторного дисперсионного анализа, мы могли исследовать и с помощью критериев Стьюдента и Фишера. Сравним эти два метода. Для этого вычислим разницу в росте мужчин и женщин с использованием этих критериев. Для этого нам придется пройти по пути Statistics / Basic Statistics / t-test, independent, by groups. Естественно, Dependent variables - это переменная Growth, а Grouping variable - переменная Sex.


    Рис. 5.5.1. Сравнение данных, обработанных с помощью ANOVA, по критериям Стьюдента и Фишера

    Как можно убедиться, результат тот же самый, что и при использовании ANOVA. p = 0,041874 в обоих случаях, как показанном на рис. 5.4.5, так и показанном на рис. 5.5.2 (убедитесь в этом сами!).


    Рис. 5.5.2. Результаты анализа (подробная расшифровка таблицы результатов - в пункте, посвященном критерию Стьюдента)

    Важно подчеркнуть, что хотя критерий F с математической точки зрения в рассматриваемом анализе по критериям Стьюдента и Фишера тот же самый, что в ANOVA (и выражает отношение варианс), смысл его в результатах анализа, представляемых итоговой таблицей, совсем иной. При сравнении по критериям Стьюдента и Фишера сравнение средних значений выборок проводится по критерию Стьюдента, и сравнение их изменчивости проводится по критерию Фишера. В результатах анализа выводится не сама варианса, а ее квадратный корень - стандартное отклонение.

    В дисперсионном анализе, напротив, критерий Фишера используется для сравнения средних разных выборок (как мы обсудили, это осуществляется с помощью разделения суммы квадратов на части и сравнения средней суммы квадратов, соответствующей меж- и внутригрупповой изменчивости).

    Впрочем, приведенное отличие касается скорее представления результатов статистического исследования, чем его сути. Как указывает, например, Гланц (1999, с. 99), сравнение групп по критерию Стьюдента можно рассматривать как частный случай дисперсионного анализа для двух выборок.

    Итак, сравнение выборок по критериям Стьюдента и Фишера имеет одно важное преимущество перед дисперсионным анализом: в нем можно сравнить выборки с точки зрения их изменчивости. Но преимущества дисперсионного анализа все равно весомее. К их числу, например, относится возможность одновременного сравнения нескольких выборок.