По литературе

Разложение многочлена на множители уравнение. Разложение на множители многочлена с рациональными корнями. Сбор и использование персональной информации

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Рассматривая умножение многочленов, мы запомнили несколько формул, а именно: формулы для (a + b)², для (a – b)², для (a + b) (a – b), для (a + b)³ и для (a – b)³.

Если данный многочлен окажется совпадающим с одною из этих формул, то его явится возможным разложить на множители. Напр., многочлен a² – 2ab + b², мы знаем, равен (a – b)² [или (a – b) · (a – b), т. е. удалось a² – 2ab + b² разложить на 2 множителя]; также

Рассмотрим второй из этих примеров. Мы видим, что данный здесь многочлен подходит к формуле, получающейся от возведения в квадрат разности двух чисел (квадрат первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа): x 6 есть квадрат первого числа, а, следовательно, само первое число есть x 3 , квадратом второго числа является последний член данного многочлена, т. е. 1, само второе число есть, следовательно, также 1; произведением двойки на первое число и на второе является член –2x 3 , ибо 2x 3 = 2 · x 3 · 1. Поэтому наш многочлен получился от возведения в квадрат разности чисел x 3 и 1, т. е. он равен (x 3 – 1) 2 . Рассмотрим еще 4-ый пример. Мы видим, что данный многочлен a 2 b 2 – 25 можно рассматривать, как разность квадратов двух чисел, а именно квадратом первого числа служит a 2 b 2 , следовательно, само первое число есть ab, квадратом второго числа является 25, почему само второе число есть 5. Поэтому наш многочлен можно рассматривать получившимся от умножения суммы двух чисел на их разность, т. е.

(ab + 5) (ab – 5).

Иногда случается, что в данном многочлене члены расположены не в том порядке, к которому мы привыкли, напр.

9a 2 + b 2 + 6ab – мысленно мы можем переставить второй и третий члены, и тогда нам станет ясным, что наш трехчлен = (3a + b) 2 .

… (переставим мысленно первый и второй члены).

25a 6 + 1 – 10x 3 = (5x 3 – 1) 2 и т. п.

Рассмотрим еще многочлен

a 2 + 2ab + 4b 2 .

Мы видим, что первый член его представляет собою квадрат числа a и третий член представляет собою квадрат числа 2b, но второй член не является произведением двойки на первое число и на второе, – такое бы произведение было бы равно 2 · a · 2b = 4ab. Поэтому нельзя применить к этому многочлену формулу квадрата суммы двух чисел. Если бы кто написал, что a 2 + 2ab + 4b 2 = (a + 2b) 2 , то это было бы неверно – надо тщательно рассмотреть все члены многочлена, прежде чем применять к нему разложение на множители по формулам.

40. Соединение обоих приемов . Иногда при разложении многочленов на множители приходится комбинировать и прием вынесения общего множителя за скобки и прием применения формул. Вот примеры:

1. 2a 3 – 2ab 2 . Вынесем сначала общего множителя 2a за скобки, – получим 2a (a 2 – b 2). Множитель a 2 – b 2 , в свою очередь, разлагается по формуле на множители (a + b) и (a – b).

Иногда приходится применять прием разложения по формулам многократно:

1. a 4 – b 4 = (a 2 + b 2) (a 2 – b 2)

Мы видим, что первый множитель a 2 + b 2 не подходит ни к одной из знакомых формул; мало того, вспоминая особые случаи деления (п. 37), мы установим, что a 2 + b 2 (сумма квадратов двух чисел) вовсе на множители не раскладывается. Второй из полученных множителей a 2 – b 2 (разность квадратом двух чисел) разлагается на множители (a + b) и (a – b). Итак,

41. Применение особых случаев деления . На основании п. 37 мы можем сразу написать, что, напр.,

Любой алгебраический многочлен степени n может быть представлен в виде произведения n-линейных множителей вида и постоянного числа, которое является коэффициентов многочлена при старшей ступени х, т.е.

где - являются корнями многочлена.

Корнем многочлена называют число (действительное или комплексное), обращающее многочлен в нуль. Корнями многочлена могут быть как действительные корни, так и комплексно-сопряженные корни, тогда многочлен может быть представлен в следующем виде:

Рассмотрим методы разложения многочленов степени «n» в произведение множителей первой и второй степени.

Способ №1. Метод неопределенных коэффициентов.

Коэффициенты такого преобразованного выражения определяются методом неопределенных коэффициентов. Суть метода сводится к тому, что заранее известен вид множителей, на которые разлагается данный многочлен. При использовании метода неопределённых коэффициентов справедливы следующие утверждения:

П.1. Два многочлена тождественно равны в случае, если равны их коэффициенты при одинаковых степенях х.

П.2. Любой многочлен третьей степени разлагается в произведение линейного и квадратного множителей.

П.3. Любой многочлен четвертой степени разлагается на произведение двух многочленов второй степени.

Пример 1.1. Необходимо разложить на множители кубическое выражение:

П.1. В соответствии с принятыми утверждениями для кубического выражения справедливо тождественное равенство:

П.2. Правая часть выражения может быть представлена в виде слагаемых следующим образом:

П.3. Составляем систему уравнений из условия равенства коэффициентов при соответствующих степенях кубического выражения.

Данная система уравнений может быть решена методом подбора коэффициентов (если простая академическая задача) или использованы методы решения нелинейных систем уравнений. Решая данную систему уравнений, получим, что неопределённые коэффициенты определяются следующим образом:

Таким образом, исходное выражение раскладывается на множители в следующем виде:

Данный метод может использоваться как при аналитических выкладках, так и при компьютерном программировании для автоматизации процесса поиска корня уравнения.

Способ №2. Формулы Виета

Формулы Виета - это формулы, связывающие коэффициенты алгебраических уравнений степени n и его корни. Данные формулы были неявно представлены в работах французского математика Франсуа Виета (1540 - 1603). В связи с тем, что Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем явном виде.

Для любого алгебраического многочлена степени n, который имеет n-действительных корней,

справедливы следующие соотношения, которые связывают корни многочлена с его коэффициентами:

Формулами Виета удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Пример 2.1. Рассмотрим, как связаны корни многочлена с его коэффициентами на примере кубического уравнения

В соответствии с формулами Виета взаимосвязь корней многочлена с его коэффициентами имеет следующий вид:

Аналогичные соотношения можно составить для любого полинома степени n.

Способ №3. Разложение квадратного уравнения на множители с рациональными корнями

Из последней формулы Виета следует, что корни многочлена являются делителями его свободного члена и старшего коэффициента. В связи с этим, если в условии задачи задан многочлен степени n c целыми коэффициентами

то данный многочлен имеет рациональный корень (несократимая дробь), где p - делитель свободного члена , а q – делитель старшего коэффициента . В таком случае многочлен степени n можно представить в виде (теорема Безу):

Многочлен , степень которого на 1 меньше степени начального многочлена, определяется делением многочлена степени n двучлен , например, с помощью схемы Горнера или самым простым способом - «столбиком».

Пример 3.1. Необходимо разложить многочлен на множители

П.1. В связи с тем, что коэффициент при старшем слагаемом равен единицы, то рациональные корни данного многочлена являются делителями свободного члена выражения, т.е. могут быть целыми числами . Подставляем каждое из представленных чисел в исходное выражение найдем, что корень представленного многочлена равен .

Выполним деление исходного многочлена на двучлен:

Воспользуемся схемой Горнера

В верхней строке выставляются коэффициенты исходного многочлена, при этом первая ячейка верхней строки остается пустой.

В первой ячейке второй строки записывается найденный корень (в рассматриваемом примере записывается число «2»), а следующие значения в ячейках вычисляются определенным образом и они являются коэффициентами многочлена, который получится в результате деления многочлена на двучлен. Неизвестные коэффициенты определяются следующим образом:

Во вторую ячейку второй строки переносится значение из соответствующей ячейки первой строки (в рассматриваемом примере записывается число «1»).

В третью ячейку второй строки записывается значение произведения первой ячейки на вторую ячейку второй строки плюс значение из третьей ячейки первой строки (в рассматриваемом примере 2 ∙1 -5 = -3).

В четвертую ячейку второй строки записывается значение произведения первой ячейки на третью ячейку второй строки плюс значение из четвертой ячейки первой строки (в рассматриваемом примере 2 ∙ (-3) +7 = 1).

Таким образом, исходный многочлен раскладывается на множители:

Способ №4. Использование формул сокращенного умножения

Формулы сокращенного умножения применяют для упрощения вычислений, а также разложение многочленов на множители. Формулы сокращенного умножения позволяют упростить решение отдельных задач.

Формулы, используемые для разложения на множители

Многочлен представляет собой выражение, состоящее из суммы одночленов. Последние являются произведением константы (числа) и корня (или корней) выражения в степени k. В таком случае говорят о многочлене степени k. Разложение многочлена предполагает трансформацию выражения, при которой на смену слагаемых приходят множители. Рассмотрим основные способы проведения такого рода преобразования.

Метод разложения многочлена путем выделения общего множителя

Данный способ основывается на закономерностях распределительного закона. Так, mn + mk = m * (n + k).

  • Пример: разложите 7y 2 + 2uy и 2m 3 – 12m 2 + 4lm.

7y 2 + 2uy = y * (7y + 2u),

2m 3 – 12m 2 + 4lm = 2m(m 2 – 6m + 2l).

Однако, множитель, присутствующий обязательно в каждом многочлене может найтись не всегда, поэтому данный способ не является универсальным.

Метод разложения многочлена на базе формул сокращенного умножения

Формулы сокращенного умножения справедливы для многочлена любой степени. В общем виде выражение-преобразование выглядит следующим образом:

u k – l k = (u – l)(u k-1 + u k-2 * l + u k-3 *l 2 + … u * l k-2 + l k-1), где k является представителем натуральных чисел.

Наиболее часто на практике применяются формулы для многочленов второго и третьего порядков:

u 2 – l 2 = (u – l)(u + l),

u 3 – l 3 = (u – l)(u 2 + ul + l 2),

u 3 + l 3 = (u + l)(u 2 – ul + l 2).

  • Пример: разложите 25p 2 – 144b 2 и 64m 3 – 8l 3 .

25p 2 – 144b 2 = (5p – 12b)(5p + 12b),

64m 3 – 8l 3 = (4m) 3 – (2l) 3 = (4m – 2l)((4m) 2 + 4m * 2l + (2l) 2) = (4m – 2l)(16m 2 + 8ml + 4l 2).


Метод разложения многочлена – группировка слагаемых выражения

Данный метод некоторым образом перекликается с техникой выведения общего множителя, но имеет некоторые отличия. В частности, перед тем, как выделять общий множитель, следует произвести группировку одночленов. В основе группирования лежат правила сочетательного и переместительного законов.

Все одночлены, представленные в выражении разбиваются на группы, в каждой из которых выносится общее значение такое, что второй множитель будет одинаковым во всех группах. В общем виде подобный способ разложения можно представить в виде выражения:

pl + ks + kl + ps = (pl + ps) + (ks + kl) ⇒ pl + ks + kl + ps = p(l + s) + k(l + s),

pl + ks + kl + ps = (p + k)(l + s).

  • Пример: разложите 14mn + 16ln – 49m – 56l.

14mn + 16ln – 49m – 56l = (14mn – 49m) + (16ln – 56l) = 7m * (2n – 7) + 8l * (2n – 7) = (7m + 8l)(2n – 7).


Метод разложения многочлена – формирование полного квадрата

Данный способ является одним из наиболее эффективных в ходе разложения многочлена. На первоначальном этапе необходимо определить одночлены, которые можно “свернуть” в квадрат разности или суммы. Для этого используется одно из соотношений:

(p – b) 2 = p 2 – 2pb + b 2 ,

  • Пример: разложите выражение u 4 + 4u 2 – 1.

Выделим среди его одночленов слагаемые, которые образуют полный квадрат: u 4 + 4u 2 – 1 = u 4 + 2 * 2u 2 + 4 – 4 – 1 =

= (u 4 + 2 * 2u 2 + 4) – 4 – 1 = (u 4 + 2 * 2u 2 + 4) – 5.

Завершаете преобразование, используя правила сокращенного умножения: (u 2 + 2) 2 – 5 = (u 2 + 2 – √5)(u 2 + 2 + √5).

Т.о. u 4 + 4u 2 – 1 = (u 2 + 2 – √5)(u 2 + 2 + √5).


Формулы сокращенного умножения - это очень удобный инструмент для операций с многочленами. Как правило, это позволяет сократить сложные конструкции полиномов до небольшого выражения, представляемого двучленом. Либо же,в ином порядке - из произведения двух многочленов легко выводится компактный бином.

Такие действия бывают необходимыми при решении тривиальных уравнений и неравенств, а также при различных доказательных задачах.

В прошлых видеоуроках мы рассмотрели формулы разности квадратов и разности кубов. Попытаемся вывести формулу ещё более высокого порядка - найдем, чему равна разность выражений в четвертой степени:

Это выражение сравнительно легко преобразовать, подставив вместо х 4 и у 4 идентичные квадратные выражения (х 2) 2 и (у 2) 2:

х 4 - у 4 = (х 2) 2 - (у 2) 2

В итоге мы получаем разность квадратов, которую можно представить при помощи элементарной ФСУ как:

(х 2) 2 - (у 2) 2 = (х 2 + у 2)(х 2 - у 2)

С другой стороны, вторые скобки полученного выражения содержат разность квадратов, которую можно легко преобразовать:

(х 2 + у 2)(х 2 - у 2) = (х 2 + у 2)((х + у)(х - у))

Отсюда следует, что:

х 4 - у 4 = (х 2 + у 2)(х + у)(х - у)

Оставим основополагающую общую часть (х - у), остальные два выражения в скобках перемножим:

х 4 - у 4 = (х 2 + у 2)(х + у)(х - у) = (х - у)(х 3 + х 2 у + ху 2 + у 3)

Для чего необходимо выделять (х - у), будет показано позже. Итак, мы нашли ещё одну формулу для разности степенных выражений. Это равенство достаточно сложно для выражения - однако стоит понимать, что оно вполне логично вписывается в ряд подобных формул для определения разности квадратов и кубов. Сравним эти формулы между собой, для того, что бы найти общие закономерности:

х 2 - у 2 = (х - у)(х + у)

х 3 - у 3 = (х - у)(х 2 + 2ху + у 2)

х 4 - у 4 = (х - у)(х 3 + х 2 у + ху 2 + у 3)

На видео четко представлено, что разности переменных в различной степени имеют некоторые закономерности. Все выражения по правую сторону равенства состоят из произведения двух многочленов, причем один из них всегда имеет форму х - у (изначальная разность выражений). Второй же образован неким сложным полиномом, количество одночленов которого растет со степенью.

Для выведения общей формулы, которая поможет преобразовать в произведение полиномов разность переменных с любой степенью, важно понять общие тенденции в равенствах начального порядка. Заметим, что второй многочлен в нашем произведении представляет собой сумму попарных произведений двух выражений. Причем степени переменных находятся в обратной взаимосвязи. Чтобы было легче понять эти закономерности, перепишем равенство для разности выражений четвертой степени таким образом:

х 4 - у 4 = (х - у)(х 3 у 0 + х 2 у 1 + х 1 у 2 + х 0 у 3)

Любое число в нулевой степени обязательно равно единице. Поэтому к любой реальной переменной можно смело дописывать конструкцию с нулевой степенью. Помним так же, что любая переменная имеет степень - если она не указана, то равна единице. Эти правила обращения со степенями и позволили представить равенство в более понятном виде.

Обратим внимание, что количество членов в многочлене вторых скобок равно основной степени (которую имеют переменные в разности). По ряду многочлена, степень одного выражения алгебраически убывает, а степень второго - прибывает. При этом крайними точками для степеней являются 0 и старшая степень начальной разности выражений.

Пользуясь этими соображениями, выведем формулу для нахождения разности выражений пятой степени:

х 5 - у 5 = (х - у)(х 4 у 0 + х 3 у 1 + х 2 у 2 + х 1 у 3 + х 0 у 4)

Для начала, мы прописываем первый множитель (х - у) без изменений. Второй же многочлен будет представлять сумму пяти элементов (по старшей степени). Элементы, в свою очередь, образованы произведением переменных с алгебраическим, обратным и взаимосвязанным изменением степеней. В многочлене:

х 4 у 0 + х 3 у 1 + х 2 у 2 + х 1 у 3 + х 0 у 4

х понижает степень с 4 до 0, у повышает с 0 до 4. Для самопроверки полезно знать, что сумма степеней любого одночлена, в данном случае, будет равна все той же старшей степени - 5.

Остается лишь корректно записать формулу, избавившись от нулевых степеней:

х 5 - у 5 = (х - у)(х 4 + х 3 у + х 2 у 2 + ху 3 + у 4)

В общем плане, для любой степени n верно равенство:

(х) n - (у) n = (х - у)((х) n + (х) n-1 у…+х(у) n - 1 + у n)

Универсальная формула для нахождения суммы двух выражений с n-ной разностью выводится через преобразование вида:

х n + у n = х n - (-у n)

Пользуясь формулой для разности выражений, полученной выше, выводим равенство:

х n + у n = х n - (-у n) = (х + у)((х) n-1 - (х) n-2 у…- х(у) n - 2 + у n-1)

В силу того, что квадрат любого выражения ликвидирует его отрицательность, нельзя доступными средствами представить сумму квадратов (или любых четных степеней) переменных как произведение двух многочленов.