По литературе

Зоны и доли коры больших полушарий. Какое строение имеет кора больших полушарий? Особенности локализации по полям

В коре проводящие функции выполняют ситовидные трубки, механическими элементами являются лубяные волокна и каменистые клетки, запасающими - паренхимные клетки, покровными - пробковые клетки. Ситовидные клетки, находящиеся в лубе, образованы расположенными одна над другой длинными живыми клетками с тонкими целлюлозными оболочками. Перегородки, разделяющие клетки в трубке, с многочисленными мелкими отверстиями имеют вид сита (рис. 26).

У лиственных пород ситовидные трубки сопровождаются плотно прилегающими к ним узкими живыми клетками, которые называются спутницами; назначение их точно не выяснено. Диаметр ситовидных трубок обычно 20-30μ, длина отдельных клеток (члеников) - несколько десятых миллиметра. Ситовидные трубки остаются действующими обычно только в течение 1 года; лишь у некоторых пород они могут функционировать несколько лет (у липы 3-4 года).

Рис. 26. Ситовидная трубка: а - поперечный; б - продольный разрез; 1 - протоплазма; 2 - сито; 3-клетка-спутница.

Лубяные волокна похожи на волокна либриформа; стенки их одревеснели и настолько утолщены, что полость клетки на поперечном разрезе заметна лишь в виде точки; поры на стенках простые. Длина лубяных волокон в коре липы, где они наиболее типичны, от 0,875 до 1,225 мм, толщина от 0,03 до 0,25 мм. Кроме липы, большое количество лубяных волокон содержит луб тополей и ив. Каменистые клетки имеют обычную форму паренхимных клеток, но снабжены сильно утолщенными, одревесневшими слоистыми оболочками, пронизанными поровыми каналами.

Эти клетки получили свое название за твердость оболочек. Встречаются они чаще в наружном слое коры. Лубяные лучи являются продолжением в коре сердцевинных лучей древесины и состоят из таких же паренхимных клеток, но стенки их не всегда древеснеют. Сердцевинные лучи, переходя в луб, иногда постепенно расширяются, как это наблюдается в коре липы. Лубяная паренхима состоит из тяжей паренхимы; оболочки клеток лубяной паренхимы обычно остаются целлюлозными; в полостях их встречаются разнообразные вещества: крахмал, масло, дубильные вещества, кристаллы минеральных солей и др.


Рис. 27. Пробковая ткань пробкового дуба под микроскопом: а - поперечный; б - радиальный; в - тангенциальный разрез.

Между коркой и лубом находится переходный слой, состоящий из паренхимных клеток; наружный ряд этих клеток образует пробковый камбий. При делении клеток этого камбия в сторону луба откладываются клетки лубяной паренхимы, а в сторону корки - пробковые клетки, которые на поперечном разрезе расположены радиальными рядами и имеют четырехугольную форму, а на тангенциальном - многоугольную (рис. 27). Они плотно соединены друг с другом; оболочки их не имеют пор и пропитаны суберином, делающим их непроницаемыми для воды и воздуха; при таких условиях питание клетки становится невозможным, и она неизбежно отмирает. Однако в пробковой ткани, которая одевает дерево снаружи, остаются небольшие участки рыхлой ткани - чечевички, которые выполняют роль вентиляционных каналов, соединяющих с атмосферой внутренние части дерева. У некоторых пород гладкая поверхность коры, образованная пробковой тканью, сохраняется в течение многих лет (у бука, граба, березы).

Однако у большинства пород ствол дерева рано или поздно покрывается коркой. В этих случаях пробковый камбий периодически возникает в глубоких слоях коры, постепенно отделяя все новые и новые ее участки слоями пробковой ткани; эти участки обречены на отмирание и своей совокупностью образуют корку (рис. 28), иногда покрытую с поверхности глубокими трещинами (у сосны, дуба). У яблони и груши образование корки в большинстве случаев начинается на 6-8-м году, у липы - на 10-12-м году жизни; у дуба корка появляется в возрасте 25-35 лет, а у пихты и граба - в 50 и даже позднее. У некоторых пород (граба, березы бородавчатой и др.) корка образуется только в нижней части ствола. По внешнему виду коры ели, т. е. по форме и размерам трещин, можно определить возраст дерева.

Кора многих пород имеет большое техническое значение. Так, пробковая ткань наибольшего развития достигает у пробкового дуба. Наружная часть коры представлена у него толстым слоем пробки, которую периодически можно снимать со ствола растущего дерева, после чего она нарастает вновь. Получаемая таким путем техническая пробка идет на изготовление укупорочных пробок, теплоизоляционных плит и др. Родина пробкового дуба - побережье Средиземного моря. В нашей стране он растет на Черноморском побережье. У отечественных пород пробковая ткань в виде толстых валиков образуется на коре бархатного дерева, произрастающего в лесах Дальнего Востока.

Рис. 28. Поперечный разрез корки дуба: 1 - пробка; 2 -пробковый камбий; 3 - каменистые клетки; 4 - клетки с друзами; 5 - лубяная паренхима; 6 - группа лубяных волокон; 7 - группа ситовидных трубок (отмерших).

Пробка бархатного дерева применяется для тех же целей, что и пробка дуба и после съема может нарастать вновь. Пробковая часть коры березы (береста) идет на изготовление хозяйственной тары и дегтекурение. Вместо бересты, снятой без повреждения лубяной части коры, на стволах хорошо развитых, здоровых деревьев, растущих в сомкнутых древостоях, защищенных от непосредственного действия солнечных лучей и ветра, может образоваться новая береста.

На стволах черного тополя с течением времени образуется толстая корка, нарастающая в виде довольно крупных валиков, шириной у основания до 10-12 см и толщиной до 8-10 см. Из этой корки, которая называется балберой, изготовляют поплавки к рыболовным сетям. Из луба коры липы получают мочало в виде разъединенных лент лубяных волокон; мочало идет на изготовление рогожи, кулей, веревок и др.

1. Какое строение имеет кора больших полушарий?

Кора больших полушарий представляет собой слой се-рого вещества толщиной в 2-4 мм. Она образована нерв-ными клетками (около 14 млрд), расположенными на поверхности переднего мозга. Борозды (углубления), изви-лины (складки) увеличивают площадь поверхности коры (до 2000—2500 см 2).

2. Какие доли выделяют в коре больших полушарий?

Кора больших полушарий разделена на доли глубокими (бороздами. В каждом полушарии выделяют лобную долю, теменную, височную и затылочную. Лобная доля от темен-ной отделена центральной бороздой. Височную долю от лобной и теменной отделяет боковая борозда. Затылочная доля отделена от теменной менее глубокой теменно-затылочной бороздой.

3. Какие функции выполняет кора больших полушарий?

Кора больших полушарий отвечает за восприятие всей поступающей в мозг информации (зрительной, слуховой, осязательной, вкусовой и т.д.), за управление всеми слож-ными мышечными движениями. С работой больших по-лушарий связаны психические функции (память, речь, мышление и др.).

4. Каково расположение областей, ответственных за осу-ществление функций коры?

В коре больших полушарий различают сенсорные, мо-торные и ассоциативные зоны.

В сенсорных зонах находятся центральные отделы ана-лизаторов, т.е. происходит обработка информации, посту-пающей от органов чувств. Соматосенсорная зона (кожной чувствительности) располагается в заднецентральной изви-лине, сзади от центральной борозды. К этой зоне приходят импульсы от скелетных мышц, сухожилий и суставов, а так-же импульсы от тактильных, температурных и других рецеп-торов кожи. В правое полушарие поступают импульсы от левой половины тела, а в левое — от правой. Зрительная зо-на располагается в затылочной области коры. В эту зону приходят импульсы от сетчатки. Слуховая зона располагает-ся в височной области. Раздражение этой области вызывает ощущение низких или высоких, громких или тихих звуков. Зона вкусовых ощущений располагается в теменной области, в нижней части заднецентральной извилины. При ее раздражении возникают различные вкусовые ощущения. Материал с сайта

Моторными зонами называют отделы коры больших полушарий, при раздражении которых возникает движение. Двигательная зона расположена в передней центральной из вилине (спереди от центральной борозды). С верхней ча-стью полушарий связана регуляция движений нижних ко-нечностей, затем туловища, еще ниже руки, а затем мышц лица и головы. Наибольшее пространство занимает двига-тельная зона кисти и пальцев руки и мышц лица, наимень-шее — мышц туловища. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэто-му при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела.

Ассоциативные зоны (в частности, теменная доля) свя-зывают различные области коры. Деятельность этих зон лежит в основе высших психических функций человека. При этом правое полушарие отвечает за образное (узнава-ние людей, восприятие музыки, художественное творчест-во) мышление, левое за абстрактное (письменная и устная речь, математические операции) мышление.

Деятельность каждого органа человека находится под контролем коры больших полушарий.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • теменная зона коры больших полушарий
  • строение коры больших полушарий кратко
  • какая зона находится в заднецентральной извилине
  • мышечная зона копы больших полушарий находится в
  • доли зоны больших полушарий

По современным представлениям геологии наша планета состоит из нескольких слоев - геосфер. Они различаются по физическим свойствам, химическому составу и В центре Земли находится ядро, за ним идет мантия, потом - земная кора, гидросфера и атмосфера.

В данной статье мы рассмотрим строение земной коры, являющейся верхней частью литосферы. Она представляет собой внешнюю твердую оболочку мощность которой так мала (1,5 %), что ее можно сравнить с тонкой пленкой в масштабах всей планеты. Однако, несмотря на это, именно верхний слой земной коры имеет для человечества большой интерес, как источник полезных ископаемых.

Кора земли условно разделяется на три слоя, каждый из которых по-своему примечателен.

  1. Верхний слой - осадочный. Он достигает толщины от 0 до 20 км. Осадочные породы образовываются вследствие отложения веществ на суше, либо их оседания на дне гидросферы. Они входят в состав земной коры, располагаясь в ней сменяющими друг друга пластами.
  2. Средний слой - гранитный. Его толщина может колебаться от 10 до 40 км. Это магматическая порода, образовавшая твердый слой в результате извержений и последующих застываний магмы в земной толще при высоком давлении и температуре.
  3. Нижний слой, входящий в строение земной коры - базальтовый, тоже имеет магматическое происхождение. В нем содержится большее количество кальция, железа и магния, и его масса больше, чем у гранитной породы.

Структура земной коры не везде одинакова. Особенно разительные отличия имеют океаническая кора и континентальная. Под океанами земная кора тоньше, а под материками толще. Наибольшую толщину она имеет в районах горных массивов.

В состав входят два слоя - осадочный и базальтовый. Под базальтовым слоем находится поверхность Мохо, а за ней верхняя мантия. Океаническое дно имеет сложнейшие рельефные формы. Среди всего их разнообразия особое место занимают огромных размеров срединно-океанические хребты, в которых из мантии зарождается молодая базальтовая океаническая кора. Магма имеет доступ на поверхность через глубинный разлом - рифт, который проходит по центру хребта вдоль вершин. Снаружи магма растекается, тем самым постоянно раздвигая стенки ущелья в стороны. Такой процесс получил название «спрединг».

Строение земной коры более сложное на континентах, нежели под океанами. Континентальная кора занимает гораздо меньшую площадь, чем океаническая - до 40% земной поверхности, но имеет намного большую мощность. Под она достигает толщины 60-70 км. Континентальная кора имеет трехслойное строение - осадочный слой, гранитный и базальтовый. На участках, которые называются щитами, гранитный слой находится на поверхности. Как пример - сложенный из гранитных пород.

Подводная крайняя часть материка - шельф, также имеет континентальное строение земной коры. К нему относятся и острова Калимантан, Новая Зеландия, Новая Гвинея, Сулавеси, Гренландия, Мадагаскар, Сахалин и др. А также внутренние и окраинные моря: Средиземное, Азовское, Черное.

Проводить границу между гранитным слоем и базальтовым можно лишь условно, так как они имеют сходную скорость прохождения сейсмических волн, по которой определяют плотность земных слоев и их состав. Базальтовый слой соприкасается с поверхностью Мохо. Осадочный слой может иметь разную толщину, что зависит от располагающейся на нем формы рельефа. В горах, например, он или вообще отсутствует или имеет очень малую толщину, ввиду того что рыхлые частицы перемещаются вниз по склонам под воздействием внешних сил. Но зато он очень мощен в предгорных районах, впадинах и котловинах. Так, в он достигает 22 км.

Земная кора в научном понимании представляет собой самую верхнюю и твердую геологическую часть оболочки нашей планеты.

Научные исследования позволяют изучить ее досконально. Этому способствуют многократные бурения скважин как на континентах, так и на океанском дне. Строение земли и земной коры на различных участках планеты отличаются и и по составу, и по характеристикам. Верхней границей земной коры является видимый рельеф, а нижней - зона разделения двух сред, которая также известна как поверхность Мохоровичича. Часто ее называют просто "граница М". Это наименование она получила благодаря хорватскому сейсмологу Мохоровичичу А. Он долгие годы наблюдал за скоростью сейсмических движений в зависимости от уровня глубины. В 1909 году он установил наличие разницы между земной корой и раскаленной мантией Земли. Граница М пролегает на том уровне, где скорость сейсмических волн повышается с 7.4 до 8.0 км/с.

Химический состав Земли

Изучая оболочки нашей планеты, ученые делали интересные и даже потрясающие выводы. Особенности строения земной коры делают ее схожей с такими же участками на Марсе и Венере. Более чем 90 % составляющих элементов ее представлены кислородом, кремнием, железом, алюминием, кальцием, калием, магнием, натрием. Сочетаясь между собой в различных комбинациях, они образуют однородные физические тела - минералы. Они могут войти в состав горных пород в разных концентрациях. Строение земной коры весьма неоднородно. Так, горные породы в обобщенном виде представляют собой агрегаты более-менее постоянного химического состава. Это самостоятельные геологические тела. Под ними понимается четко очерченная область земной коры, имеющая в своих границах одинаковое происхождение, возраст.

Горные породы по группам

1. Магматические. Название говорит само за себя. Они возникают из остывшей магмы, вытекающей из жерла древних вулканов. Строение этих пород напрямую зависит от скорости застывания лавы. Чем она больше, тем меньше кристаллы вещества. Гранит, например, сформировался в толще земной коры, а базальт появился в результате постепенного излияния магмы на ее поверхность. Многообразие таких пород довольно велико. Рассматривая строение земной коры, мы видим, что она состоит из магматических минералов на 60 %.

2. Осадочные. Это породы, которые стали результатом постепенного отложения на суше и дне океана обломков тех или иных минералов. Это могут быть как рыхлые компоненты (песок, галька), сцементированные (песчаник), остатки микроорганизмов (каменный уголь, известняк), продукты химических реакций (калийная соль). Они составляют до 75 % всей земной коры на материках.
По физиологическому способу образования осадочные породы делятся на:

  • Обломочные. Это остатки различных горных пород. Они разрушались под воздействием природных факторов (землетрясение, тайфун, цунами). К ним можно отнести песок, гальку, гравий, щебень, глину.
  • Химические. Они постепенно образуются из водных растворов тех или иных минеральных веществ (соли).
  • Органические или биогенные. Состоят из останков животных или растений. Это горючие сланцы, газ, нефть, уголь, известняк, фосфориты, мел.

3. Метаморфические породы. В них могут превращаться другие компоненты. Это происходит под воздействием изменяющейся температуры, большого давления, растворов или газов. Например, из известняка можно получить мрамор, из гранита - гнейс, из песка - кварцит.

Минералы и горные породы, которые человечество активно использует в своей жизнедеятельности, называются полезными ископаемыми. Что они собой представляют?

Это природные минеральные образования, которые влияют на строение земли и земной коры. Они могут использоваться в сельском хозяйстве и промышленности как в естественном виде, так и подвергаясь переработке.

Виды полезных минералов. Их классификация

В зависимости от физического состояния и агрегации, полезные ископаемые можно разделить на категории:

  1. Твердые (руда, мрамор, уголь).
  2. Жидкие (минеральная вода, нефть).
  3. Газообразные (метан).

Характеристики отдельных видов полезных ископаемых

По составу и особенностям применения различают:

  1. Горючие (уголь, нефть, газ).
  2. Рудные. Они включают радиоактивные (радий, уран) и благородные металлы (серебро, золото, платина). Есть руды черных (железо, марганец, хром) и цветных металлов (медь, олово, цинк, алюминий).
  3. Нерудные полезные ископаемые играют существенную роль в таком понятии, как строение земной коры. География их обширна. Это неметаллические и негорючие горные породы. Это строительные материалы (песок, гравий, глина) и химические вещества (сера, фосфаты, калийные соли). Отдельный раздел посвящен драгоценным и поделочным камням.

Распределение полезных ископаемых по нашей планете напрямую зависит от внешних факторов и геологических закономерностей.

Так, топливные полезные ископаемые в первую очередь добываются в нефтегазоносных и угольных бассейнах. Они имеют осадочное происхождение и формируются на осадочных чехлах платформ. Нефть и уголь крайне редко залегают вместе.

Рудные полезные ископаемые чаще всего соответствуют фундаменту, выступам и складчатым областям платформенных плит. В таких местах они могут создавать огромные по протяженности пояса.

Ядро


Земная оболочка, как известно, многослойна. Ядро располагается в самом центре, а его радиус приблизительно равен 3 500 км. Его температура гораздо выше, чем у Солнца и составляет около 10000 К. Точных данных о химическом составе ядра не получено, но предположительно оно состоит из никеля и железа.

Внешнее ядро находится в расплавленном состоянии и имеет еще большую мощность, чем внутреннее. Последнее подвергается колоссальному давлению. Вещества, из которых оно состоит, находятся в постоянном твердом состоянии.

Мантия

Геосфера Земли окружает ядро и составляет около 83 процентов от всей оболочки нашей планеты. Нижняя граница мантии находится на огромной глубине почти 3000 км. Данную оболочку принято условно разделять на менее пластичную и плотную верхнюю часть (именно из нее образуется магма) и на нижнюю кристаллическую, ширина которой составляет 2000 километров.

Состав и строение земной коры

Для того чтобы говорить о том, какие элементы входят в состав литосферы, нужно дать некоторые понятия.

Земная кора - это самая внешняя оболочка литосферы. Ее плотность меньше в два раза по сравнению со средней плотностью планеты.

От мантии земная кора отделена границей М, о которой уже говорилось выше. Так как процессы, происходящие на обоих участках, взаимно влияют друг на друга, их симбиоз принято называть литосферой. Это означает "каменная оболочка". Ее мощность колеблется в пределах 50-200 километров.

Ниже литосферы расположена астеносфера, которая обладает менее плотной и вязкой консистенцией. Ее температура составляет около 1200 градусов. Уникальной особенностью астеносферы является возможность нарушать свои границы и проникать в литосферу. Она является источником вулканизма. Здесь находятся расплавленные очаги магмы, которая внедряется в земную кору и изливается на поверхность. Изучая эти процессы, ученые смогли сделать много удивительных открытий. Именно так изучалось строение земной коры. Литосфера была сформирована много тысяч лет назад, но и сейчас в ней происходят активные процессы.

Структурные элементы земной коры

По сравнению с мантией и ядром, литосфера - это жесткий, тонкий и очень хрупкий слой. Она сложена из комбинации веществ, в составе которых на сегодняшний день обнаружено более 90 химических элементов. Они распределены неоднородно. 98 процентов массы земной коры приходится на семь составляющих. Это кислород, железо, кальций, алюминий, калий, натрий и магний. Возраст самых древних пород и минералов составляет более 4.5 миллиардов лет.

Изучая внутреннее строение земной коры, можно выделить различные минералы.
Минерал - сравнительно однородное вещество, которое может находиться как внутри, так и на поверхности литосферы. Это кварц, гипс, тальк и т.д. Горные породы слагаются из одного или нескольких минералов.

Процессы, формирующие земную кору

Строение океанической земной коры

Данная часть литосферы преимущественно состоит из базальтовых пород. Строение океанической земной коры изучено не так досконально, как континентальное. Теория тектонических плит объясняет, что океаническая земная кора является относительно молодой, а самые ее последние участки можно датировать поздней юрой.
Ее толщина практически не изменяется со временем, так как она определяется количеством расплавов, выделяющихся из мантии в зоне срединно-океанических хребтов. На нее существенно влияет глубина осадочных слоев на дне океана. В наиболее объемных участках она составляет от 5 до 10 километров. Данный вид земной оболочки относится к океанической литосфере.

Континентальная кора

Литосфера взаимодействует с атмосферой, гидросферой и биосферой. В процессе синтеза они образуют самую сложную и реакционно активную оболочку Земли. Именно в тектоносфере происходят процессы, изменяющие состав и строение этих оболочек.
Литосфера на земной поверхности не однородна. Она имеет несколько слоев.

  1. Осадочный. Он в основном образуется горными породами. Здесь преобладают глины и сланцы, а также широко распространены карбонатные, вулканогенные и песчаные породы. В осадочных слоях можно встретить такие полезные ископаемые, как газ, нефть и каменный уголь. Все они имеют органическое происхождение.
  2. Гранитный слой. Он состоит из магматических и метаморфических пород, которые наиболее близки по своей природе к граниту. Этот слой встречается далеко не везде, наиболее ярко он выражен на континентах. Здесь его глубина может составлять десятки километров.
  3. Базальтовый слой образуют породы, близкие к одноименному минералу. Он более плотный, чем гранит.

Глубина и изменение температуры земной коры

Поверхностный слой прогревается солнечным теплом. Это гелиометрическая оболочка. Она испытывает сезонные колебания температуры. Средняя мощность слоя составляет около 30 м.

Ниже находится слой, еще более тонкий и хрупкий. Его температура постоянна и приблизительно равна среднегодовой, характерной для этой области планеты. В зависимости от континентального климата глубина этого слоя увеличивается.
Еще глубже в земной коре находится еще один уровень. Это геотермический слой. Строение земной коры предусматривает его наличие, а его температура определяется внутренним теплом Земли и возрастает с глубиной.

Повышение температуры происходит за счет распада радиоактивных веществ, которые входят в состав горных пород. В первую очередь это радий и уран.

Геометрический градиент - величина нарастания температуры в зависимости от степени увеличения глубины слоев. Этот параметр зависит от разных факторов. Строение и типы земной коры влияют на него, так же как и состав горных пород, уровень и условия их залегания.

Тепло земной коры является важным энергетическим источником. Его изучение очень актуально на сегодняшний день.

Литосфера – это твердая оболочка планеты Земля. Она покрывает ее полностью, защищая поверхность от высочайших температур ядра планеты. Изучим, какое строение имеет литосфера и чем она отличается от других планет.

Общая характеристика

Литосфера граничит с гидросферой и атмосферой вверху, и с астеносферой внизу. Толщина этой оболочки значительно варьирует и составляет от 10 до 200 км. на разных участках планеты. На континентах литосфера толще, чем в океанах. Литосфера не представляет собой единое целое – она образована отдельными плитами, которые лежат на астеносфере и постепенно передвигаются по ней. Выделяют семь крупных литосферных плит и несколько маленьких. Границы между ними являются зонами сейсмической активности. На территории России соединяются две такие плиты – Евразийская и Североамериканская. Строение литосферы Земли представлено тремя слоями:

  • земная кора;
  • пограничный слой;
  • верхняя мантия.

Рассмотрим каждый слой подробнее.

Рис. 1. Слои литосферы

Земная кора

Это верхний и самый тонкий слой литосферы. Его масса составляет всего 1% от массы Земли. Толщина земной коры варьирует от 30 до 80 км. Меньшая толщина наблюдается на равнинных территориях, большая – на горных. Различают два типа земной коры – материковая и океаническая.

Разделение коры на два типа имеется только на Земле, на остальных планетах кора однотипная.

Материковая кора состоит из трех слоев:

ТОП-2 статьи которые читают вместе с этой

  • осадочный – образован осадочными и вулканическими породами;
  • гранитный – образован метаморфическими горными породами (кварц, полевой шпат);
  • базальтовый – представлен магматическими породами.

В океанической коре есть только осадочный и базальтовый слой.

Рис. 2. Слои океанической и континентальной земной коры

Земная кора содержит все известные минералы, металлы и химические вещества в разных количествах. Самые распространенные элементы:

  • кислород;
  • железо;
  • кремний;
  • магний;
  • натрий;
  • кальций;
  • калий.

Полное обновление земной коры происходит за 100 млн. лет.

Пограничный слой

Его называют поверхностью Мохоровичича. В этой зоне происходит резкий рост скорости сейсмических волн. Также здесь сменяется плотность вещества литосферы, оно становится более упругим. Поверхность Мохоровичича залегает на глубине от 5 до 70 км, полностью повторяя рельеф земной коры.

Рис. 3. Схема поверхности Мохоровичича

Мантия

К литосфере относится только верхний слой мантии. Он имеет толщину от 70 до 300 км. Какие явления происходят в этом слое? Здесь зарождаются очаги сейсмической активности – землетрясения. Это связано с повышением здесь скорости сейсмических волн. Каково строение этого слоя? Образована она в основном железом, магнием, кальцием, кислородом.