На свободную тему

Хокинг о черных дырах. Стивен хокинг признал, что у черных дыр есть "мягкие волосы". Подробности для любознательных

Уголь, нефть, газ, ядерное топливо – все эти традиционные источники энергии давно знакомы человечеству и используются с разной степенью эффективности. Поиск альтернативных источников энергии ведется по целому ряду причин. Это и экономия затрат на тепло- и электроснабжение, и улучшение экологической ситуации, и ограниченность имеющихся энергетических ресурсов.

Сегодня предлагаем изучить наш Топ-10 альтернативных источников энергии . Далеко не все источники когда-либо получат широкое распространение, однако, некоторые уже обеспечивают энергией миллионы людей по всей планете.

10. Энергия ветра

Ветрогенераторы давно и довольно успешно применяются в Дании, Нидерландах, Великобритании, Китае и Индии. Дания около 25% энергии получает именно за счет ветряных установок. По оценкам аналитиков Россия также могла бы применять энергию ветра, обеспечивая до 10% своих энергетических потребностей.

9. Биотопливо

Биодизель и биоэтанол можно получать из различных продуктов: древесных отходов, соломы, биогаза, растительных масел, водорослей. В России основной продукт для производства биодизеля – рапсовое масло. В странах Евросоюза работает более 245 заводов по производству биодизеля.

8. Управляемый термоядерный синтез

Процесс получения более тяжёлых атомных ядер из более лёгких может служить источником энергии в том случае, если является управляемым. В современной атомной энергетике используется реакция распада, а не синтеза. В настоящее время управляемый ядерный синтез для получения энергии на практике не используется, так как остается открытым вопрос рентабельности и безопасности такой деятельности.

7. Энергия морских приливов

На берегах морей, где гравитационное воздействие луны вызывает изменение уровня вода дважды в сутки, строятся приливные электростанции (ПЭС). На сегодняшний день ПЭС работают в Великобритании, Франции, Канаде, Китае и Индии. В России с 1968 года функционирует экспериментальная ПЭС на побережье Баренцева моря.

6. Космическая энергетика

Получение энергии в фотоэлектрических элементах, вынесенных на орбиту Земли, считается перспективным источником энергии. Однако некоторые ученые уверяют, что масштабная реализация подобных проектов приведет к глобальному потеплению. В настоящее время на практике получение энергии таким способом с доставкой ее на Землю не проводится.

5. Тепло человеческого тела

В Стокгольме и Париже власти намерены использовать тепло, которое выделяют пассажиры вагона метро во время поездки. Так, в Париже владелец жилого дома, расположенного над веткой метрополитена, разработал проект обогрева 17 квартир за счет тепла тел пассажиров.

4. Геотермальная энергетика

Термальные источники имеются на территории многих стран. В Центральной Америке, Филиппинах, Исландии их научились использовать для отопления. В этих же районах работают и геотермальные электростанции.

3. Водородная энергетика

Водород считается экологически чистым источником энергии. Однако для производства водорода на сегодняшний день требуется больше энергии, чем можно получить при его использовании. Поэтому эффективным источником энергии водород пока не стал.

2. Энергия морских и океанских волн

Страны, имеющие протяженную береговую линию, вполне могут покрывать часть своих энергетических потребностей за счет морской волны. По расчетам аналитиков, Великобритания может получить таким образом до 5% требуемой электроэнергии. С этой целью именно в Соединенном Королевстве был построен волновой генератор Oyster.

1. Энергия солнца

Более чем в 30 странах мира работают солнечные электростанции, а сотни тысяч домашних хозяйств обеспечивают себя энергией за счет установки солнечных батарей. Кстати, самая мощная солнечная электростанция в мире – «Перово», расположенная в Крыму. Солнце, пожалуй, — самый популярный среди альтернативных источников энергии на сегодняшний день.

Ни для кого не секрет, что используемые сегодня человечеством ресурсы конечны, более того, их дальнейшая добыча и использование может привести не только к энергетической, но и к экологической катастрофе. Традиционно используемые человечеством ресурсы — уголь, газ и нефть — закончатся уже спустя несколько десятилетий, и меры нужно принимать уже сейчас, в наше время. Конечно, можно надеяться, что мы вновь найдем какое-либо богатое месторождение, так же как было в первой половине прошлого века, однако ученые уверены, что таких крупных залежей уже нет. Но в любом случае даже открытие новых месторождений только отсрочит неизбежное, необходимо найти способы производства альтернативной энергии, и переходить на возобновляемые ресурсы, такие как ветер, солнце, геотермальная энергия, энергия водных потоков и другие, а наряду с этим нужно продолжать разработки энергосберегающих технологий.

В этой статье мы рассмотрим несколько самых перспективных, на взгляд современных ученых, идей, на которых будет строиться энергетика будущего.

Солнечные станции

Люди издавна задумывались над тем, возможно ли Под солнечными лучами нагревали воду, сушили одежду и глиняную посуду перед ее отправкой в печь, однако эти способы нельзя назвать эффективными. Первые технические средства, преобразующие солнечную энергию, появились еще в 18 веке. Французский ученый Ж. Бюффон показал опыт, в котором ему удалось с помощью большого вогнутого зеркала в ясную погоду воспламенить сухое дерево с расстояния около 70 метров. Его соотечественник, известный ученый А. Лавуазье, применял линзы, чтобы концентрировать энергию солнца, а в Англии создали двояковыпуклое стекло, которое, фокусируя солнечные лучи, расплавляло чугун всего за несколько минут.

Естествоиспытатели проводили множество опытов, которые доказывали, что солнца на земле возможно. Однако солнечная батарея, которая превращала бы солнечную энергию в механическую, появилась сравнительно недавно, в 1953 году. Ее создали ученые из Национального аэрокосмического агентства США. Уже в 1959 году солнечную батарею впервые применили для оснащения космического спутника.

Возможно уже тогда, осознав, что в космосе такие батареи гораздо эффективнее, ученым пришла идея о создании космических солнечных станций, ведь за час солнце вырабатывать столько энергии, сколько все человечество не потребляет и за год, так почему же не использовать это? Какой будет солнечная энергетика будущего?

С одной стороны кажется, что использование солнечной энергии идеальный вариант. Однако себестоимость огромной космической солнечной станции очень высока, да и к тому же она будет дорога в эксплуатации. Со временем, когда будут введены новые технологии по доставке грузов в космос, а также новые материалы, реализация подобного проекта станет возможной, но пока мы можем пользоваться только относительно небольшими батареями на поверхности планеты. Многие скажут, что это тоже неплохо. Да, возможно в условиях частного дома, но для энергообеспечения больших городов, соответственно, необходимо либо множество солнечных батарей, либо технология, которая сделает их эффективнее.

Экономическая сторона вопроса здесь тоже присутствует: любой бюджет сильно пострадает, если на него будет возложена задача перевести целый город (или всю страну) на солнечные батареи. Казалось бы, можно обязать жителей городов выплачивать некоторые суммы на переоснащение, но в таком случае недовольны будут они, ведь если бы люди готовы были бы пойти на такие траты, они уже давно сделали бы это сами: возможность купить солнечную батарею есть у каждого.

Касательно солнечной энергии есть и еще один парадокс: затраты на производство. Перевод энергии солнца в электричество напрямую — не самая эффективная вещь. До сих пор еще не найдено способа лучше, чем использовать солнечные лучи для нагревания воды, которая, превращаясь в пар, в свою очередь вращает динамо-машину. В таком случае энергопотеря минимальна. Человечество хочет использовать "экологичные" солнечные панели и солнечные станции, чтобы сохранить ресурсы на земле, однако для подобного проекта потребуется огромное количество тех же ресурсов, и "неэкологичной" энергии. Например, во Франции недавно была построена солнечная электростанция, площадью около двух квадратных километров. Стоимость постройки составила около 110 миллионов евро, не считая затрат на эксплуатацию. При всем этом следует учитывать, что срок службы подобных механизмов составляет около 25 лет.

Ветер

Энергия ветра — также использовалась людьми еще с древности, самым простым примером можно назвать хождение под парусом и ветряные мельницы. Ветряки используются и сейчас, особенно они эффективны в областях с постоянными ветрами, например на побережье. Ученые постоянно выдвигают идеи, как модернизировать уже имеющиеся приспособления для преобразования ветряной энергии, одна из них - ветряки в виде парящих турбин. За счет постоянного вращения они могли бы "висеть" в воздухе на расстоянии нескольких сотен метров от земли, где ветер сильный и постоянный. Это помогло бы в электрификации сельской местности, где невозможно использование стандартных ветряков. К тому же такие парящие турбины могли бы быть оснащены интернет-модулями, с помощью которых осуществлялось бы обеспечение людей доступом в мировую паутину.

Приливы и волны

Бум на солнечную и ветряную энергетику постепенно проходит, и интерес исследователей привлекла другая природная энергия. Более перспективной считается использование приливов и отливов. Уже сейчас этим вопросом занимается около ста компаний по всему миру, существует и несколько проектов, доказавших эффективность данного способа добычи электричества. Преимущество перед солнечной энергетикой в том, что потери при переводе одной энергии в другую минимальны: приливная волна вращает огромную турбину, которая и вырабатывает электричество.

Проект "Устрица" — это идея установить на дне океана шарнирный клапан, который будет подавать воду на берег, тем самым вращая простую гидроэлектрическую турбину. Всего одна такая установка могла бы обеспечить электричеством небольшой микрорайон.

Уже сейчас в Австралии успешно применяют приливные волны: в городе Перте установлены опреснители, работающие на этом типе энергии. Их работа позволяет обеспечить пресной водой около полумиллиона человек. Природная энергетика и промышленность также могут сочетаться в этой отрасли производства энергии.

Использование несколько отличается от технологий, которые мы привыкли видеть в речных гидроэлектростанциях. Часто ГЭС наносят вред окружающей среде: затопляются прилегающие территории, разрушается экосистема, а вот станции, работающие на приливных волнах, в этом плане гораздо безопаснее.

Энергия человека

Одним из самых фантастических проектов в нашем списке можно назвать использование энергии живых людей. Звучит ошеломляюще и даже несколько ужасающе, но не все так страшно. Ученые лелеют мысль о том, как использовать механическую энергию движения. Речь в этих проектах идет о микроэлектронике и нанотехнологиях с низким энергопотреблением. Пока звучит как утопия, реальных разработок нет, но идея весьма интересная и не покидает умы ученых. Согласитесь, весьма удобны будут устройства, которые подобно часам с автоматической подзаводкой, будут заряжаться от того, что по сенсору проводят пальцем, или от того, что планшет или телефон просто болтается в сумке при ходьбе. Не говоря уж об одежде, которая, наполненная разными микроустройствами, могла бы преобразовывать в электричество энергию движения человека.

В Беркли, в лаборатории Лоуренса, например, ученые попытались воплотить в жизнь идею о том, чтобы использовать вирусы для давления в электричество. Небольшие механизмы, работающие от движения, так же имеются, однако пока что на поток подобная технология не поставлена. Да, с глобальным энергетическим кризисом подобным образом не справиться: скольким же людям придется "крутить педали", чтобы заставить работать целый завод? Но как одна из мер, применяемых в комплексе, теория вполне жизнеспособна.

Особенно подобные технологии будут эффективны в труднодоступных местах, на полярных станциях, в горах и тайге, среди путешественников и туристов, у которых не всегда есть возможность зарядить свой гаджет, а вот оставаться на связи важно, особенно если группа попала в критическую ситуацию. Как много всего можно было бы предотвратить, если бы у людей всегда было надежное устройство связи, не зависящее "от розетки".

Топливные ячейки водорода

Пожалуй, у каждого владельца авто, глядящего на индикатор количества бензина, приближающийся к нулю, возникала мысль о том, как отлично было бы, если бы машина работала на воде. Но сейчас ее атомы попали в поле зрения ученых как настоящие объекты энергетики. Дело в том, что в частицах водорода — самого распространенного газа во вселенной — содержится громадное количество энергии. Более того, двигатель сжигает этот газ практически без побочных продуктов, то есть, мы получаем очень экологичное топливо.

Водородом заправляют некоторые модули МКС и шатлы, но на Земле он существует в основном в виде соединений, таких как вода. В восьмидесятых годах в России были разработки самолетов, использующих в качестве топлива водород, эти технологии даже применяли на практике, и экспериментальные модели доказали свою эффективность. Когда водород отделяется, он перемещается в специальную топливную ячейку, после чего возможна генерация электричества напрямую. Это не энергетика будущего, это уже реальность. Подобные автомобили уже производятся и довольно большими партиями. Компания Honda, дабы подчеркнуть универсальность источника энергии и авто в целом, провела эксперимент в результате которого машина была подключена к электрической домашней сети, однако не для того, чтобы получить подзарядку. Автомобиль может обеспечивать энергией частный дом в течение нескольких дней, или проехать без дозаправки почти пятьсот километров.

Единственный недостаток подобного источника энергии на данный момент — это относительно высокая стоимость таких экологичных машин, и, конечно, достаточно небольшое количество водородных заправок, однако во многих странах уже планируется их постройка. Например, в Германии уже стоит план об установке ста заправочных станций к 2017 году.

Тепло земли

Превращение тепловой энергии в электричество — это и есть сущность геотермальной энергетики. В некоторых странах, где затруднено использование других отраслей, она используется довольно широко. Например, на Филлипинах 27 % всего электричества приходится именно на геотермальные станции, а в Исландии этот показатель составляет около 30 %. Сущность этого способа добычи энергии довольно проста, механизм схож с простой паровой машиной. До предполагаемого "озера" магмы необходимо пробурить скважину, через которую подается вода. При контакте с раскаленной магмой вода мгновенно превращается в пар. Он поднимается, где крутит механическую турбину, тем самым вырабатывая электричество.

Будущее геотермальной энергетики состоит в том, чтобы найти большие "хранилища" магмы. Например, в вышеупомянутой Исландии это удалось: раскаленная магма за долю секунды превратила всю закачанную воду в пар температурой около 450 градусов по Цельсию, что является абсолютным рекордом. Подобный пар высокого давления способен повысить эффективность геотермальной станции в несколько раз, это может стать толчком к развитию геотермальной энергетики во всем мире, особенно в областях, насыщенных вулканами и термальными источниками.

Использование ядерных отходов

Атомная энергетика, в свое время, произвела настоящий фурор. Так было до тех пор, пока люди не осознали всю опасность этой отрасли энергетики. Аварии возможны, от подобных случаев никто не застрахован, но они весьма редки, а вот радиоактивные отходы появляются стабильно и до недавнего времени ученые не могли решить эту проблему. Дело в том, что стержни урана — традиционное "топливо" АЭС, может быть использовано только на 5 %. После выработки этой небольшой части, весь стержень отправляется на "свалку".

Ранее применялась технология, при которой стержни погружались в воду, которая замедляет нейтроны, поддерживая устойчивую реакцию. Сейчас вместо воды стали использовать жидкий натрий. Эта замена позволяет не только использовать весь объем урана, но и переработать десятки тысяч тонн радиоактивных отходов.

Избавить планету от отходов атомной энергетики важно, но в самой технологии есть одно "но". Уран относится к ресурсам, и его запасы на Земле конечны. В случае если всю планету перевести исключительно на энергию, получаемую от АЭС (к примеру, в США АЭС производят лишь 20% всего потребляемого электричества), запасы урана будут истощены довольно быстро, и это снова приведет человечество на порог энергетического кризиса, так что атомная энергетика, пусть и модернизированная, только временная мера.

Растительное топливо

Еще Генри Форд, создав свою "Модель Т", рассчитывал, что она уже будет работать на биотопливе. Однако в то время были открыты новые нефтяные месторождения, и нужда в альтернативных источниках энергии отпала еще на несколько десятков лет, но теперь снова возвращается.

За последние пятнадцать лет использование растительных видов топлива, таких как этанол и биодизель, возросло в несколько раз. Их используют как самостоятельные источники энергии, так и в качестве добавок к бензину. Некоторое время назад надежды возлагались на особую просяную культуру, получившую название "канола". Она совершенно непригодна в пищу ни для людей, ни для скота, однако обладает высокими показателями масличности. Из этого масла и стали производить "биодизель". Но эта культура займет слишком много места, если попытаться вырастить ее столько, чтобы обеспечить топливом хотя бы часть планеты.

Теперь ученые заговорили об использовании водорослей. Их масличность около 50 %, что позволит так же легко извлекать масло, а отходы можно превращать в удобрения, на основе которых будут выращиваться новые водоросли. Идея считается интересной, но свою жизнеспособность пока что не доказала: публикация об успешных экспериментах в этой области пока не опубликовано.

Термоядерный синтез

Будущая энергетика мира, по мнению современных ученых, невозможна без технологий Это, на данный момент, самая перспективная разработка, в которую уже вкладывают миллиарды долларов.

В используется энергия деления. Она опасна тем, что есть угроза возникновения неуправляемой реакции, которая уничтожит реактор, и приведет к выбросу огромного количества радиоактивных веществ: пожалуй, все помнят аварию на Чернобыльской АЭС.

В реакциях термоядерного синтеза, что следует из названия, используется энергия, выделяемая при слиянии атомов. В результате, в отличие от атомного деления, не образуется никаких радиоактивных отходов.

Главной проблемой является то, что в результате термоядерного синтеза образуется вещество, имеющее настолько высокую температуру, что может уничтожить весь реактор.

Будущего — реальность. И фантазии здесь неуместны, на данный момент на территории Франции уже началась постройка реактора. Несколько миллиардов долларов вложено в экспериментальный проект, который профинансирован многими странами, в число которых, помимо ЕС, входят Китай и Япония, США, Россия и другие. Изначально первые эксперименты планировалось запустить уже в 2016 году, однако расчеты показали, что бюджет слишком мал (вместо 5 миллиардов потребовалось 19), и запуск перенесли еще на 9 лет. Возможно, через несколько лет мы увидим, на что способна термоядерная энергетика.

Проблемы настоящего и возможности будущего

Не только ученые, но и писатели-фантасты, дают множество идей для воплощения технологии будущего в энергетике, однако все сходятся на том, что пока что ни один из предложенных вариантов не может произвести полное обеспечение всех потребностей нашей цивилизации. К примеру, если все автомобили в США будут ездить на биотопливе, полями канолы придется засадить территорию, равную половине всей страны, без учета того, что земель, пригодных для земледелия в Штатах не так уж много. Более того, пока что все способы производства альтернативной энергии - дороги. Пожалуй, каждый из простых городских жителей, согласен, что важно использовать экологически чистые, возобновляемые ресурсы, однако не в случае, когда им озвучивают стоимость такого перехода на данный момент. Ученым предстоит еще много работать в этой сфере. Новые открытия, новые материалы, новые идеи - все это поможет человечеству успешно справиться с назревающим ресурсным кризисом. Решить планеты можно только комплексными мерами. В некоторых областях удобнее применять добычу энергии с помощью ветра, где-то - солнечные батареи, и так далее. Но, возможно, главным фактором станет снижение энергопотребления в целом и создание энергосберегающих технологий. Каждый человек должен понимать, что несет ответственность за планету, и каждый должен задать себе вопрос: "Какую энергетику я выбираю для будущего?" Прежде чем перейти на другие ресурсы, каждый должен осознать, что это действительно необходимо. Только при комплексном подходе удастся решить проблему энергопотребления.

nikita . a . sergeev @ gmail . com

Актуальность темы

Современная жизнь просто немыслима без электричества – только представьте существование человечества без современной бытовой техники , аудио - и видеоаппаратуры, вечера со свечой и лучиной. Процесс получения и транспортировки электроэнергии трудоемок и дорогостоящ. Для выработки электричества необходимо топливо, а оно когда-нибудь закончится: и нефть, и уголь, и даже уран. Выход может быть в создании вечного термоядерного реактора, а получится ли его создать, неизвестно. На что человечеству надеяться? Можно на возобновляемые ресурсы - солнце, ветер, воду. Но оказывается, и, помимо их, в окружающей среде полно источников почти дармового тока.

Исходя из этого мной выбрана следующая тема исследования «Необычное электричество».

Целью моей работы является выявление различных способов получения электроэнергии и экспериментальное подтверждение некоторых из них.

В начале исследования мной была выдвинута гипотеза: если электростанции получают электрический ток используя природные ресурсы, то возможно ли получение тока с помощью других необычных источников тока.

Задачи исследования:

1. Изучить и проанализировать научную и учебную литературу об источниках электрического тока.

2. Получить необычные источники тока.

Методы исследования: анализ научной и учебной литературы, материалов сети Internet по выбранной теме, физический эксперимент.

Традиционные источники электрического тока

Прежде чем электрический ток попадет к нам в дом, он пройдет большой путь от места получения тока до места его потребления. Ток вырабатывается на электростанциях. Электростанция – электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции, гидроэлектро станции, атомные электростанции , а также приливные электростанции, ветроэлектростанции, геотермические электростанции .

Нетрадиционные источники электрического тока

Кроме традиционных источников тока существует множество нетрадиционных источников. Оказывается, электричество можно практически получать из всего, что угодно.

Из погоды

Эта идея пришла в голову американскому инженеру Энтони Мамо, когда он рассматривал карты погоды и увидел на них буквы «Н» и «В». Точно такие же мы видим по телевизору во время прогноза погоды. Буквами обозначены зоны низкого (Н) и высокого (В) давления. Инженер поднял архивы наблюдений и выяснил: в одних районах США давление, как правило, повышенное, а в других - пониженное. Так почему бы не соединить их трубой? Ведь тогда воздух из В-области будет дуть в Н-область и крутить турбину.

Увы, изобретатель умер. Но успел получить патент и создать фирму под названием «Холодная энергия», которая ныне реализует его идею - тянет трубу в штате Аризона. И планирует поставлять народу электричество по цене (на наши деньги) меньше копейки за киловатт-час.

Из живых деревьев

Каким образом дерево вырабатывает электроэнергию, никто толком объяснить не может. Но эффект есть.

«Убедиться просто, - говорит изобретатель Гордон Уодл. - Воткните алюминиевый стержень через кору в ствол живого дерева. А в почву рядом - медную трубку. Так, чтобы она вошла примерно на 20 сантиметров. Подсоедините вольтметр. Стрелка покажет, что между стержнем в стволе и зарытой трубкой есть потенциал - 0,8 - 1,2 вольта постоянного тока».

Вот эти вольты и намерена выкачивать специально созданная фирма MagCap Engineering из Массачусетса (США ). Инженеры уверены, что через несколько лет мы будем тянуть провода к ближайшим деревьям в парках и лесах, чтобы напитать дома электричеством. Конечно, не все так просто. Уодл создал хитрое устройство, которое фильтрует «деревянный» ток и повышает выходное напряжение. Его прототип уже дает 2 вольта. А в ближайшее время энтузиасты обещают 12 при силе тока в 1 ампер с каждого дерева. Но и это не предел. Оказывается, несколько воткнутых гвоздей повышают выход энергии. А размер электрического «зеленого друга» значения не имеет. Напряжение почему-то повышается и зимой, когда листья сброшены.

Из телерадиоэфира

Возможно, деревья черпают энергию из радиоволн. Ведь они несут не только информацию, но и энергию, которая пока пропадает даром.

С бесхозностью эфира взялась бороться гавайская компания Ambient Micro. Но без деревьев, а путем создания магнитных антенн и сопутствующих узлов, которые преобразовывают в постоянный ток пробегающие мимо радиосигналы. Конечно, речь идет о мизерной мощности в доли ватта. Но и такая пригодится для питания разнообразных электронных устройств, приборов, датчиков. Вместо нынешних батареек и аккумуляторов.

Из грязи

Еще один удивительный микроорганизм нашли Чарльз Милликен и Гарольд Мэй из медицинского университета Южной Каролины - так называемую десульфитобактерию. Она вырабатывает электричество, питаясь любой грязью - вплоть до ядовитой и нефтяной. Охотно ест и мусор. Даже если просто воткнуть в грязь с бактериями один электрод, а другой разместить в воде, появится электричество, которого хватит для работы компьютера.

«Пока у этих микроорганизмов есть пища, они способны поставлять энергию 24 часа в сутки 7 дней в неделю, - говорит доктор Милликен».

А такой «пищи» у человечества неисчерпаемые и возобновляемые запасы.

Есть и другие предметы, которые на первый взгляд не имеют никакого отношения к электричеству, однако могут служить источником тока.

Получение необычного источника тока

Изучив литературу, я узнал, что электроэнергию можно получить из некоторых фруктов и овощей. Электрический ток можно получить из лимона, яблок и, самое интересное, из обычного картофеля. Я провел опыты с этими плодами и действительно получил ток. Рассмотрим эти опыты.

Для проведения опыта нам понадобится: несколько средних картофелин (около 10), медные провода, стальные или оцинкованные гвоздики (можно пластинки из набора по электричеству) и мультиметр.

Первым делом зачищаю каждый медный провод с обоих концов (снимаем изоляцию), к одному из концов провода прикручиваю гвоздь. Вставляем оцинкованный гвоздь в плод, втыкаем рядом с ним медный провод (убедитесь, что они не касаются друг друга, а то будет короткое замыкание). Таким образом, собираем аккумулятор из нескольких картофелин, последовательно их соединяя. После этого измеряем напряжение в цепи с помощью мультиметра. В моем опыте мультиметр показал 7,82В.

Аналогично можно получить электроэнергию из лимона и яблок, если вы используете цитрус, попытайтесь воткнуть гвоздь и проводок в одну и ту же дольку.

Почему же вырабатывается ток в плодах? Попробуем разобраться в этом на примере лимона.

Если воткнуть в плод два гвоздя из разных металлов, произойдет химическая реакция. Если цинк сможет отпустить от себя свои ионы, это позволит высвободить энергию, но также и потерять электроны. Если цинк подключен к меди в электрической цепи, электроны начнут двигаться по этой цепи и нейтрализуют ионы меди в лимоне. Этот процесс освобождает энергию, которая и преобразуется в электрическую.

Итак, после проведения опытов, я узнал, что электрический ток можно получить из фруктовых плодов и картофеля. Каждый фрукт вырабатывает разный по силе и напряжению электрический ток.

Самая большая сила тока в лимоне. Но так как мы живем в том климате, где лимоны не растут, да и яблоки не в достаточном количестве, то можно получать ток из картофеля, которого у нас вполне достаточно (это на будущее, когда электроэнергия будет очень дорогой).

Заключение

Анализ научной и учебной литературы позволил сделать вывод о том, что вокруг нас очень много предметов, которые могут служить источниками электрического тока.

С помощью опыта показал, что можно получить электроэнергию из некоторых плодов, конечно это небольшой ток, но сам факт его наличия дает надежду, что в последующем такие источники можно будет использовать в своих целях (зарядить MP 3-плейер, мобильный телефон и др.).

8 января 1942 года, через 300 лет после смерти Галилея, в британском Оксфорде родился Стивен Уильям Хокинг. Примерно 200 тысяч других детей также появились на свет в тот день, но только один стал величайшим физиком-теоретиком и космологом. В начале 1960-х у Хокинга стали проявляться признаки бокового амиотрофического склероза (болезнь Лу Герига), которые привели к параличу.

«Почти совершенное воплощение свободного духа, огромного интеллекта, человека, который мужественно преодолевает физическую немощь, отдавая все силы на расшифровку «божественного замысла», — таким описывает Хокинга в своей книге немецкий популяризатор науки Хуберт Мания.

Достижения Хокинга в науке неоспоримы. «РГ» расскажет о некоторых самых популярных теориях великого физика.

Излучение Хокинга — гипотетический процесс «испарения» черных дыр, то есть испускания разнообразных элементарных частиц (преимущественно фотонов).

Процесс был предсказан Хокингом в 1974 году. Его работе, кстати, предшествовал визит в Москву в 1973 году, где он встречался с советскими учеными: одним из создателей атомной и водородной бомб Яковом Зельдовичем и одним из основоположников теории ранней Вселенной Алексеем Старобинским.

«Когда огромная звезда сжимается, ее гравитация становится настолько сильной, что даже свет не может больше покидать ее пределы. Область, из которой ничто не может выйти, и называется «черная дыра». А ее границы называются «горизонт событий», — так поясняет Хокинг.

Отметим, понятие о черной дыре как объекте, который ничего не излучает, а может лишь поглощать материю, справедливо до тех пор, пока не учитываются квантовые эффекты.

Именно Хокинг начал изучать поведение элементарных частиц вблизи черной дыры с точки зрения квантовой механики. Он выяснил, что частицы могут выходить за ее пределы и что черная дыра не может быть абсолютно черной, то есть — существует остаточная радиация. Коллеги-ученые рукоплескали: все теперь изменилось! Информация об открытии распространилась в научной среде как ураган. И эффект произвела аналогичный.

Позже Хокинг обнаружил и механизм, посредством которого черные дыры могут излучать радиацию. Он пояснил, что с точки зрения квантовой механики пространство наполнено виртуальными частицами. Они постоянно материализуются парами, «разлучаются», снова «встречаются» и аннигилируют. Вблизи черной дыры одна из пары частиц может упасть в нее, и тогда у второй не останется пары для аннигиляции. Такие «брошенные» частицы и образуют радиацию, которую излучает черная дыра.

Из этого Хокинг делает вывод, что черные дыры существуют не вечно: они излучают все более сильный ветер и, в конце концов, исчезают в результате гигантского взрыва.

«Эйнштейн так и не принял квантовую механику из-за связанного с ней элемента случайности и неопределенности. Он сказал: Бог не играет в кости. Похоже, что Эйнштейн ошибся дважды. Квантовый эффект черной дыры позволяет предположить, что Бог не только играет в кости, но и иногда бросает их туда, где их нельзя увидеть», — считает Хокинг.

Излучение черных дыр — или излучение Хокинга — показало, что гравитационное сжатие не настолько окончательно, как было принято считать ранее: «Если астронавт падает в черную дыру, он вернется затем во внешнюю часть Вселенной в виде радиации. Таким образом, в каком-то смысле астронавт будет переработан».

Вопрос существования Бога

В 1981 году Хокинг побывал на конференции по космологии в Ватикане. После конференции Папа Римский дал аудиенцию ее участникам и сказал им, что они могут изучать развитие Вселенной после большого взрыва, но не сам большой взрыв, поскольку это — момент творения, а стало быть — дело Божье.

Позже Хокинг признался, что был рад тому, что Папа не знал тему лекции, которую ученый прочел перед этим. Она как раз касалась теории, согласно которой у Вселенной не было начала, момента творения как такового.

Подобные теории были и в начале 1970-х годов, они говорили о фиксированном пространстве и времени, которые на протяжении вечности были пустыми. Затем, по какой-то неизвестной причине, образовывалась точка — вселенское ядро — и происходил взрыв.

Хокинг полагает, что «если мы движемся назад во времени, мы доходим до сингулярности большого взрыва, в которой законы физики не действуют. Но есть другое направление движения во времени, которое позволяет избежать сингулярности: оно называется воображаемым направлением времени. В нем можно обойтись без сингулярности, которая является началом или концом времени».

То есть появляется момент в настоящем, которому совсем не обязательно сопутствует цепочка моментов в прошлом.

«Если у Вселенной было начало, мы можем предполагать, что у нее был и создатель. Но если Вселенная является самодостаточной, не имеет границы или края, значит, она не была создана и не будет уничтожена. Она просто существует. Где же тогда место для ее создателя?» — вопрошает физик-теоретик.

«От большого взрыва до черных дыр»

С таким подзаголовком в апреле 1988 года в свет вышла книга Хокинга «Краткая история времени», моментально ставшая бестселлером.

Эксцентричный и в высшей степени умный Хокинг активно занимается популяризацией науки. В его книге хоть и рассказывается о появлении Вселенной, о природе пространства и времени, черных дырах, встречается одна единственная формула — E=mc² (энергия равна массе, умноженной на квадрат скорости света в свободном пространстве).

До 20 века считалось, что Вселенная — вечна и неизменна. Хокинг весьма доступным языком доказывал, что это не так.

«В свете от далеких галактик происходит смещение в сторону красной части спектра. Это означает, что они удаляются от нас, что Вселенная расширяется», — говорит он.

Статичная Вселенная кажется привлекательнее: она существует и может продолжить существовать вечно. Она — нечто незыблемое: человек стареет, но Вселенная всегда так же молода, как в момент формирования.

Расширение Вселенной позволяет предположить, что у нее, в какой-то момент в прошлом, было начало. Этот момент, когда Вселенная начала свое существование, и получил название большого взрыва.

«Умирающая звезда, сжимаясь под действием собственной гравитации, в конце концов, превращается в сингулярность — в точку бесконечной плотности и нулевого размера. Если повернуть вспять ход времени так, чтобы сжатие превратилось в расширение, станет возможным доказать, что у Вселенной было начало. Однако доказательство, основанное на теории относительности Эйнштейна, показывало также, что невозможно понять, как произошла Вселенная: оно демонстрировало, что все теории не действуют в момент начала Вселенной», — отмечает ученый.

Человечество ждет гибель

Можно увидеть, как чашка падает со стола и разбивается. Но нельзя увидеть, как она собирается обратно из осколков. Увеличение беспорядка — энтропии — именно то, что отличает прошлое от будущего и придает направление времени.

Хокинг задался вопросом: что произойдет, когда Вселенная прекратит расширяться и начнет сжимать? Увидим ли мы, как разбитые чашки собираются из осколков?

«Мне казалось, что когда начнется сжатие, Вселенная вернется в упорядоченное состояние. В таком случае, с началом сжатия время должно было повернуть вспять. Люди в этой стадии проживали бы жизнь задом наперед и молодели по мере сжатия Вселенной», — говорил он.

Попытки создать математическую модель теории не увенчались успехом. Позже Хокинг признал свою ошибку. По его мнению, она заключалась в том, что он использовал слишком простую модель Вселенной. Время не повернет свой ход вспять, когда Вселенная начнет сжиматься.

«В реальном времени, в котором мы живем, у Вселенной есть две возможные судьбы. Она может продолжать расширяться вечно. Или она может начать сжиматься и прекратить свое существование в момент «большого сплющивания». Это будет похоже на большой взрыв, только — наоборот», — полагает физик.

Хокинг допускает, что Вселенную все-таки ожидает финал. Однако, оговаривается, что у него, как у пророка конца света, не будет возможности оказаться в то время — через много биллионов лет — и осознать свою ошибку.

Согласно теории Хокинга, спасти человечество при таком раскладе может только способность оторваться от Земли.

Инопланетяне существуют

Люди отправляют в космос беспилотные аппараты с изображениями человека и координатами, указывающими расположение нашей планеты. В космос посылают радиосигналы, в надежде, что их заметят инопланетные цивилизации.

Если верить Хокингу, то встречи с представителями других планет не сулят землянам ничего хорошего. Основываясь на своих знаниях, он не отрицает возможность существования внеземной цивилизации, но надеется, что встречи не произойдет.

В документальном телесериале канала Discovery он высказал мнение о том, что если технологии инопланетян будут превосходить земные, они обязательно образуют на Земле свою колонию и поработят человечество. Хокинг сравнил этот процесс с прибытием Колумба в Америку и последствиями, которые ожидали коренное население континента.

«Во Вселенной со 100 миллиардами галактик, каждая из которых содержит сотни миллионов звезд, маловероятно, что Земля является единственным местом, где развивается жизнь. С чисто математической точки зрения, одни лишь цифры позволяют принимать мысль о существовании инопланетной жизни как абсолютно разумную. Реальной проблемой является то, как могут выглядеть инопланетяне, понравятся ли они землянами своим видом. Ведь они могут быть микробами или одноклеточными животными, или червями, которые населяли Землю в течение миллионов лет», — считает Хокинг.

Даже близкие и друзья космолога отмечают, что нельзя верить каждому его слову. Он — искатель. А в таком деле допущений больше, чем фактов, и ошибки неизбежны. Но даже при этом его изыскания дают человеку пищу для ума, точку, от которой можно начать поиск ответа на вопрос о существовании человека и Вселенной.

«Ответ на этот вопрос будет величайшим триумфом человеческого разума, ибо тогда мы познаем ум Бога», — говорит Хокинг.