По литературе

Многоатомные спирты можно обнаружить действием. Многоатомные спирты, глюкоза. Замещение атомов водорода гидроксильных групп


Многоатомные спирты (полиспирты, полиолы) - органические соединения класса спиртов, содержащие в своём составе более одной гидроксильной группы -OH.


Глюкоза С 6 Н 12 О 6 - моносахарид (моноза) - полифункциональное соединение, содержащее альдегидную или кетогруппу и несколько гидроксильных групп, т. е. полигидроксиальдегиды и полигидроксикетоны.

Взаимодействие многоатомных спиртов с гидроксидом меди (II)

Качественные реакции с гидроксидом меди (II) на многоатомные спирты направлены на определение их слабых кислотных свойств.


При добавлении свежеосажденного гидроксида меди (II) в сильно щелочной среде к водному раствору глицерина (HOCH 2- CH(OH)-CH 2 OH), и затем к раствору этиленгликоля (этандиолу) (HO CH 2- CH 2 OH), осадок гидроксида меди растворяется в обоих случаях и появляется ярко-синее окрашивание растворара (насыщенного цвета индиго). Это свидетельствует о кислотных свойствах глицерина и этиленгликоля.


СuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

Реакция с Cu(OH) 2 - это качественная реакция на многоатомные спирты с соседними группами ОН - , что обуславливает их слабые кислотные свойства. Такую же качественную реакцию дает формалин и гидроксид меди - альдегидная группа реагирует по кислотному типу.

Качественная реакция глюкозы с гидроксидом меди (II)

Реакция глюкозы с гидроксидом меди (II) при нагревании демонстрирует восстановительные свойства глюкозы. При нагревании реакция глюкозы с гидроксидом меди(II) идет с восстановлением двухвалентной меди Cu (II) до одновалентной меди Cu (I). В начале выпадает осадок оксида меди CuO желтого цвета. В процессе дальнейшего нагревания CuO восстанавливается до оксида меди (I) – Cu 2 O, который выпадает в виде красного осадка. В процессе этой реакции глюкоза окисляется до глюконовой кислоты.


2 HOСН 2 - (СНOH) 4) - СН=O + Cu(OH) 2 = 2HOСН 2 - (СНOH) 4) - СOOH + Cu 2 O↓ + 2 H 2 O


Это качественная реакция глюкозы с гидроксидом меди на альдегидную группу.

Спирты - крупная группа органических химических веществ. Она включает подклассы одноатомных и многоатомных спиртов, а также все вещества комбинированного строения: альдегидоспирты, производные фенола, биологические молекулы. Эти вещества вступают в множество типов реакций как по гидроксильной группе, так и по атому углерода, несущему ее. Эти химические свойства спиртов следует изучить детально.

Виды спиртов

В веществах спиртов содержится гидроксильная группа, присоединенная к несущему углеродному атому. В зависимости от количества атомов углерода, с которыми соединен несущий С, спирты делятся на:

  • первичные (соединенные с концевым углеродом);
  • вторичные (соединены с одной гидроксильной группой, одним водородом и двумя углеродными атомами);
  • третичные (соединены с тремя углеродными атомами и одной гидроксильной группой);
  • смешанные (многоатомные спирты, в которых имеются гидроксильные группы у вторичных, первичных или третичных углеродных атомов).

Также спирты делятся в зависимости от количества гидроксильных радикалов на одноатомные и многоатомные. Первые содержат только одну гидроксильную группу у несущего углеродного атома, к примеру, этанол. Многоатомные спирты содержат две и более гидроксильные группы у разных несущих углеродных атомов.

Химические свойства спиртов: таблица

Наиболее удобно подать интересующий нас материал посредством таблицы, которая отражает общие принципы реакционной способности спиртов.

Реакционная связь, тип реакции

Реагент

Продукт

Связь О-Н, замещение

Активный металл, гидрид активного металла, щелочь или амиды активных металлов

Алкоголяты

Связь С-О и О-Н, межмолекулярная дегидратация

Спирт при нагревании в кислой среде

Простой эфир

Связь С-О и О-Н, внутримолекулярная дегидратация

Спирт при нагревании над концентрированной серной кислотой

Непредельный углеводород

Связь С-О, замещение

Галогеноводород, тионилхлорид, квазифосфониевая соль, галогениды фосфора

Галогеналканы

Связь С-О - окисление

Доноры кислорода (перманганат калия) с первичным спиртом

Альдегид

Связь С-О - окисление

Доноры кислорода (перманганат калия) с вторичным спиртом

Молекула спирта

Кислород (горение)

Углекислый газ и вода.

Реакционная способность спиртов

Благодаря наличию в молекуле одноатомного спирта углеводородного радикала - связи С-О и связи О-Н - данный класс соединений вступает в многочисленные химические реакции. Они определяют химические свойства спиртов и зависят от реакционной способности вещества. Последняя, в свою очередь, зависит от длины углеводородного радикала, присоединенного у несущему углеродному атому. Чем он больше, тем ниже полярность связи О-Н, из-за чего реакции, идущие с отщеплением водорода от спирта, будет протекать медленнее. Это же снижает константу диссоциации упомянутого вещества.

Химические свойства спиртов также зависят от количества гидроксильных групп. Одна смещает электронную плотность на себя вдоль сигма-связей, что увеличивает реакционную способность по О-Н группе. Поскольку это поляризует связь С-О, то реакции с ее разрывом идут активнее у спиртов, у которых имеется две и более О-Н групп. Потому многоатомные спирты, химические свойства которых более многочисленные, охотнее вступают в реакции. Также они содержат несколько спиртовых групп, из-за чего свободно могут вступать в реакции по каждой из них.

Типичные реакции одноатомных и многоатомных спиртов

Типичные химические свойства спиртов проявляются только в реакции с активными металлами, их основаниями и гидридами, кислотами Льюиса. Также типичными являются взаимодействия с галогенводородами, галогенидами фосфора и прочими компонентами с получением галогеналканов. Также спирты являются и слабыми основаниями, потому вступают в реакции с кислотами, образуя при этом галогенводороды и сложные эфиры неорганических кислот.

Простые эфиры образуются из спиртов при межмолекулярной дегидратации. Эти же вещества вступают в реакции дегидрирования с образованием альдегидов из первичного спирта и кетонов из вторичного. Третичные спирты в подобные реакции не вступают. Также химические свойства этилового спирта (и других спиртов) оставляют возможность полного их окисления кислородом. Это простая реакция горения, сопровождающаяся выделением воды с углекислым газом и некоторого количества тепла.

Реакции по атому водорода связи О-Н

Химические свойства одноатомных спиртов допускают разрыв связи О-Н и отщепление водорода. Эти реакции протекают при взаимодействии с активными металлами и их основаниями (щелочами), с гидридами активных металлов, а также с кислотами Льюиса.

Также спирты активно вступают в реакции со стандартными органическими и неорганическими кислотами. В данном случае продуктов реакции является сложный эфир или галогенуглеводород.

Реакции синтеза галогеналканов (по связи С-О)

Галогеналканы - это типичные соединения, которые могут быть получены из спиртов при протекании нескольких типов химических реакций. В частности, химические свойства одноатомных спиртов позволяют вступать во взаимодействие с галогенводородами, с галогенидами трех- и пятивалентного фосфора, квазифосфониевыми солями, тионилхлоридом. Также галогеналканы из спиртов могут быть получены промежуточным путем, то есть синтезом алкилсульфоната, который позже вступит в реакцию замещения.

Пример первой реакции с галогенводородом указан на графическом приложении выше. Здесь бутиловый спирт реагирует с хлоридом водорода с образованием хлорбутана. В общем, класс соединений, содержащих хлор и углеводородный насыщенный радикал, называется алкилхлоридом. Побочным продуктом химического взаимодействия является вода.

Реакции с получением алкилхлорида (йодида, бромида или фторида) достаточно многочисленные. Типичный пример - взаимодействие с трибромидом фосфора, пентахлоридом фосфора и прочими соединениями данного элемента и его галогенидов, перхлоридов и перфторидов. Они протекают по механизму нуклеофильного замещения. С тионилхлоридом спирты реагируют также с образованием хлоралкана и выделением SO 2 .

Наглядно химические свойства одноатомных предельных спиртов, содержащих насыщенный углеводородный радикал, представлены в виде реакций на иллюстрации ниже.

Спирты легко взаимодействуют с квазифосфониевой солью. Однако данная реакция наиболее выгодна при протекании у одноатомных вторичных и третичных спиртов. Они региоселективны, позволяют "имплантировать" галогеновую группу в строго определенное место. Продукты таких реакций получаются с высокой массовой долей выхода. А многоатомные спирты, химические свойства которых несколько отличаются от таковых у одноатомных, могут изомеризоваться в ходе реакции. Потому получение целевого продукта затрудняется. Пример реакции на изображении.

Внутримолекулярная и межмолекулярная дегидратация спиртов

Гидроксильная группа, расположенная у несущего углеродного атома, может отщепляться при помощи сильных акцепторов. Так протекают реакции межмолекулярной дегидратации. При взаимодействии одной молекулы спирта с другой в растворе концентрированной серной кислоты молекула воды отщепляется от обеих гидроксильных групп, радикалы которых соединяются в молекулу простого эфира. При межмолекулярной дегидратации этаналя можно получить диоксан - продукт дегидратации по четырем гидроксильным группам.

При внутримолекулярной дегидратации продуктом является алкен.

Многоатомные спирты можно рассматривать как производные углеводородов, в которых несколько атомов водорода замещены на группы ОН.

Двухатомные спирты, называются диолами или гликолями, трехатомные – триолы или глицерины.

Названия многоатомных спиртов образуются по общим правилам номенклатуры ИЮПАК. Представителями многоатомных спиртов являются:

этандиол-1,2 пропантриол-1,2,3

Этиленгликоль глицерин

Физические свойства спиртов.

Многоатомные спирты – это вязкие жидкости, сладкого вкуса, хорошо растворимые в воде и этаноле, плохо – в других органических растворителях. Этиленгликоль сильный яд.

Химические свойства спиртов.

Для многоатомных спиртов характерны реакции одноатомных спиртов и они могут протекать с участием одной или нескольких групп –ОН.

    Взаимодействие с активными металлами:

    Взаимодействие со щелочами. Введение в молекулу дополнительных групп ОН, являющихся электроноакцепторами, усиливает кислотные свойства спиртов, так как происходит делокализация электронной плотности.

    Взаимодействие с гидроксидами тяжелых металлов (гидроксидом меди) – качественная реакция на многоатомные спирты.

    Взаимодействие с галогеноводородами:

    Взаимодействие с кислотами с образованием сложных эфиров:

а) с минеральными кислотами

нитроглицерин

Нитроглицерин – бесцветная маслянистая жидкость. В виде разбавленных спиртовых растворов (1%) применяется при стенокардии, т.к. оказывает сосудорасширяющее действие.

При взаимодействии глицерина с фосфорной кислотой образуется смесь α- и β-глицерофосфатов:

Глицерофосфаты – структурные элементы фосфолипидов, применяются как общеукрепляющее средство

б) с органическими кислотами. При взаимодействии глицерина с высшими карбоновыми кислотами образуются жиры:

    Реакции дегидратации

диоксан (циклический диэфир)

    При нагревании глицерин разлагается с образованием слезоточивого вещества – акролеина:


Акролеин

    Окисление:

При окислении глицерина образуется ряд продуктов. При мягком окислении – глицериновый альдегид (1) и дигидроксиацетон (2):

При окислении в жестких условиях образуется 1,3-диоксоацетон (3):

Биологически значимыми являются пяти- и шестиатомные спирты.

Накопление –ОН групп ведет к появлению сладкого вкуса. Ксилит и сорбит – заменители сахара для больных диабетом

Инозиты – шестиатомные спирты циклогексанового ряда. В связи с наличием ассиметрических атомов углерода у инозита существует несколько стереоизомеров; наиболее важен мезоинозит (миоинозит)

инозит мезоинозит

Мезоинозит относится к витаминоподобным соединениям (витамины группы В) и является структурным компонентом сложных липидов. В растениях широко распространена фитиновая кислота, представляющая собой гексафосфат мезоинозита. Её кальциевая соль, называемая фитином, стимулирует кроветворение, улучшает нервную деятельность при заболеваниях, связанных с недостатком фосфора в организме.

Фенолы

Фенолы – это производные ароматических углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

Представители многоатомных спиртов - этиленгликоль и глицерин. Двухатомные спирты, содержащие две гидроксильные группы-ОН, называются гликолями, или диолами, трехатомные спирты, содержащие три гидроксильные группы, - глицерина­ми, или триолами.

Положение гидроксильных групп указывается цифрами, на-

Физические свойства

Многоатомные спирты - бесцветные сиропообразные жид­кости сладковатого вкуса, хорошо растворимы в воде, плохо - в органических растворителях; имеют высокие температуры кипе­ния. Например, t кип этиленгликоля 198°С, плотность (r) 1,11 г/см 3 ; t кип (глицерин) = 290°С, r глицерин = 1,26 г/см 3 .

Получение

Двух- и трехатомные спирты получают теми же способами, что и одноатомные. В качестве исходных соединений могут быть использованы алкены, галогенопроизводные и другие соедине­ния. Например:

Глицерин получают из жиров, а также синтетическим путем из газов крекинга нефти (пропилена), т.е. из непищевого сырья.

Химические свойства

Многоатомные спирты по химическим свойствам сходны с одноатомными спиртами. Однако в химических свойствах много­атомных спиртов есть особенности, обусловленные присутствием в молекуле двух и более гидроксильных групп.

Кислотность многоатомных спиртов выше, чем одноатомных, что объясняется наличием в молекуле дополнительных гидроксильных групп, обладающих отрицательным индуктивным эф­фектом. Поэтому многоатомные спирты, в отличие от одноатом­ных, реагируют со щелочами, образуя соли. Например, этиленгликоль реагирует не только с щелочными металлами, но и с гидроксидами тяжелых металлов.

По аналогии с алкоголятами соли двухатомных спиртов назы­ваются гликолятами, а трехатомных - глицератами.

При взаимодействии этиленгликоля с галогеноводородами (НСl, HBr) одна гидроксильная группа замещается на галоген:

Вторая гидроксогруппа замещается труднее, под действи­ем РСl 5 .

При взаимодействии гидроксида меди (II) с глицерином и другими многоатомными спиртами происходит растворение гидроксида и образуется комплексное соединение ярко-синего цвета.

Юта реакция используется для обнаружения многоатомных спиртов, имеющих гидроксильные группы при соседних атомах угле­рода -СH(ОН)-СН(ОН)-:

В отсутствие щелочи многоатомные спирты не реагируют с |гидроксидом меди (II) - их кислотность для этого недостаточна.

Многоатомные спирты взаимодействуют с кислотами, образуя сложные эфиры (см. §7). При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кис­лоты образуется нитроглицерин (тринитрат глицерина):

Для спиртов характерны реакции, в результате которых образуются циклические структуры:

Применение

Этиленгликоль используется главным образом для производства лавсана и для приготовления антифризов - водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время).

Органические углеводороды, в молекулярной структуре которых находится две и более группы -ОН, называются многоатомными спиртами. По-другому соединения называются полиспиртами или полиолами.

Представители

В зависимости от строения выделяют двухатомные, трёхатомные, четырёхатомные и т.д. спирты. Они отличаются на одну гидроксильную группу -ОН. Общую формулу многоатомных спиртов можно записать как C n H 2 n+2 (OH) n . Однако количество атомов углерода не всегда соответствует количеству гидроксильных групп. Такое несоответствие объясняется разной структурой углеродного скелета. Например, пентаэритрит содержит пять атомов углерода и четыре группы -ОН (один углерод посередине), а сорбит - по шесть атомов углерода и групп -ОН.

Рис. 1. Структурные формулы пентаэритрита и сорбита.

В таблице описаны наиболее известные представители полиолов.

Вид спирта

Название

Формула

Физические свойства

Двухатомные (диолы)

Этиленгликоль

HO-CH 2 -CH 2 -OH

Прозрачная маслянистая сильно токсичная жидкость без запаха, со сладким привкусом

Трёхатомные (триолы)

Глицерин

Вязкая прозрачная жидкость. Смешивается с водой в любых пропорциях. Имеет сладкий вкус

Четырёхатомные

Пентаэритрит

Кристаллический белый порошок со сладким вкусом. Растворяется в воде и органических растворителях

Пятиатомные

CH 2 OH(CHOH) 3 CH 2 OH

Кристаллическое бесцветное вещество сладкое на вкус. Хорошо растворяется в воде, спиртах, органических кислотах

Шестиатомные

Сорбит (глюцит)

Сладкое кристаллическое вещество, хорошо растворимое в воде, но плохо растворимое в этаноле

Некоторые кристаллические многоатомные спирты, например, ксилит, сорбит, используют в качестве сахарозаменителя и пищевой добавки.

Рис. 2. Ксилит.

Получение

Полиолы получают лабораторным и промышленным путём:

  • гидратацией оксида этилена (получение этиленгликоля):

    С 2 Н 4 О + Н 2 О → HO-CH 2 -CH 2 -OH;

  • взаимодействием галогеналканов с раствором щелочей:

    R-CHCl-CH 2 Cl + 2NaOH → R-CHOH-CH 2 OH + 2NaCl;

  • окислением алкенов:

    R-CH=CH 2 + H 2 O + KMnO 4 → R-CHOH-CH 2 OH + MnO 2 + KOH;

  • омылением жиров (получение глицерина):

    C 3 H 5 (COO) 3 -R + 3NaOH → C 3 H 5 (OH) 3 + 3R-COONa

Рис. 3. Молекула глицерина.

Свойства

Химические свойства многоатомных спиртов обусловлены нахождением в молекуле нескольких гидроксильных групп. Их близкое положение способствует более лёгким разрывам водородных связей, чем у одноатомных спиртов. Многоатомные спирты проявляют кислотные и основные свойства.

Основные химические свойства описаны в таблице.

Реакция

Описание

Уравнение

Со щелочными металлами

Замещая атом водорода в группе -ОН атомом металла, образуют соли с активными металлами и их щелочами

  • HO-CH 2 -CH 2 -OH + 2Na → NaO-CH 2 -CH 2 -ONa + H 2 ;
  • HO-CH 2 -CH 2 -OH + 2NaOH → NaO-CH 2 -CH 2 -ONa + 2H 2 O

С галогеноводородами

Одна из групп -ОН замещается на галоген

HO-CH 2 -CH 2 -OH + HCl → Cl-CH 2 -CH 2 -OH (этиленхлоргидрин) + H 2 O

Этерификация

Реагируют с органическими и минеральными кислотами с образованием жиров - сложных эфиров

C 3 H 8 O 3 + 3HNO 3 → C 3 H 5 O 3 (NO 2) 3 (нитроглицерин) + 3H 2 O

Качественная реакция

При взаимодействии с гидроксидом меди (II) в щелочной среде образуется тёмно-синий раствор

HO-CH 2 -CH 2 -OH + Cu(OH) 2 → C 4 H 10 O 4 + 2H 2 O

Соли двухатомных спиртов называются гликолятами, трёхатомных - глицератами.

Что мы узнали?

Из урока химии узнали, что такое многоатомные спирты или полиолы. Это углеводороды, содержащие несколько гидроксильных групп. В зависимости от количества -ОН различают двухатомные, трёхатомные, четырёхатомные, пятиатомные и т.д. спирты. Наиболее простой двухатомный спирт - этиленгликоль. Полиолы обладают сладким вкусом и хорошо растворяются в воде. Диолы и триолы - вязкие жидкости. Высшие спирты - кристаллические вещества.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 129.