По литературе

Длина от точки до прямой. Координаты проекции точки на прямую и расстояние. Решение задач на нахождение расстояния от заданной точки до заданной прямой в пространстве

Формула для вычисления расстояния от точки до прямой на плоскости

Если задано уравнение прямой Ax + By + C = 0, то расстояние от точки M(M x , M y) до прямой можно найти, используя следующую формулу

Примеры задач на вычисление расстояния от точки до прямой на плоскости

Пример 1.

Найти расстояние между прямой 3x + 4y - 6 = 0 и точкой M(-1, 3).

Решение. Подставим в формулу коэффициенты прямой и координаты точки

Ответ: расстояние от точки до прямой равно 0.6.

уравнение плоскости проходящей через точки перпендикулярно векторуОбщее уравнение плоскости

Ненулевой вектор , перпендикулярный заданной плоскости, называетсянормальным вектором (или, короче, нормалью ) для этой плоскости.

Пусть в координатном пространстве (в прямоугольной системе координат) заданы:

а) точка ;

б) ненулевой вектор (рис.4.8,а).

Требуется составить уравнение плоскости, проходящей через точку перпендикулярно векторуКонец доказательства.

Рассмотрим теперь различные типы уравнений прямой на плоскости.

1) Общее уравнение плоскости P .

Из вывода уравнения следует, что одновременно A , B и C не равны 0 (объясните почему).

Точка принадлежит плоскостиP только в том случае, когда ее координаты удовлетворяют уравнению плоскости. В зависимости от коэффициентов A , B , C и D плоскость P занимает то или иное положение:

‑ плоскость проходит через начало системы координат, ‑ плоскость не проходит через начало системы координат,

‑ плоскость параллельна оси X ,

X ,

‑ плоскость параллельна оси Y ,

‑ плоскость не параллельна оси Y ,

‑ плоскость параллельна оси Z ,

‑ плоскость не параллельна оси Z .

Докажите эти утверждения самостоятельно.

Уравнение (6) легко выводится из уравнения (5). Действительно, пусть точка лежит на плоскости P . Тогда ее координаты удовлетворяют уравнениюВычитая из уравнения (5) уравнение (7) и группируя слагаемые, получим уравнение (6). Рассмотрим теперь два вектора с координатами соответственно. Из формулы (6) следует, что их скалярное произведение равно нулю. Следовательно, вектор перпендикулярен вектору Начало и конец последнего вектора находятся соответственно в точках которые принадлежат плоскости P . Следовательно, вектор перпендикулярен плоскости P . Расстояние от точкидо плоскости P , общее уравнение которой определяется по формулеДоказательство этой формулы полностью аналогично доказательству формулы расстояния между точкой и прямой (см. рис. 2).
Рис. 2. К выводу формулы расстояния между плоскостью и прямой.

Действительно, расстояние d между прямой и плоскостью равно

где ‑ точка лежащая на плоскости. Отсюда, как и в лекции № 11, получается выше приведенная формула. Две плоскости параллельны, если параллельны их нормальные вектора. Отсюда получаем условие параллельности двух плоскостей‑ коэффициенты общих уравнений плоскостей . Две плоскости перпендикулярны, если перпендикулярны их нормальные вектора, отсюда получаем условие перпендикулярности двух плоскостей, если известны их общие уравнения

Угол f между двумя плоскостями равен углу между их нормальными векторами (см. рис. 3) и может, поэтому, быть вычислен по формуле
Определение угла между плоскостями.

(11)

Расстояние от точки до плоскости и способы его нахождения

Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. Существует, по крайней мере, два способа найти расстояние от точки до плоскости:геометрический и алгебраический .

При геометрическом способе нужно сначала понять, как расположен перпендикуляр из точки на плоскость: может он лежит в какой –то удобной плоскости, является высотой в какой-нибудь удобном (или не очень) треугольнике, а может этот перпендикуляр вообще является высотой в какой-нибудь пирамиде.

После этого первого и самого сложного этапа задача распадается на несколько конкретных планиметрических задач (быть может, в разных плоскостях).

При алгебраическом способе для того, чтобы найти расстояние от точки до плоскости, нужно ввести систему координат, найти координаты точки и уравнение плоскости, и после этого применить формулу расстояния от точки до плоскости.

Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую. В начертательной геометрии она определяется графическим путем по приведенному ниже алгоритму.

Алгоритм

  1. Прямую переводят в положение, в котором она будет параллельна какой-либо плоскости проекции. Для этого применяют методы преобразования ортогональных проекций.
  2. Из точки проводят перпендикуляр к прямой. В основе данного построения лежит теорема о проецировании прямого угла.
  3. Длина перпендикуляра определяется путем преобразования его проекций или с использованием способа прямоугольного треугольника.

На следующем рисунке представлен комплексный чертеж точки M и прямой b, заданной отрезком CD. Требуется найти расстояние между ними.

Согласно нашему алгоритму, первое, что необходимо сделать, это перевести прямую в положение, параллельное плоскости проекции. При этом важно понимать, что после проведенных преобразований фактическое расстояние между точкой и прямой не должно измениться. Именно поэтому здесь удобно использовать метод замены плоскостей , который не предполагает перемещение фигур в пространстве.

Результаты первого этапа построений показаны ниже. На рисунке видно, как параллельно b введена дополнительная фронтальная плоскость П 4 . В новой системе (П 1 , П 4) точки C"" 1 , D"" 1 , M"" 1 находятся на том же удалении от оси X 1 , что и C"", D"", M"" от оси X.

Выполняя вторую часть алгоритма, из M"" 1 опускаем перпендикуляр M"" 1 N"" 1 на прямую b"" 1 , поскольку прямой угол MND между b и MN проецируется на плоскость П 4 в натуральную величину. По линии связи определяем положение точки N" и проводим проекцию M"N" отрезка MN.

На заключительном этапе нужно определить величину отрезка MN по его проекциям M"N" и M"" 1 N"" 1 . Для этого строим прямоугольный треугольник M"" 1 N"" 1 N 0 , у которого катет N"" 1 N 0 равен разности (Y M 1 – Y N 1) удаления точек M" и N" от оси X 1 . Длина гипотенузы M"" 1 N 0 треугольника M"" 1 N"" 1 N 0 соответствует искомому расстоянию от M до b.

Второй способ решения

  • Параллельно CD вводим новую фронтальную плоскость П 4 . Она пересекает П 1 по оси X 1 , причем X 1 ∥C"D". В соответствии с методом замены плоскостей определяем проекции точек C"" 1 , D"" 1 и M"" 1 , как это изображено на рисунке.
  • Перпендикулярно C"" 1 D"" 1 строим дополнительную горизонтальную плоскость П 5 , на которую прямая b проецируется в точку C" 2 = b" 2 .
  • Величина расстояния между точкой M и прямой b определяется длиной отрезка M" 2 C" 2 , обозначенного красным цветом.

Похожие задачи:

Умение находить расстояние между разными геометрическими объектами важно, когда выполняются расчеты площади поверхности фигур и их объемов. В данной статье рассмотрим вопрос о том, как находить от точки до прямой расстояние в пространстве и на плоскости.

Математическое описание прямой

Чтобы понять, как находить расстояние от точки до прямой, следует разобраться с вопросом математического задания этих геометрических объектов.

С точкой все просто, она описывается набором координат, число которых соответствует мерности пространства. Например, на плоскости это две координаты, в трехмерном пространстве - три.

Что касается одномерного объекта - прямой, то для ее описания применяют несколько видов уравнений. Рассмотрим только два из них.

Первый вид называется векторным уравнением. Ниже приведены выражения для прямых в трехмерном и двумерном пространстве:

(x; y; z) = (x 0 ; y 0 ; z 0) + α × (a; b; c);

(x; y) = (x 0 ; y 0) + α × (a; b)

В этих выражениях координаты с нулевыми индексами описывают точку, через которую проходит заданная прямая, набор координат (a; b; c) и (a; b) - это так называемые направляющие вектора для соответствующей прямой, α - это параметр, который может принимать любое действительное значение.

Векторное уравнение удобно в том плане, что оно явно содержит вектор направления прямой, координаты которого можно использовать при решении задач параллельности или перпендикулярности разных геометрических объектов, например двух прямых.

Второй вид уравнения, который мы рассмотрим для прямой, называется общим. В пространстве этот вид задается общими уравнениями двух плоскостей. На плоскости же он имеет следующую форму:

A × x + B × y + C = 0

Когда выполняют построение графика, то его часто записывают зависимостью от икса/игрека, то есть:

y = -A / B × x +(-C / B)

Здесь свободный член -C / B соответствует координате пересечения прямой с осью y, а коэффициент -A / B связан с углом наклона прямой к оси x.

Понятие о расстоянии между прямой и точкой

Разобравшись с уравнениями, можно непосредственно переходить к ответу на вопрос о том, как находить от точки до прямой расстояние. В 7 классе школы начинают рассматривать этот вопрос с определения соответствующей величины.

Расстоянием между прямой и точкой называется длина перпендикулярного этой прямой отрезка, который опущен из рассматриваемой точки. Ниже на рисунке изображена прямая r и точка A. Синим цветом показан перпендикулярный прямой r отрезок. Его длина является искомым расстоянием.

Здесь изображен двумерный случай, тем не менее данное определение расстояния справедливо и для трехмерной задачи.

Необходимые формулы

В зависимости от того, в каком виде записано уравнение прямой и в каком пространстве решается задача, можно привести две основные формулы, дающие ответ на вопрос о том, как найти расстояние между прямой и точкой.

Обозначим известную точку символом P 2 . Если уравнение прямой задано в векторном виде, то для d расстояния между рассматриваемыми объектами справедлива формула:

d = || / |v¯|

То есть для определения d следует вычислить модуль векторного произведения направляющего для прямой вектора v¯ и вектора P 1 P 2 ¯, начало которого лежит в произвольной точке P 1 на прямой, а конец находится в точке P 2 , затем поделить этот модуль на длину v¯. Эта формула является универсальной для плоского и трехмерного пространства.

Если задача рассматривается на плоскости в системе координат xy и уравнение прямой задано в общем виде, тогда следующая формула найти расстояние от прямой до точки позволяет так:

Прямая: A × x + B × y + C = 0;

Точка: P 2 (x 2 ; y 2 ; z 2);

Расстояние: d = |A × x 2 + B × y 2 + C| / √(A 2 + B 2)

Приведенная формула является достаточно простой, однако ее использование ограничено отмеченными выше условиями.

Координаты проекции точки на прямую и расстояние

Ответить на вопрос о том, как находить расстояние от точки до прямой, можно также другим способом, не предполагающим запоминание приведенных формул. Этот способ заключается в определении точки на прямой, которая является проекцией исходной точки.

Предположим, что имеется точка M и прямая r. Проекция на r точки M соответствует некоторой точке M 1 . Расстояние от M до r равно длине вектора MM 1 ¯.

Как найти координаты M 1 ? Очень просто. Достаточно вспомнить, что вектор прямой v¯ будет перпендикулярен MM 1 ¯, то есть их скалярное произведение должно быть равным нулю. Добавляя к этому условию тот факт, что координаты M 1 должны удовлетворять уравнению прямой r, мы получаем систему простых линейных уравнений. В результате ее решения получаются координаты проекции точки M на r.

Описанная в этом пункте методика нахождения расстояния от прямой до точки может использоваться для плоскости и для пространства, однако ее применение предполагает знание векторного уравнения для прямой.

Задача на плоскости

Теперь пришло время показать, как использовать представленный математический аппарат для решения реальных задач. Предположим, что на плоскости задана точка M(-4; 5). Необходимо расстояние найти от точки М до прямой, которая описывается уравнением общего вида:

3 × (-4) + 6 = -6 ≠ 5

То есть M не лежит на прямой.

Поскольку уравнение прямой задано не в общем виде, приведем его к таковому, чтобы иметь возможность воспользоваться соответствующей формулой, имеем:

y = 3 × x + 6 =>

3 × x - y + 6 = 0

Теперь можно подставлять известные числа в формулу для d:

d = |A × x 2 + B × y 2 + C| / √(A 2 +B 2) =

= |3 × (-4) -1 × 5+6| / √(3 2 +(-1) 2) = 11 / √10 ≈ 3,48

Задача в пространстве

Теперь рассмотрим случай в пространстве. Пусть прямая описывается следующим уравнением:

(x; y; z) = (1; -1 ; 0) + α × (3; -2; 1)

Чему равно расстояние от нее до точки M(0; 2; -3)?

Так же, как и в предыдущем случае, проверим принадлежность M заданной прямой. Для этого подставим координаты в уравнение и перепишем его в явном виде:

x = 0 = 1 + 3 × α => α = -1/3;

y = 2 = -1 -2 × α => α = -3/2;

Поскольку получены разные параметры α, то M не лежит на этой прямой. Рассчитаем теперь расстояние от нее до прямой.

Чтобы воспользоваться формулой для d, возьмем произвольную точку на прямой, например P(1; -1; 0), тогда:

Вычислим векторное произведение между PM¯ и направляющим вектором прямой v¯. Получаем:

= [(-1; 3; -3) * (3; -2; 1)] = (-3; -8; -7)

Теперь подставляем модули найденного вектора и вектора v¯ в формулу для d, получаем:

d = √(9 + 64 + 49) / √(9 + 4 + 1) ≈ 2,95

Этот ответ можно было получить, воспользовавшись описанной выше методикой, предполагающей решение системы линейных уравнений. В этой и предыдущей задачах вычисленные значения расстояния от прямой до точки представлены в единицах соответствующей системы координат.

О-о-о-о-о… ну и жесть, словно вам сам себе приговор зачитал =) Впрочем, потом релаксация поможет, тем более, сегодня купил подходящие аксессуары. Поэтому приступим к первому разделу, надеюсь, к концу статьи сохраню бодрое расположение духа.

Взаимное расположение двух прямых

Тот случай, когда зал подпевает хором. Две прямые могут :

1) совпадать;

2) быть параллельными: ;

3) или пересекаться в единственной точке: .

Справка для чайников : пожалуйста, запомните математический знак пересечения , он будет встречаться очень часто. Запись обозначает, что прямая пересекается с прямой в точке .

Как определить взаимное расположение двух прямых?

Начнём с первого случая:

Две прямые совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны , то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов: . Из каждого уравнения следует, что , следовательно, данные прямые совпадают.

Действительно, если все коэффициенты уравнения умножить на –1 (сменить знаки), и все коэффициенты уравнения сократить на 2, то получится одно и то же уравнение: .

Второй случай, когда прямые параллельны:

Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .

В качестве примера рассмотрим две прямые . Проверяем пропорциональность соответствующих коэффициентов при переменных :

Однако совершенно очевидно, что .

И третий случай, когда прямые пересекаются:

Две прямые пересекаются, тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны , то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Так, для прямых составим систему:

Из первого уравнения следует, что , а из второго уравнения: , значит, система несовместна (решений нет). Таким образом, коэффициенты при переменных не пропорциональны.

Вывод: прямые пересекаются

В практических задачах можно использовать только что рассмотренную схему решения. Она, кстати, весьма напоминает алгоритм проверки векторов на коллинеарность, который мы рассматривали на уроке Понятие линейной (не) зависимости векторов. Базис векторов . Но существует более цивилизованная упаковка:

Пример 1

Выяснить взаимное расположение прямых:

Решение основано на исследовании направляющих векторов прямых:

а) Из уравнений найдём направляющие векторы прямых: .


, значит, векторы не коллинеарны и прямые пересекаются.

На всякий случай поставлю на распутье камень с указателями:

Остальные перепрыгивают камень и следуют дальше, прямо к Кащею Бессмертному =)

б) Найдем направляющие векторы прямых :

Прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают. Тут и определитель считать не надо.

Очевидно, что коэффициенты при неизвестных пропорциональны, при этом .

Выясним, справедливо ли равенство :

Таким образом,

в) Найдем направляющие векторы прямых :

Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны. Прямые либо параллельны либо совпадают.

Коэффициент пропорциональности «лямбда» нетрудно усмотреть прямо из соотношения коллинеарных направляющих векторов . Впрочем, его можно найти и через коэффициенты самих уравнений: .

Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:

Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).

Таким образом, прямые совпадают.

Ответ :

Очень скоро вы научитесь (или даже уже научились) решать рассмотренную задачу устно буквально в считанные секунды. В этой связи не вижу смысла предлагать что-либо для самостоятельного решения, лучше заложим ещё один важный кирпич в геометрический фундамент:

Как построить прямую, параллельную данной?

За незнание этой простейшей задачи сурово наказывает Соловей-Разбойник.

Пример 2

Прямая задана уравнением . Составить уравнение параллельной прямой, которая проходит через точку .

Решение : Обозначим неизвестную прямую буквой . Что о ней сказано в условии? Прямая проходит через точку . А если прямые параллельны, то очевидно, что направляющий вектор прямой «цэ» подойдёт и для построения прямой «дэ».

Вытаскиваем направляющий вектор из уравнения :

Ответ :

Геометрия примера выглядит незатейливо:

Аналитическая же проверка состоит в следующих шагах:

1) Проверяем, что у прямых один и тот же направляющий вектор (если уравнение прямой не упрощено должным образом, то векторы будут коллинеарны).

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Аналитическую проверку в большинстве случаев легко выполнить устно. Посмотрите на два уравнения, и многие из вас быстро определят параллельность прямых безо всякого чертежа.

Примеры для самостоятельного решения сегодня будут творческими. Потому что вам ещё придётся тягаться с Бабой-Ягой, а она, знаете, любительница всяких загадок.

Пример 3

Составить уравнение прямой, проходящей через точку , параллельную прямой , если

Существует рациональный и не очень рациональный способ решения. Самый короткий путь – в конце урока.

С параллельными прямыми немного поработали и к ним ещё вернёмся. Случай совпадающих прямых малоинтересен, поэтому рассмотрим задачу, которая хорошо знакома вам из школьной программы:

Как найти точку пересечения двух прямых?

Если прямые пересекаются в точке , то её координаты являются решением системы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Пример 4

Найти точку пересечения прямых

Решение : Существуют два способа решения – графический и аналитический.

Графический способ состоит в том, чтобы просто начертить данные прямые и узнать точку пересечения непосредственно из чертежа:

Вот наша точка: . Для проверки следует подставить её координаты в каждое уравнение прямой, они должны подойти и там, и там. Иными словами, координаты точки являются решением системы . По сути, мы рассмотрели графический способ решения системы линейных уравнений с двумя уравнениями, двумя неизвестными.

Графический способ, конечно, неплох, но существует заметные минусы. Нет, дело не в том, что так решают семиклассники, дело в том, что на правильный и ТОЧНЫЙ чертёж уйдёт время. Кроме того, некоторые прямые построить не так-то просто, да и сама точка пересечения может находиться где-нибудь в тридесятом царстве за пределами тетрадного листа.

Поэтому точку пересечения целесообразнее искать аналитическим методом. Решим систему:

Для решения системы использован метод почленного сложения уравнений. Чтобы наработать соответствующие навыки, посетите урок Как решить систему уравнений?

Ответ :

Проверка тривиальна – координаты точки пересечения должны удовлетворять каждому уравнению системы.

Пример 5

Найти точку пересечения прямых в том случае, если они пересекаются.

Это пример для самостоятельного решения. Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение прямой .
2) Составить уравнение прямой .
3) Выяснить взаимное расположение прямых .
4) Если прямые пересекаются, то найти точку пересечения.

Разработка алгоритма действий типична для многих геометрических задач, и я на этом буду неоднократно заострять внимание.

Полное решение и ответ в конце урока:

Ещё не стоптана и пара башмаков, как мы подобрались ко второму разделу урока:

Перпендикулярные прямые. Расстояние от точки до прямой.
Угол между прямыми

Начнём с типовой и очень важной задачи. В первой части мы узнали, как построить прямую, параллельную данной, а сейчас избушка на курьих ножках развернётся на 90 градусов:

Как построить прямую, перпендикулярную данной?

Пример 6

Прямая задана уравнением . Составить уравнение перпендикулярной прямой , проходящей через точку .

Решение : По условию известно, что . Неплохо бы найти направляющий вектор прямой . Поскольку прямые перпендикулярны, фокус прост:

Из уравнения «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой составим по точке и направляющему вектору :

Ответ :

Развернём геометрический этюд:

М-да… Оранжевое небо, оранжевое море, оранжевый верблюд.

Аналитическая проверка решения:

1) Из уравнений вытаскиваем направляющие векторы и с помощью скалярного произведения векторов приходим к выводу, что прямые действительно перпендикулярны: .

Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Проверку, опять же, легко выполнить устно.

Пример 7

Найти точку пересечения перпендикулярных прямых , если известно уравнение и точка .

Это пример для самостоятельного решения. В задаче несколько действий, поэтому решение удобно оформить по пунктам.

Наше увлекательное путешествие продолжается:

Расстояние от точки до прямой

Перед нами прямая полоса реки и наша задача состоит в том, чтобы дойти до неё кратчайшим путём. Препятствий нет, и самым оптимальным маршрутом будет движение по перпендикуляру. То есть, расстояние от точки до прямой – это длина перпендикулярного отрезка.

Расстояние в геометрии традиционно обозначают греческой буквой «ро», например: – расстояние от точки «эм» до прямой «дэ».

Расстояние от точки до прямой выражается формулой

Пример 8

Найти расстояние от точки до прямой

Решение : всё что нужно, это аккуратно подставить числа в формулу и провести вычисления:

Ответ :

Выполним чертёж:

Найденное расстояние от точки до прямой – это в точности длина красного отрезка. Если оформить чертёж на клетчатой бумаге в масштабе 1 ед. = 1 см (2 клетки), то расстояние можно измерить обыкновенной линейкой.

Рассмотрим ещё одно задание по этому же чертежу:

Задача состоит в том, чтобы найти координаты точки , которая симметрична точке относительно прямой . Предлагаю выполнить действия самостоятельно, однако обозначу алгоритм решения с промежуточными результатами:

1) Находим прямую , которая перпендикулярна прямой .

2) Находим точку пересечения прямых: .

Оба действия подробно разобраны в рамках данного урока.

3) Точка является серединой отрезка . Нам известны координаты середины и одного из концов. По формулам координат середины отрезка находим .

Не лишним будет проверить, что расстояние тоже равно 2,2 единицам.

Трудности здесь могут возникнуть в вычислениях, но в вышке здорово выручает микрокалькулятор, позволяющий считать обыкновенные дроби. Неоднократно советовал, посоветую и снова.

Как найти расстояние между двумя параллельными прямыми?

Пример 9

Найти расстояние между двумя параллельными прямыми

Это очередной пример для самостоятельного решения. Немного подскажу: тут бесконечно много способов решения. Разбор полётов в конце урока, но лучше постарайтесь догадаться сами, думаю, вашу смекалку удалось неплохо разогнать.

Угол между двумя прямыми

Что ни угол, то косяк:


В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или противоположно ориентированный «малиновый» угол .

Если прямые перпендикулярны, то за угол между ними можно принимать любой из 4 углов.

Чем отличаются углы ? Ориентацией. Во-первых, принципиально важным является направление «прокрутки» угла. Во-вторых, отрицательно ориентированный угол записывается со знаком «минус», например, если .

Зачем я это рассказал? Вроде бы можно обойтись и обычным понятием угла. Дело в том, что в формулах, по которым мы будем находить углы, запросто может получиться отрицательный результат, и это не должно застать вас врасплох. Угол со знаком «минус» ничем не хуже, и имеет вполне конкретный геометрический смысл. На чертеже для отрицательного угла следует обязательно указывать стрелкой его ориентацию (по часовой стрелке).

Как найти угол между двумя прямыми? Существуют две рабочие формулы:

Пример 10

Найти угол между прямыми

Решение и Способ первый

Рассмотрим две прямые, заданные уравнениями в общем виде:

Если прямые не перпендикулярны , то ориентированный угол между ними можно вычислить с помощью формулы:

Самое пристальное внимание обратим на знаменатель – это в точности скалярное произведение направляющих векторов прямых:

Если , то знаменатель формулы обращается в ноль, а векторы будут ортогональны и прямые перпендикулярны. Именно поэтому сделана оговорка о неперпендикулярности прямых в формулировке.

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём по формуле:

С помощью обратной функции легко найти и сам угол. При этом используем нечётность арктангенса (см. Графики и свойства элементарных функций ):

Ответ :

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.

Ну, минус, так минус, ничего страшного. Вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи первым номером идёт прямая и «открутка» угла началась именно с неё.

Если очень хочется получить положительный угол, нужно поменять прямые местами, то есть коэффициенты взять из второго уравнения , а коэффициенты взять из первого уравнения . Короче говоря, начать необходимо с прямой .