По литературе

Правильные многогранники введение. Что такое многогранник? Исторические сведения о правильных многогранниках

многогранник звездчатый платон

Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Достаточно вспомнить знаменитые египетские пирамиды и самую известную из них - пирамиду Хеопса. Это правильная пирамида, в основании которой квадрат со стороной 233 м и высота которой достигает 146,5 м. Не случайно говорят, что пирамида Хеопса - немой трактат по геометрии.

История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства.

Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора. Отличительным знаком пифагорейцев была пентаграмма, на языке математики - это правильный невыпуклый или звездчатый пятиугольник. Пентаграмме присваивалось способность защищать человека от злых духов.

Пифагорейцы полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды. Существование пяти правильных многогранников они относили к строению материи и Вселенной. Согласно этому мнению, атомы основных элементов должны иметь форму различных тел:

Вселенная - додекаэдр

Земля - куб

Огонь - тетраэдр

Вода - икосаэдр

Воздух - октаэдр

Позже учение пифагорейцев о правильных многогранниках изложил в своих трудах другой древнегреческий ученый, философ - идеалист Платон. С тех пор правильные многогранники стали называться платоновыми телами.

Открытие тринадцати полуправильных выпуклых многогранников приписывается Архимеду, впервые перечислившего их в недошедшей до нас работе. Ссылки на эту работу имеются в трудах математика Паппа.

При первом же знакомстве с этой темой у вас возникает естественный вопрос: что такое многогранник? Геометрию можно определить иногда как науку о пространстве и пространственных фигурах - двумерных в планиметрии и трехмерных в стереометрии. Если использовать теоретико-множественный язык, то фигуру на плоскости можно было бы описать как множество отрезков прямых, ограничивающих часть плоскости. Такая плоская фигура называется многоугольником. Из этого следует, что многогранник можно определить как множество многоугольников, ограничивающих часть трехмерного пространства.

Многогранник - часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем, вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны - ребрами, а вершины - вершинами многогранника.

Классификация многогранников:

  • 1. Правильные многогранники
  • 2. Призмы
  • 3. Пирамиды

Призма - многогранник, две грани которого (основания призмы) представляют собой равные многоугольники с взаимно параллельными сторонами, а все другие грани параллелограммы. Призма называется прямой, если её ребра перпендикулярны плоскости основания. Если основанием призмы является прямоугольник, призму называют параллелепипедом.

Пирамида - это многогранник, одна грань которого многоугольник, а остальные грани - треугольники с общей вершиной. Пирамида называется правильной, если в основании лежит правильный многоугольник и высота пирамиды проходит через центр многоугольника. Пирамида называется усеченной, если вершина её отсекается плоскостью.

Призматоид - многогранник, ограниченный двумя многоугольниками, расположенными в параллельных плоскостях (они являются его основаниями); его боковые грани представляют собой треугольники или трапеции, вершины которых являются и вершинами многоугольников оснований.

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №3

РЕФЕРАТ

по геометрии

Тема:

«Многогранники».

Выполнила: ученица 11-«б» класса

МОУ СОШ №3

Алябьева Юлия.

Проверила: преподаватель математики

г. Железноводск

План

I. Введение. 3

II. Теоретическая часть

1. Двугранный угол4

2. Трехгранный и многогранный углы4

3. Многогранник. . 5

4. Призма6

7. Параллелепипед 9

8. Центральная симметрия параллелепипеда10

9. Прямоугольный параллелепипед. . 11

11. Пирамида

13. Усеченная пирамида

14. Правильная пирамида. 15

15. Правильные многогранники

III. Практическая часть

IV. Заключение

V. Литература

I. Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как многогранники. "Многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

II. Теоретическая часть.

1. Двугранный угол

Двугранным углом называется фигура, образованная двумя "полуплоскостями с общей ограничивающей их прямой (рис. 1). Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла.

Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным. углом двугранного угла.

За меру двугранного угла принимается мера соответствующего ему линейного угла. Все линейные углы двугранного угла совмещаются параллельным переносом, а значит, равны. Поэтому мера двугранного угла не зависит от выбора линейного угла.

2. Трехгранный и многогранный углы

Рассмотрим три луча а, Ь, с, исходящие из одной точки и не лежащие в одной плоскости. Трехгранным углом (abc) называется фигура, составленная "из трех плоских углов (аЬ), (Ьс) и (ас) (рис. 2). Эти углы называются гранями трехгранного угла, а их стороны - ребрами, общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла (рис. 3).

3. Многогранник

В стереометрии изучаются фигуры в пространстве, называемые телами. Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранник - это такое тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 4). Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника.

Поясним сказанное на примере знакомого вам куба (рис. 5). Куб есть выпуклый многогранник. Его поверхность состоит из шести квадратов: ABCD, BEFC, .... Они являются его гранями. Ребрами куба являются стороны этих квадратов: АВ, ВС, BE,... . Вершинами куба являются вершины квадратов: А, В, С, D, Е, .... У куба шесть граней, двенадцать ребер и восемь вершин.

Простейшим многогранникам - призмам и пирамидам, которые будут основным объектом нашего изучения,- мы дадим такие определения, которые, по существу, не используют понятие тела. Они будут определены как геометрические фигуры с указанием всех принадлежащих им точек пространства. Понятие геометрического тела и его поверхности в общем случае будет дано позже.

Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников (рис. 6). Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины,- боковыми ребрами призмы.

Так как параллельный перенос есть движение, то основания призмы равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у призмы основания лежат в параллельных плоскостях.

Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у призмы боковые ребра параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности. Боковая поверхность состоит из параллелограммов. У каждого из этих параллелограммов две стороны являются соответствующими сторонами оснований, а две другие - соседними боковыми ребрами.

Высотой призмы называется расстояние между плоскостями её оснований. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.

Призма называется n-угольной, если ее основания - n-угольники.

В дальнейшем мы будем рассматривать только призмы, у которых основания - выпуклые многоугольники. Такие призмы являются выпуклыми многогранниками.

На рисунке 6 изображена пятиугольная призма. У нее основаниями являются пятиугольники А1А2...А5, А1’А"2...А"5. XX" - отрезок, соединяющий соответствующие точки оснований. Боковые ребра призмы-отрезки А1А"2, А1А"2, ..., А5А"5. Боковые грани призмы - параллелограммы А1А2А"2А1 , А2А3А’3А"2, ... .

5. Изображение призмы и построение ее сечений

В соответствии с правилами параллельного проектирования изображение призмы строится следующим образом. Сначала строится одно из оснований Р (рис. 7). Это будет некоторый плоский многоугольник. Затем из вершин многоугольника Р проводятся боковые ребра призмы в виде параллельных отрезков равной длины. Концы этих отрезков соединяются, и получается другое основание призмы. Невидимые ребра проводятся штриховыми линиями.

Сечения призмы плоскостями, параллельными боковым ребрам, являются параллелограммами. В частности, параллелограммами являются диагональные сечения. Это сечения плоскостями, проходящими через два боковых ребра, не принадлежащих одной грани (рис. 8).

На практике, в частности, при решении задач часто приходится строить сечение призмы плоскостью, проходящей через заданную прямую g на плоскости одного из оснований призмы. Такая прямая называется следом секущей плоскости на плоскости основания. Для построения сечения призмы достаточно построить отрезки пересечения секущей плоскости с гранями призмы. Покажем, как строится такое сечение, если известна какая-нибудь точка А на поверхности призмы, принадлежащая сечению (рис. 9).

Если данная точка А принадлежит другому основанию призмы, то его пересечение с секущей плоскостью представляет собой отрезок ВС, параллельный следу g и содержащий данную точку А (рис. 9, а).

Если данная точка А принадлежит боковой грани, то пересечение этой грани с секущей плоскостью строится, как показано на рисунке 9,б. Именно: сначала строится точка D, в которой плоскость грани пересекает заданный след g. Затем проводится прямая через точки А и D. Отрезок ВС прямой AD на рассматриваемой грани и есть пересечение этой грани с секущей плоскостью. Если грань, содержащая точку А, параллельна следу g, то секущая плоскость пересекает эту грань по отрезку ВС, проходящему через точку А и параллельному прямой g.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с нашей секущей плоскостью. И т. д.

На рисунке 10 показано построение сечения четырехугольной призмы плоскостью, проходящей через прямую а в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

Призма называется прямой, если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной.

У прямой призмы боковые грани являются прямоугольниками. При изображении прямой призмы на рисунке боковые ребра обычно проводят вертикально (рис. 11).

Прямая призма называется правильной, если ее основания являются правильными многоугольниками.

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. .на длину бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S=a1l+a1l+...+anl=pl,

где a1 ,..., an - длины ребер основания, р - периметр основания призмы, а 1 - длина боковых ребер. Теорема доказана.

7. Параллелепипед

Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани - параллелограммы.

На рисунке 12, а изображен наклонный параллелепипед, а на рисунке 12, б - прямой параллелепипед.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.

Т е о р е м а 19.2. У параллелепипеда противолежащие грани параллельны, и равны.

Доказательство. Рассмотрим какие-нибудь две противолежащие грани параллелепипеда, например А1А2А"2А"1 и A3A4A"4A"3. (рис. 13). Так как все грани параллелепипеда - параллелограммы, то прямая A1A2 параллельна прямой А4А3, а прямая А1А"1 параллельна прямой А4А4". Отсюда следует, что плоскости рассматриваемых граней параллельны.

Из того, что грани параллелепипеда - параллелограммы, следует, что отрезки А1А4, А1"А4", A"2A"3 и A2A3 - параллельны и равны. Отсюда заключаем, что грань А1А2А"2А"1 совмещается параллельным переносом вдоль ребра А1А4. с гранью А3А4А"4А"3. Значит, эти грани равны.

Аналогично доказывается параллельность и равенство любых других противолежащих граней параллелепипеда. Теорема доказана.

8. Центральная симметрия параллелепипеда

Теорема 19.3. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Доказательство. Рассмотрим какие-нибудь две диагонали параллелепипеда, например А1А"3 и A4A"2 (рис. 14). Так как четырехугольники А1А2А3А4 и A2A"2A"3A3 - параллелограммы с общей стороной A2A3, то их стороны А1А4 и A"2A"3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым A1A"2 и A4A"3. Следовательно, четырехугольник A4A1A"2A"3- параллелограмм. Диагонали параллелепипеда A1A"3 и A4A"2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.

Аналогично доказывается, что диагонали A1A"3 и A2A"4, а также диагонали A1A"3 и A3A"1 пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Теорема доказана.

Из теоремы 19.3 следует, что точка пересечения диагоналей параллелепипеда является его центром симметрий.

9. Прямоугольный параллелепипед

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани - прямоугольники.

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). У прямоугольного параллелепипеда три измерения.

Теорема 19.4. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Доказательство. Рассмотрим прямоугольный параллелепипед ABCDA"B"C"D" (рис. 15). Из прямоугольного треугольника AC"C по теореме Пифагора получаем:

AC"2 = AC2 + CC"2.

Из прямоугольного треугольника АСВ по теореме Пифагора получаем

АС2 = АВ2 + ВС2.

Отсюда AC"2 =CC"2 +AB2 + BC2.

Ребра АВ, ВС и СС" не параллельны, а, следовательно, их длины являются линейными размерами параллелепипеда. Теорема доказана.

10. Симметрия прямоугольного параллелепипеда

У прямоугольного параллелепипеда, как у всякого параллелепипеда, есть центр симметрии - точка пересечения его диагоналей. У него есть также три плоскости симметрий, проходящие через центр симметрии параллельно граням. На рисунке 16 показана одна из таких плоскостей. Она проходит через середины четырех параллельных ребер параллелепипеда. Концы ребер являются симметричными точками.

Если у параллелепипеда все линейные размеры разные, то у него нет других плоскостей симметрии, кроме названных.

Если же у параллелепипеда два линейных размера равны, то у него есть еще две плоскости симметрии. Это плоскости диагональных сечений, показанные на рисунке 17.

Если у параллелепипеда все линейные размеры равны, т. е. он является кубом, то у него плоскость любого диагонального сечения является плоскостью симметрии. Таким образом, у куба девять плоскостей симметрии.

11. Пирамида

Пирамидой называется многогранник, который состоит из плоского многоугольника - основания пирамиды, точки, не лежащей в плоскости основания,- вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания (рис. 18).

Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами.

Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань - треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды.

Высотой пирамиды, называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида называется n-угольной, если ее основанием является n-угольник. Треугольная пирамида называется также тетраэдром.

У пирамиды, изображенной на рисунке 18, основание - многоугольник А1А2 …An, вершина пирамиды – S, боковые ребра - SА1, S А2, …, S Аn, боковые грани – DSА1А2, DSА2А3, ... .

В дальнейшем мы будем рассматривать только пирамиды с выпуклым многоугольником в основании. Такие пирамиды являются выпуклыми многогранниками.

12. Построение пирамиды и ее плоских сечений

В соответствии с правилами параллельного проектирования изображение пирамиды строится следующим образом. Сначала строится основание. Это будет некоторый плоский многоугольник. Затем отмечается вершина пирамиды, которая соединяется боковыми ребрами с вершинами основания. На рисунке 18 показано изображение пятиугольной пирамиды.

Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники (рис. 19). В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды (рис. 20).

Сечение пирамиды плоскостью с заданным следом g на плоскости основания строится так же, как и сечение призмы.

Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.

Если на грани, не параллельной следу g, известна какая-нибудь точка А, принадлежащая сечению, то сначала строится пересечение следа g секущей плоскости с плоскостью этой грани - точка D на рисунке 21. Точка D соединяется с точкой А прямой. Тогда отрезок этой прямой, принадлежащий грани, есть пересечение этой грани с секущей плоскостью. Если точка А лежит на грани, параллельной следу g, то секущая плоскость пересекает эту грань по отрезку, параллельному прямой g. Переходя к соседней боковой грани, строят ее пересечение с секущей плоскостью и т. д. В итоге получается требуемое сечение пирамиды.

На рисунке 22 построено сечение четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из ее боковых ребер.

13. Усеченная пирамида

T е о р е м а 19.5. Плоскость, пересекающая пирамиду и параллельная ее основанию, отсекает подобную пирамиду.

Доказательство. Пусть S - вершина пирамиды, А - вершина основания и А"- точка пересечения секущей плоскости с боковым ребром SA (рис. 23). Подвергнем пирамиду преобразованию гомотетии относительно вершины S с коэффициентом гомотетии

При этой гомотетии плоскость основания переходит в параллельную плоскость, проходящую через точку А", т. е. в секущую плоскость, а следовательно, вся пирамида - в отсекаемую этой плоскостью часть. Так как гомотетия есть преобразование подобия, то отсекаемая часть пирамиды является пирамидой, подобной данной. Теорема доказана.

По теореме 19.5 плоскость, параллельная плоскости основания пирамиды и пересекающая ее боковые ребра, отсекает от нее подобную пирамиду. Другая часть представляет собой многогранник, который называется усеченной пирамидой (рис. 24). Грани усеченной пирамиды, лежащие в параллельных плоскостях, называются основаниями; остальные грани называются боковыми гранями. Основания усеченной пирамиды представляют собой подобные (более того, гомотетичные) многоугольники, боковые грани - трапеции.

14. Правильная пирамида

Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Осью правильной пирамиды называется прямая, содержащая ее высоту. Очевидно, у правильной пирамиды боковые ребра равны; следовательно, боковые грани - равные равнобедренные треугольники.

Высота боковой грани правильной пирамиды, проведенная из её вершины, называется апофемой. Боковой поверхностью пирамиды называется сумма площадей ее боковых граней.

Т е о р е м а 19.6. Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.

Доказательство. Если сторона основания а, число сторон п, то боковая поверхность пирамиды равна:

(а1/2)ап=а1п/2= р1/2"

где I - апофема, a p - периметр основания пирамиды. Теорема доказана.

Усеченная пирамида, которая получается из правильной пирамиды, также называется правильной. Боковые грани правильной усеченной пирамиды - равные равнобокие трапеции; их высоты называются апофемами.

15. Правильные многогранники

Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.)

Существует пять типов правильных выпуклых многогранников (рис.25): правильный тетраэдр (1), куб (2), октаэдр (3), додекаэдр (4); икосаэдр (5).

У правильного тетраэдра грани - правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны.

У куба все грани - квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными ребрами.

У октаэдра грани - правильные треугольники, но в отличие от тетраэдра в каждой его вершине сходится по четыре ребра.

У додекаэдра грани - правильные пятиугольники. В каждой вершине сходится по три ребра.

У икосаэдра грани - правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по пять ребер.

III. Практическая часть.

Задача 1.

Из точек А и В, лежащих в гранях двугранного угла, опущены перпендикуляры АА\ и ВВ\ на ребро угла. Найдите длину отрезка АВ, если АА1=а, ВВ1=b, А1В1=с и двугранный угол равен а (рис. 26).

Решение. Проведем прямые A1C||BB1 и ВС||А1В1. Четырехугольник А1В1ВС - параллелограмм, значит АА1==ВВ1=b. Прямая А1В1 перпендикулярна плоскости треугольника АA1C, так как она перпендикулярна двум прямым в этой плоскости АА1 и СА1. Следовательно, параллельная ей прямая ВС тоже перпендикулярна этой плоскости. Значит, треугольник АВС - прямоугольный с прямым углом С. По теореме косинусов

AC2=AA12+A1C2-2AA1 A1C cos a=a2+b2-2abcos a.

По теореме Пифагора

АВ =AC2 + ВС2 = a2 + b2- 2ab cos a + с2.

Задача 2.

У трехгранного угла (abc) двугранный угол при ребре с прямой, двугранный угол при ребре b равен j, а плоский угол (bс) равен g (j, g

Решение. Опустим из произвольной точки А ребра а перпендикуляр АВ на ребро b и перпендикуляр АС на ребро с (рис. 27). По теореме о трех перпендикулярах СВ - перпендикуляр к ребру b.

Из прямоугольных треугольников ОАВ, ОСВ, АОС и АВС получаем:

tg a =AB/OB=(BC/ cos j)/(BC/tg g)= tg g/ cos j

tg b =AC/OC=BC tg j / (BC/sin g)= tg g sin g

Задача 3 .

В наклонной призме проведено сечение, перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l.

Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 28). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.

Задача 4.

Боковое ребро пирамиды разделено на четыре равные части и через точки деления проведены плоскости, параллельные основанию. Площадь основания равна 400 см2. Найдите площади сечений.

Решение. Сечения подобны основанию пирамиды с коэффициентами подобия ¼, 2/4, и ¾. Площади подобных фигур относятся как квадраты линейных размеров. Поэтому отношения площадей сечений к площади основания пирамиды есть (¼)2, (2/4)2, и (¾)2. Следовательно, площади сечений равны

400 (¼)2 =25 (см2),

400 (2/4)2 =100 (см2),

400 (¾)2 =225 (см2).

Задача 5.

Докажите, что боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Решение. Боковые грани усеченной пирамиды - трапеции с одним и тем же верхним основанием а, нижним b и высотой (апофемой) l. Поэтому площадь одной грани равна ½ (а + b)l. Площадь всех граней, т. е. боковая поверхность, равна ½ (аn + bn)l, где n - число вершин у основания пирамиды, an и bn - периметры оснований пирамиды.

IV. Заключение

Благодаря этой работе я обобщила и систематизировала знания, полученные за курс обучения в 11 классе , ознакомилась с правилами выполнения творческой работы, получила новые знания и применила их на практике.

Хочу отметить 3 наиболее понравившиеся мне книги:. «Геометрия», Г. Якушева «Математика - справочник школьника», «За страницами учебника геометрии». Эти книги помогли мне больше, чем другие.

Мне бы хотелось чаще использовать свои новые полученные знания на практике.

V. Литература

1. «Геометрия». – М.: Просвещение, 1992

2. Г. Якушева «Математика - справочник школьника». М.: Слово, 1995

3. «Курс математического анализа» т.1, Москва 1981

4. «За страницами учебника геометрии». – М.: Просвещение, 1990

Правильные многогранники.
Правильный многогранник, или так же известный как «Платоново тело» - это вид многогранника, гранями которого являются правильнее многоугольники (треугольник, квадрат, пятиугольник, шестиугольник и т д) В зависимости от конкретного вида многоугольника, который является гранью многогранника, многогранники носят свои наименования:
1. Тетраэдр – гранью является правильный треугольник, количество вершин – 4, количество ребер – 6, количество граней – 4.

2. Гексаэдр (или всем известный куб) – грань-квадрат, количество вершин - 8 , количество ребер - 12 , количество граней – 6.

3. Додекаэдр – грань-пятиугольник, количество вершин - 20 , количество ребер - 30 , количество граней – 12.

Помимо тетраэдра, есть и другие многогранники, гранью которых является треугольник:
4. Октаэдр – количество вершин - 6 , количество ребер – 12, количество граней – 8.

5. Икосаэдр - количество вершин - 12 , количество ребер - 30, количество граней – 20.


Существует специальная формула, которая была придумана ученым Эйлером. Данная формула связывает число рёбер, граней и сторон многогранника простым соотношением:
В+Г=Р+2, где В – количество вершин; Г – количество граней; Р – количество ребер.

Некоторые факты из истории многогранников:

1. Многогранники известны еще задолго до Платона. Историками, археологами были найдены фигурки созданный древними, в которых четко прослеживаются формы правильных многогранников. Кроме того подобные фигуры часто выступали элементами древних архитектурных строениях.
2. Считается, что многогранники (уже с точки зрения геометрии) были открыты Пифагором. Однако по другим источникам ему принадлежит заслуга открытия лишь трех многогранников, а именно тетраэдра, гексаэдра и додекаэдра. Что же касается октаэдра и икосаэдра, их открытие приписывают древнегреческому математику Теэтету Афинскому.
3. Многогранники так же называются «Платоновыми телами» потому, что в свое время Платон в одной из своих работ сопоставил многогранники с ч етырьмя природными стихиями. Каждому многограннику соответствовала своя стихия: тетраэдру – огонь, гексаэдру (кубу) – земля, октаэдру – воздух, икосаэдру – вода.
4. Полное описание многогранников с точки зрения математики и геометрии дал в одном из своих трудов Евклид.
5. Во времена известного математика Иоганна Кеплера было известно лишь пять планет Солнечной системы. Так как это число совпадала с числом существующих многогранников, которых так же 5, он пытался найти соответствие между ними и планетами.

Цель урока:

  1. Ввести понятие правильных многогранников.
  2. Рассмотреть виды правильных многогранников.
  3. Решение задач.
  4. Привить интерес к предмету, научить видеть прекрасное в геометрических телах, развитие пространственного воображения.
  5. Межпредметные связи.

Наглядность: таблицы, модели.

Ход урока

I. Организационный момент. Сообщить тему урока, сформулировать цели урока.

II. Изучение нового материала/

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести “Правильные многогранники”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. “Правильных многогранников вызывающе мало, – написал когда-то Л. Кэролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

Определение правильного многогранника.

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани – равные друг другу правильные многоугольники;
  3. в каждой его вершине сходится одинаковое число ребер;
  4. все его двугранные углы равны.

Теорема: Существует пять различных (с точностью до подобия) типов правильных многогранников: правильный тетраэдр, правильный гексаэдр (куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

Таблица 1. Некоторые свойства правильных многогранников приведены в следующей таблице.

Вид грани Плоский угол при вершине Вид многогранного угла при вершине Сумма плоских углов при вершине В Р Г Название многогранника
Правильный треугольник 60º 3-гранный 180º 4 6 4 Правильный тетраэдр
Правильный треугольник 60º 4-гранный 240º 6 12 8 Правильный октаэдр
Правильный треугольник 60º 5-гранный 300º 12 30 20 Правильный икосаэдр
Квадрат 90º 3-гранный 270º 8 12 6 Правильный гексаэдр (куб)
Правильный треугольник 108º 3-гранный 324º 20 30 12 Правильный додекаэдр

Рассмотрим виды многогранников:

Правильный тетраэдр

<Рис. 1>

Правильный октаэдр


<Рис. 2>

Правильный икосаэдр


<Рис. 3>

Правильный гексаэдр (куб)


<Рис. 4>

Правильный додекаэдр


<Рис. 5>

Таблица 2. Формулы для нахождения объемов правильных многогранников.

Вид многогранника Объем многогранника
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Правильный гексаэдр (куб)
Правильный додекаэдр

“Платоновые тела”.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют так же платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание. Его по латыни стали называть quinta essentia (“пятая сущность”).

Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((KAlSO 4) 2 ·l2H 2 O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры 12 граней додекаэдра.

Где еще можно увидеть эти удивительные тела?

В очень красивой книге немецкого биолога начала нашего века Э. Геккеля “Красота форм в природе” можно прочитать такие строки: “Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы”. Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видны одноклеточные организмы – феодарии, форма которых точно передает икосаэдр. Чем же вызвана эта природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет по теми же углами, что и поток атомов на вирус. Оказалось, что свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Следующая задача проиллюстрирует эту мысль.

Задача. Модель молекулы метана CH 4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре – атом углерода. Определить угол связи между двумя CH связями.


<Рис. 6>

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра. Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости.

Треугольник АОС – равнобедренный. Отсюда а – сторона куба, d – длина диагонали боковой грани или ребро тетраэдра. Итак, а = 54, 73561 0 и j = 109,47 0

Задача. В кубе из одной вершины (D) проведены диагонали граней DA, DB и DC и концы их соединены прямыми. Доказать, что многогранник DABC, образованный четырьмя плоскостями, проходящими через эти прямые, – правильный тетраэдр.


<Рис. 7>

Задача. Ребро куба равно a. Вычислить поверхность вписанного в него правильного октаэдра. Найти ее отношение к поверхности вписанного в тот же куб правильного тетраэдра.


<Рис. 8>

Обобщение понятия многогранника.

Многогранник – совокупность конечного числа плоских многоугольников такая, что:

  1. каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного (называемого смежным с первым) по этой стороне);
  2. от любого из многоугольников составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним и т.д.

Эти многоугольники называются гранями, их стороны – ребрами, а их вершины – вершинами многогранника.

Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник:

– если под многоугольником понимают плоские замкнуты ломаные (хотя бы и само пересекающиеся), то приходят к данному определению многогранника;

– если под многоугольником понимать часть плоскости, ограниченной ломанными, то с этой точки зрения под многогранником понимают поверхность, составленную из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое так же называют многогранником. От сюда возникает третья точка зрения на многогранники как на геометрические тела, при чем допускается также существование у этих тел “дырок”, ограниченных конечным числом плоских граней.

Простейшими примерами многогранников являются призмы и пирамиды.

Многогранник называется n- угольной пирамидой, если он имеет одной своей гранью (основанием) какой-либо n- угольник, а остальные грани – треугольники с общей вершиной, не лежащей в плоскости основания. Треугольная пирамида называется также тетраэдром.

Многогранник называется n -угольной призмой, если он имеет двумя своими гранями (основаниями) равные n -угольники (не лежащие в одной плоскости), получающиеся друг из друга параллельным переносом, а остальные грани – параллелограммы, противоположными сторонами которых являются соответственные стороны оснований.

Для всякого многогранника нулевого рода эйлерова характеристика (число вершин минус число ребер плюс число граней) равна двум; символически: В – Р + Г = 2 (теорема Эйлера). Для многогранника рода p справедливо соотношение В – Р + Г = 2 – 2p .

Выпуклым многогранником называется такой многогранник, который лежит по одну сторону от плоскости любой его грани. Наиболее важны следующие выпуклые многогранники:


<Рис. 9>

  1. правильные многогранники (тела Платона) – такие выпуклые многогранники, все грани которых одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные <Рис. 9, № 1-5>;
  2. изогоны и изоэдры – выпуклые многогранники, все многогранные углы которых равны (изогоны) или равные все грани (изоэдры); причем группа поворотов (с отражениями) изогона (изоэдра) вокруг центра тяжести переводит любую его вершину (грань) в любую другую его вершину (грань). Полученные так многогранники называются полуправильными многогранниками (телами Архимеда) <Рис. 9, № 10-25>;
  3. параллелоэдры (выпуклые) – многогранники, рассматриваемые как тела, параллельным пересечением которых можно заполнить все бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т.е. образовывали разбиение пространства <Рис. 9, № 26-30>;
  4. Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) правильных многогранников (тела Пуансо). В этих многогранниках либо грани пересекают друг друга, либо грани – самопересекающиеся многоугольники <Рис. 9, № 6-9>.

III. Задание на дом.

IV. Решение задач № 279, № 281.

V. Подведение итогов.

Список использованной литературы:

  1. “Математическая энциклопедия”, под редакцией И. М. Виноградова, издательство “Советская энциклопедия”, Москва, 1985 г. Том 4 стр. 552–553 Том 3, стр. 708–711.
  2. “Малая математическая энциклопедия”, Э. Фрид, И. Пастор, И. Рейман и др. издательство Академии наук Венгрии, Будапешт, 1976 г. Стр. 264–267.
  3. “Сборник задач по математики для поступающих в ВУЗы” в двух книгах, под редакцией М.И. Сканави, книга 2 – Геометрия, изд-во “Высшая школа”, Москва, 1998 г. Стр. 45–50.
  4. “Практические занятия по математике: Учебное пособие для техникумов”, издательство “Высшая школа”, Москва, 1979 г. Стр. 388–395, стр. 405.
  5. “Повторяем математику” издание 2–6, доп., Учебное пособие для поступающих в ВУЗы, издательство “Высшая школа”, Москва, 1974 г. Стр. 446–447.
  6. Энциклопедический словарь юного математика, А. П. Савин, издательство “Педагогика”, Москва, 1989 г. Стр. 197–199.
  7. “Энциклопедия для детей. Т.П. Математика”, главный редактор М. Д. Аксенова ; метод, и отв. редактор В. А. Володин, издательство “Аванта+”, Москва, 2003 г. Стр. 338–340.
  8. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 10-е издание – М.: Просвещение, 2001. Стр. 68–71.
  9. “Квант” № 9, 11 – 1983, № 12 – 1987, № 11, 12 – 1988, № 6, 7, 8 – 1989. Научно-популярный физико-математический журнал Академии наук СССР и Академии педагогических наук СССР. Издательство “Наука”. Главная редакция физико-математической литературы. Стр. 5–9, 6–12, 7–9, 10, 4–8, 13, 16, 58.
  10. Решение задач повышенной сложности по геометрии: 11-й класс – М.: АРКТИ, 2002. Стр. 9, 19–20.

На тему: «Тела Платона»

«Правильные многогранники»

Выполнил ученик 10«А» класса Преподаватель Школы№528 ЦАО

г. Москвы Сурин М. Н.

Савельев К. А.

Москва 3.03.1999 год

Тела Платона

Правильные многогранники

Есть в школьной геометрии особые темы, которые ждешь с нетерпением,

предвкушая встречу с невероятно красивым материалом. К таким темам можно

отнести "Правильные многогранники". Здесь не только открывается

удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и

интересные научные гипотезы. И тогда урок геометрии становится своеобразным

исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как

правильные многогранники. "Правильных многогранников вызывающе мало, -

написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд

сумел пробраться в самые глубины различных наук".

Каково же это вызывающе малое количество и почему их именно столько. А сколько?

Оказывается, ровно пять - ни больше ни меньше. Подтвердить это можно с помощью

развертки выпуклого многогранного угла. В самом деле, для того чтобы получить

какой-нибудь правильный многогранник согласно его определению, в каждой вершине

должно сходиться одинаковое количество граней, каждая из которых является

правильным многоугольником. Сумма плоских углов многогранного угла должна быть

меньше 360о, иначе никакой многогранной поверхности не получится.

Перебирая возможные целые решения неравенств: 60к < 360, 90к < 360 и 108к

< 360, можно доказать, что правильных многогранников ровно пять (к - число

плоских углов, сходящихся в одной вершине многогранника), рис.1.

Названия правильных многогранников пришли из Греции. В дословном переводе с

греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр"

означают: "четырехгранник", "восьмигранник", "шестигранник".

"двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я

книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали

важное место в философской концепции Платона об устройстве мироздания. Четыре

многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр

символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду,

т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр -

воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе

"все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре

стихии у них были связаны такой пропорцией: земля/вода=воздух/огонь .

Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре

струны лиры. Напомню, что консонансом называется приятное созвучие. Надо

сказать, что своеобразные музыкальные отношения в платоновых телах являются

чисто умозрительными и не имеют под собой никакой геометрической основы. Этими

отношениями не связаны ни число вершин платоновых тел, ни обьемы правильных

многогранников, ни число ребер или граней.

В связи с этими телами уместно будет сказать, что первая система элементов,

включавшая четыре элемента - землю, воду, воздух и огонь, - была

канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными

камнями мироздания в течение многих веков. Вполне возможно отождествить их с

известными нам четырьмя состояниями вещества - твердым, жидким, газообразным

и плазменным.

Важное место занимали правильные многогранники в системе гармоничного

устройства мира И. Кеплера. Все та же вера в гармонию, красоту и

математически закономерное устройство мироздания привела И. Кеплера к мысли о

том, что поскольку существует пять правильных многогранников, то им

соответствуют только шесть планет. По его мнению, сферы планет связаны между

собой вписанными в них платоновыми телами. Поскольку для каждого правильного

многогранника центры вписанной и описанной сфер совпадают, то вся модель

будет иметь единый центр, в котором будет находиться Солнце.

Проделав огромную вычислительную работу, в 1596 г. И. Кеплер в книге "Тайна

вписывает куб, в куб - сферу Юпитера, в сферу Юпитера - тетраэдр, и так далее

последовательно вписываются друг в друга сфера Марса - додекаэдр, сфера Земли

Икосаэдр, сфера Венеры - октаэдр, сфера Меркурия. Тайна мироздания кажется

открытой.

Сегодня можно с уверенностью сказать, что расстояния между планетами не

связаны ни с какими многогранниками. Впрочем, возможно, что без "Тайны

мироздания", "Гармонии мира" И. Кеплера, правильных многогранников не было бы

трех знаменитых законов И. Кеплера, которые играют важную роль в описании

движения планет.

Где еще можно увидеть эти удивительные тела? В очень красивой книге немецкого

биолога начала нашего века Э. Геккеля "Красота форм в природе" можно

количество удивительных созданий, которые по красоте и разнообразию далеко

превосходят все созданные искусством человека формы". Создания природы,

приведенные в этой книге, красивы и симметричны. Это неотделимое свойство

природной гармонии. Но здесь видно и одноклеточные организмы - феодарии,

форма которых точно передает икосаэдр. Чем же вызвана такая природная

геометризация? Может быть, тем, что из всех многогранников с таким же

количеством граней именно икосаэдр имеет наибольший обьем и наименьшую

площадь поверхности. Это геометрическое свойство помогает морскому

микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их

спорах относительно формы вирусов. Вирус не может быть совершенно круглым,

как считалось ранее. Чтобы установить его форму, брали различные

многогранники, направляли на них свет под теми же углами, что и поток атомов

на вирус. Оказалось, что только один многогранник дает точно такую же тень -

икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют

экономить генетическую информацию. Правильные многогранники - самые выгодные

фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам

веществ имеют форму правильных многогранников. Так, куб передает форму

кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов

(KAlSO4)2 12Н2О имеет форму октаэдра, кристалл сернистого колчедана FeS имеет

форму додекаэдра, сурьменистый сернокислый натрий - тетраэдра, бор -

икосаэдра. Правильные многогранники определяют форму кристаллических решеток

некоторых химических веществ. Проиллюстрирую эту мысль следующей задачей.

Задача. Модель молекулы метана CH4 имеет форму правильного тетраэдра, в

четырех вершинах которого находятся атомы водорода, а в центре - атом углерода.

Определить угол связи между двумя СН связями.

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно

подобрать такой куб, чтобы диагонали его граней были ребрами правильного

тетраэдра (рис.2). Центр куба является и центром тетраэдра, ведь четыре вершины

тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно

определяется четырьмя точками, не лежащими в одной плоскости. Искомый угол j

между двумя СН связями равен углу АОС. Треугольник АОС-равнобедренный. Отсюда,

где а - сторона куба, d- длина диагонали боковой грани или ребро тетраэдра.

Итак, откуда =54,73561О и j= 109,47О

Идеи Пифагора, Платона, И. Кеплера о связи правильных многогранников с

гармоничным устройством мира уже в наше время нашли свое продолжение в

московские инженеры В. Макаров и В. Морозов. Они считают, что ядро

Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на

развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а

точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру

Земли (рис.3), проявляющуюся в том, что в земной коре как бы проступают

проекции вписанных в земной шар правильных многогранников: икосаэдра и

додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами,

обладают рядом специфических свойств, позволяющих объяснить некоторые

непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и

цивилизаций Древнего мира, можно заметить закономерность в их расположении

относительно географических полюсов и экватора планеты. Многие залежи

полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более

удивительные вещи происходят в местах пересечения этих ребер: тут

располагаются очаги древнейших культур и цивилизаций: Перу, Северная

Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются

максимумы и минимумы атмосферного давления, гигантские завихрения Мирового

океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие

исследования Земли, возможно, определят отношение к этой красивой научной

гипотезе, в которой, как видно, правильные многогранники занимают важное

Итак, было выяснено, что правильных многогранников ровно пять. А как

определить в них количество ребер, граней, вершин? Это нетрудно сделать для

многогранников с небольшим числом ребер, а как, например, получить такие

сведения для икосаэдра? Знаменитый математик Л. Эйлер получил формулу В+Г-

Р=2, которая связывает число вершин /В/, граней /Г/ и ребер /Р/ любого

многогранника. Простота этой формулы заключается в том, что она не связана ни

с расстоянием, ни с углами. Для того чтобы определить число ребер, вершин и

граней правильного многогранника, найдем сначала число к=2у - ху+2х, где х -

число ребер, принадлежащих одной грани, у - число граней, сходящихся в одной

вершине. Для нахождения количества граней, вершин и ребер правильного

многогранника используем формулы. После этого нетрудно заполнить таблицу, в

которой приведены сведения об элементах правильных многогранников:

многогранник Г В Р

тетраэдр 4-4-6

гексаэдр 6-8-12

октаэдр 8-6-12

додекаэдр 12-20-30

икосаэдр 20-12-30

И еще один вопрос возникает в связи с правильными многогранниками: можно ли

ими заполнить пространство так, чтобы между ними не было просветов? Он

возникает по аналогии с правильными многоугольниками, некоторыми из которых

можно заполнить плоскость. Оказывается, заполнить пространство можно только с

помощью одного правильного многогранника-куба. Пространство можно заполнить и

ромбическими додекаэдрами. Чтобы это понять, надо решить задачу.

Задача. С помощью семи кубов, образующих пространственный "крест",

постройте ромбододекаэдр и покажите, что ими можно заполнить пространство.

Решение. Кубами можно заполнить пространство. Рассмотрим часть кубической

решетки, изображенной на рис.4. Средний куб оставим нетронутым, а в каждом из

"окаймляющих" кубов проведем плоскости через все шесть пар противолежащих

ребер. При этом "окаймляющие" кубы разобьются на шесть равных пирамид с

квадратными основаниями и боковыми ребрами, равными половине диагонали куба.

Пирамиды, примыкающие к нетронутому кубу, и образуют вместе с последним

ромбический додекаэдр. Отсюда ясно, что ромбическими додекаэдрами можно

заполнить все пространство. Как следствие получаем, что объем ромбического

додекаэдра равен удвоенному объему куба, ребро которого совпадает с меньшей

диагональю грани додекаэдра.

Решая последнюю задачу, мы пришли к ромбическим додекаэдрам. Интересно, что

пчелиные ячейки, которые также заполняют пространство без просветов, также

являются в идеале геометрическими фигурами. Верхняя часть пчелиной ячейки

представляет собой часть ромбододекаэдра.

Итак, правильные многогранники открыли нам попытки ученых приблизиться к

тайне мировой гармонии и показали неотразимую привлекательность геометрии.