Времена года

Чему равен атомный номер азота. Свойства и применение некоторых химических элементов. Азот из атмосферы

Азот бесцветный и нетоксичный, без запаха и вкуса. Азот существует в природе как невоспламеняющийся газ при нормальных температурах и давлении. Этот газ (азот) несколько легче воздуха, поэтому его концентрация с высотой повышается. При охлаждении до точки кипения азот превращается в бесцветную жидкость, которая при определенных давлении и температуре становится твердым бесцветным кристаллическим веществом. Азот слаборастворим в воде и большинстве других жидкостей, является плохим проводником электричества и тепла.

Большинство использований азота объясняется его инертными свойствами. Однако при высоких давлениях и температурах азот реагирует с некоторыми активными металлами, например с литием и магнием, образуя нитриды, а также с некоторыми газами, такими как кислород и водород.

Основные факты об азоте: история открытия и основные свойства

Азот (N2) - одно из самых распространённых веществ на Земле. Из него на 75% состоит атмосфера нашей планеты, тогда как доля кислорода в ней составляет всего 22%.

Как ни странно, учёные долгое время не знали о существовании этого газа. Лишь в 1772 году английский химик Дэниэл Резерфорд описал его как «испорченный воздух», неспособный поддерживать горение, не вступающий в реакцию со щелочами и непригодный для дыхания. Само слово «азот » (от греческого - «безжизненный») предложил 15 лет спустя Антуан Лавуазье.

При нормальных условиях это газ, не имеющий цвета, запаха и вкуса, тяжелее воздуха и практически инертный. При температуре -195,8 °C он переходит в жидкое состояние; при -209,9 °C - кристаллизуется, напоминая снег.

Области применения азота

В настоящее время, азот нашел широкое применение во всех сферах человеческой деятельности.

Так, нефтегазовая промышленность использует его с целью регуляции уровня и давления в нефтяных скважинах, вытеснения кислорода из ёмкостей для хранения природного газа, продувки и тестирования трубопроводов. Химическая промышленность нуждается в нём для получения удобрений и синтеза аммиака, металлургия - для ряда технологических процессов. Благодаря тому, что азот вытесняет кислород , но не поддерживает горение, его применяют в пожаротушении. В пищевой промышленности упаковка продуктов в азотной атмосфере заменяет использование консервантов, препятствует окислению жиров и развитию микроорганизмов. Кроме того, это вещество используется в фармацевтике для получения различных препаратов и в лабораторной диагностике - для проведения ряда анализов.

Жидкий азот способен за считанные секунды заморозить всё, что угодно, без образования кристалликов льда. Поэтому медики применяют его в криотерапии для удаления отмерших клеток, а также в криосохранении сперматозоидов, яйцеклеток и образцов тканей.

Интересно, что:

  • Мгновенное мороженое, приготовленное при помощи жидкого азота, изобрёл в 1998 году биолог Курт Джонс, дурачась с друзьями на кухне. Впоследствии он основал компанию по производству этого десерта, который пользуется спросом у американских сладкоежек.
  • Мировая промышленность получает из земной атмосферы 1 млн тонн этого газа в год.
  • Рука человека, погружённая в стакан с жидким азотом на 1-2 секунды, останется невредимой благодаря «перчатке» из пузырьков газа, который образуется при закипании жидкости в местах контакта с кожей.

Азот — элемент 2-го периода V А-группы Периодической системы, порядковый номер 7. Электронная формула атома [ 2 He]2s 2 2p 3 , характерные степени окисления 0,-3, +3 и +5, реже +2 и +4 и др. состояние N v считается относительно устойчивым.

Шкала степеней окисления у азота:
+5 — N 2 O 5 , NO 3 , NaNO 3 , AgNO 3

3 – N 2 O 3 , NO 2 , HNO 2 , NaNO 2 , NF 3

3 — NH 3 , NH 4 , NH 3 * H 2 O, NH 2 Cl, Li 3 N, Cl 3 N.

Азот обладает высокой электроотрицательностью (3,07), третий после F и O. Проявляет типичные неметаллические (кислотные) свойства, образуя при этом различные кислородсодержащие кислоты, соли и бинарные соединения, а так же катион аммония NH 4 и его соли.

В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.

N 2

Простое вещество. Состоит из неполярных молекул с очень устойчивой ˚σππ-связью N≡N, этим объясняется химическая инертность элемента при обычных условиях.

Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O 2).

Главная составная часть воздуха 78,09% по объему, 75,52 по массе. Из жидкого воздуха азот выкипает раньше, чем кислород. Малорастворим в воде (15,4 мл/1 л H 2 O при 20 ˚C), растворимость азота меньше, чем у кислорода.

При комнатной температуре N 2 , реагирует с фтором и в очень малой степени – с кислородом:

N 2 + 3F 2 = 2NF 3 , N 2 + O 2 ↔ 2NO

Обратимая реакция получения аммиака протекает при температуре 200˚C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe, F 2 O 3 , FeO, в лаборатории при Pt)

N 2 + 3H 2 ↔ 2NH 3 + 92 кДж

В соответствии с принципом Ле-Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450-500 ˚C, достигая 15%-ного выхода аммиака. Непрориагировавшие N 2 и H 2 возвращают в реактор и тем самым увеличивают степень протекания реакции.

Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.

Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2C(кокс) + O 2 = 2CO при нагревании. В этих случаях получают азот, содержащий так же примеси благородных газов (главным образом аргон).

В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:

N -3 H 4 N 3 O 2(T) = N 2 0 + 2H 2 O (60-70)

NH 4 Cl(p) + KNO 2 (p) = N 2 0 + KCl +2H 2 O (100˚C)

Применяется для синтеза аммиака. Азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.

NH 3

Бинарное соединение, степень окисления азота равна – 3. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H) 3 ] (sp 3 -гибридизация). Наличие у азота в молекуле NH 3 донорской пары электронов на sp 3 -гибридной орбитали обуславливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH 4 . Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л H 2 O при 20˚C); доля в насыщенном растворе равна 34% по массе и 99% по объему, pH= 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N -3) и окислительные (за счет H +1) свойства. Осушается только оксидом кальция.

Качественные реакции – образование белого «дыма» при контакте с газообразным HCl, почернение бумажки, смоченной раствором Hg 2 (NO3) 2 .

Промежуточный продукт при синтезе HNO 3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.
Уравнения важнейших реакций:

2NH 3(г) ↔ N 2 + 3H 2
NH 3(г) + H 2 O ↔ NH 3 * H 2 O (р) ↔ NH 4 + + OH —
NH 3(г) + HCl (г) ↔ NH 4 Cl (г) белый «дым»
4NH 3 + 3O 2 (воздух) = 2N 2 + 6 H 2 O (сгорание)
4NH 3 + 5O 2 = 4NO+ 6 H 2 O (800˚C, кат. Pt/Rh)
2 NH 3 + 3CuO = 3Cu + N 2 + 3 H 2 O (500˚C)
2 NH 3 + 3Mg = Mg 3 N 2 +3 H 2 (600 ˚C)
NH 3(г) + CO 2(г) + H 2 O = NH 4 HCO 3 (комнатная температура, давление)
Получение. В лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью: Ca(OH) 2 + 2NH 4 Cl = CaCl 2 + 2H 2 O +NH 3
Или кипячение водного раствора аммиака с последующим осушением газа.
В промышленности аммиак получают из азота с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода .



Гидрат аммиака NH 3 * H 2 O . Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы NH 3 и H 2 O, связанные слабой водородной связью. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH 4 и анион OH). Катион аммония имеет правильно-тетраэдрическое строение (sp 3 -гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N -3) в концентрированном растворе. Вступает в реакцию ионного обмена и комплексообразования.

Качественная реакция – образование белого «дыма» при контакте с газообразным HCl. Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.
В 1 М растворе аммиака содержится в основном гидрат NH 3 *H 2 O и лишь 0,4% ионов NH 4 OH (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH 4 OH» практически не содержится в растворе, нет такого соединения и в твердом гидрате.
Уравнения важнейших реакций:
NH 3 H 2 O (конц.) = NH 3 + H 2 O (кипячение с NaOH)
NH 3 H 2 O + HCl (разб.) = NH 4 Cl + H 2 O
3(NH 3 H 2 O) (конц.) + CrCl 3 = Cr(OH) 3 ↓ + 3 NH 4 Cl
8(NH 3 H 2 O) (конц.) + 3Br 2(p) = N 2 + 6 NH 4 Br + 8H 2 O (40-50˚C)
2(NH 3 H 2 O) (конц.) + 2KMnO 4 = N 2 + 2MnO 2 ↓ + 4H 2 O + 2KOH
4(NH 3 H 2 O) (конц.) + Ag 2 O = 2OH + 3H 2 O
4(NH 3 H 2 O) (конц.) + Cu(OH) 2 + (OH) 2 + 4H 2 O
6(NH 3 H 2 O) (конц.) + NiCl 2 = Cl 2 + 6H 2 O
Разбавленный раствор аммиака (3-10%-ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5 – 25%-ный) – аммиачный раствор (выпускается промышленностью).

Оксиды азота

Монооксид азота NO

Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ-связь (N꞊O) , в твердом состоянии димер N 2 О 2 со связью N-N. Чрезвычайно термически устойчив. Чувствителен к кислороду воздуха (буреет). Малорастворим в воде и не реагирует с ней. Химически пассивен по отношению к кислотам и щелочам. При нагревании реагирует с металлами и неметаллами. весьма реакционноспособная смесь NO и NO 2 («нитрозные газы»). Промежуточный продукт в синтезе азотной кислоты.
Уравнения важнейших реакций:
2NO + O 2 (изб.) = 2NO 2 (20˚C)
2NO + C(графит) = N 2 + CО 2 (400- 500˚C)
10NO + 4P(красный) = 5N 2 + 2P 2 O 5 (150- 200˚C)
2NO + 4Cu = N 2 + 2 Cu 2 O (500- 600˚C)
Реакции на смеси NO и NO 2:
NO + NO 2 +H 2 O = 2HNO 2 (p)
NO + NO 2 + 2KOH(разб.) = 2KNO 2 + H 2 O
NO + NO 2 + Na 2 CO 3 = 2Na 2 NO 2 + CО 2 (450- 500˚C)
Получение в промышленности : окисление аммиака кислородом на катализаторе, в лаборатории — взаимодействие разбавленной азотной кислоты с восстановителями:
8HNO 3 + 6Hg = 3Hg 2 (NO 3) 2 + 2NO + 4 H 2 O
или восстановлении нитратов:
2NaNO 2 + 2H 2 SO 4 + 2NaI = 2NO + I 2 ↓ + 2 H 2 O + 2Na 2 SO 4


Диоксид азота NO 2

Кислотный оксид, условно отвечает двум кислотам — HNO 2 и HNO 3 (кислота для N 4 не существует). Бурый газ, при комнатной температуре мономер NO 2 , на холоду жидкий бесцветный димер N 2 О 4 (тетраоксид диазота). Полностью реагирует с водой, щелочами. Очень сильный окислитель, вызывает коррозию металлов. Применяется для синтеза азотной кислоты и безводных нитратов, как окислитель ракетного топлива, очиститель нефти от серы и катализатор окисления органических соединений. Ядовит.
Уравнение важнейших реакций:
2NO 2 ↔ 2NO + O 2
4NO 2 (ж) + H 2 O = 2HNO 3 + N 2 О 3 (син.) (на холоду)
3 NO 2 + H 2 O = 3HNO 3 + NO
2NO 2 + 2NaOH(разб.) = NaNO 2 + NaNO 3 + H 2 O
4NO 2 + O 2 + 2 H 2 O = 4 HNO 3
4NO 2 + O 2 + KOH = KNO 3 + 2 H 2 O
2NO 2 + 7H 2 = 2NH 3 + 4 H 2 O (кат. Pt, Ni)
NO 2 + 2HI(p) = NO + I 2 ↓ + H 2 O
NO 2 + H 2 O + SO 2 = H 2 SO 4 + NO (50- 60˚C)
NO 2 + K = KNO 2
6NO 2 + Bi(NO 3) 3 + 3NO (70- 110˚C)
Получение: в промышленности — окислением NO кислородом воздуха, в лаборатории – взаимодействие концентрированной азотной кислоты с восстановителями:
6HNO 3 (конц.,гор.) + S = H 2 SO 4 + 6NO 2 + 2H 2 O
5HNO 3 (конц.,гор.) + P (красный) = H 3 PO 4 + 5NO 2 + H 2 O
2HNO 3 (конц.,гор.) + SO 2 = H 2 SO 4 + 2 NO 2

Оксид диазота N 2 O

Бесцветный газ с приятным запахом («веселящий газ»), N꞊N꞊О, формальная степень окисления азота +1, плохо растворим в воде. Поддерживает горение графита и магния:

2N 2 O + C = CO 2 + 2N 2 (450˚C)
N 2 O + Mg = N 2 + MgO (500˚C)
Получают термическим разложением нитрата аммония:
NH 4 NO 3 = N 2 O + 2 H 2 O (195- 245˚C)
применяется в медицине, как анастезирующее средство.

Триоксид диазота N 2 O 3

При низких температурах –синяя жидкость, ON꞊NO 2 , формальная степень окисления азота +3. При 20 ˚C на 90% разлагается на смесь бесцветного NO и бурого NO 2 («нитрозные газы», промышленный дым – «лисий хвост»). N 2 O 3 – кислотный оксид, на холоду с водой образует HNO 2 , при нагревании реагирует иначе:
3N 2 O 3 + H 2 O = 2HNO 3 + 4NO
Со щелочами дает соли HNO 2, например NaNO 2 .
Получают взаимодействием NO c O 2 (4NO + 3O 2 = 2N 2 O 3) или с NO 2 (NO 2 + NO = N 2 O 3)
при сильном охлаждении. «Нитрозные газы» и экологически опасны, действуют как катализаторы разрушения озонового слоя атмосферы.

Пентаоксид диазота N 2 O 5

Бесцветное, твердое вещество, O 2 N – O – NO 2 , степень окисления азота равна +5. При комнатной температуре за 10 ч разлагается на NO 2 и O 2 . Реагирует с водой и щелочами как кислотный оксид:
N 2 O 5 + H 2 O = 2HNO 3
N 2 O 5 + 2NaOH = 2NaNO 3 + H 2
Получают дегидротацией дымящейся азотной кислоты:
2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3
или окислением NO 2 озоном при -78˚C:
2NO 2 + O 3 = N 2 O 5 + O 2


Нитриты и нитраты

Нитрит калия KNO 2 . Белый, гигроскопичный. Плавится без разложения. Устойчив в сухом воздухе. Очень хорошо растворим в воде (образуя бесцветный раствор), гидролизуется по аниону. Типичный окислитель и восстановитель в кислотной среде, очень медленно реагирует в щелочной среде. Вступает в реакции ионного обмена. Качественные реакции на ион NO 2 — обесцвечивание фиолетового раствора MnO 4 и появление черного осадка при добавлении ионов I. Применяется в производстве красителей, как аналитический реагент на аминокислоты и йодиды, компонент фотографических реактивов.
уравнение важнейших реакций:
2KNO 2 (т) + 2HNO 3 (конц.) = NO 2 + NO + H 2 O + 2KNO 3
2KNO 2 (разб.)+ O 2 (изб.) → 2KNO 3 (60-80 ˚C)
KNO 2 + H 2 O + Br 2 = KNO 3 + 2HBr
5NO 2 — + 6H + + 2MnO 4 — (фиол.) = 5NO 3 — + 2Mn 2+ (бц.) + 3H 2 O
3 NO 2 — + 8H + + CrO 7 2- = 3NO 3 — + 2Cr 3+ + 4H 2 O
NO 2 — (насыщ.) + NH 4 + (насыщ.)= N 2 + 2H 2 O
2NO 2 — + 4H + + 2I — (бц.) = 2NO + I 2 (черн.) ↓ = 2H 2 O
NO 2 — (разб.) + Ag + = AgNO 2 (светл.желт.)↓
Получение в промышленности – восстановлением калийной селитры в процессах:
KNO 3 + Pb = KNO 2 + PbO (350-400˚C)
KNO 3 (конц.) + Pb(губка) + H 2 O = KNO 2 + Pb(OH) 2 ↓
3 KNO 3 + CaO + SO 2 = 2 KNO 2 + CaSO 4 (300 ˚C)

H итрат калия KNO 3
Техническое название калийная, или индийская соль, селитра. Белый, плавится без разложения при дальнейшем нагревании разлагается. Устойчив на воздухе. Хорошо растворим в воде (с высоким эндо -эффектом, = -36 кДж), гидролиза нет. Сильный окислитель при сплавлении (за счет выделения атомарного кислорода). В растворе восстанавливается только атомарным водородом (в кислотной среде до KNO 2 , в щелочной среде до NH 3). Применяется в производстве стекла, как консервант пищевых продуктов, компонент пиротехнических смесей и минеральных удобрений.

2KNO 3 = 2KNO 2 + O 2 (400- 500 ˚C)

KNO 3 + 2H 0 (Zn, разб. HCl) = KNO 2 + H 2 O

KNO 3 + 8H 0 (Al, конц. KOH) = NH 3 + 2H 2 O + KOH (80 ˚C)

KNO 3 + NH 4 Cl = N 2 O + 2H 2 O + KCl (230- 300 ˚C)

2 KNO 3 + 3C (графит) + S = N 2 + 3CO 2 + K 2 S (сгорание)

KNO 3 + Pb = KNO 2 + PbO (350 — 400 ˚C)

KNO 3 + 2KOH + MnO 2 = K 2 MnO 4 + KNO 2 + H 2 O (350 — 400 ˚C)

Получение : в промышленности
4KOH (гор.) + 4NO 2 + O 2 = 4KNO 3 + 2H 2 O

и в лаборатории:
KCl + AgNO 3 = KNO 3 + AgCl↓






Азот – это химический элемент с атомным номером 7. Является газом без запаха, вкуса и цвета.


Таким образом, человек не ощущает присутствия азота в земной атмосфере, между тем как она состоит из этого вещества на 78 процентов. Азот относится к самым распространенным веществам на нашей планете. Часто можно слышать, что без азота не было бы , и это правда. Ведь белковые соединения, из которых состоит все живое, обязательно содержат в себе азот.

Азот в природе

Азот находится в атмосфере в виде молекул, состоящих из двух атомов. Помимо атмосферы, азот есть в мантии Земли и в гумусном слое почвы. Основной источник азота для промышленного производства – это полезные ископаемые.

Однако в последние десятилетия, когда запасы минералов стали истощаться, возникла острая необходимость выделения азота из воздуха в промышленных масштабах. В настоящее время эта проблема решена, и огромные объемы азота для нужд промышленности добываются из атмосферы.

Роль азота в биологии, круговорот азота

На Земле азот претерпевает ряд трансформаций, в которых участвуют и биотические (связанные с жизнью) и абиотические факторы. Из атмосферы и почвы азот поступает в растения, причем не напрямую, а через микроорганизмы. Азотфиксирующие бактерии удерживают и перерабатывают азот, превращая его в форму, легко усваиваемую растениями. В организме растений азот переходит в состав сложных соединений, в частности – белков.

По пищевой цепи эти вещества попадают в организмы травоядных, а затем – хищников. После гибели всего живого азот вновь попадает в почву, где подвергается разложению (аммонификации и денитрификации). Азот фиксируется в грунте, минералах, воде, попадает в атмосферу, и круг повторяется.

Применение азота

После открытия азота (это произошло в 18-м столетии), были хорошо изучены свойства самого вещества, его соединений, возможности использования в хозяйстве. Поскольку запасы азота на нашей планете огромны, данный элемент стал использоваться крайне активно.


Чистый азот применяется в жидком или газообразном виде. Жидкий азот имеет температуру минус 196 градусов по Цельсию и применяется в следующих областях:

в медицине. Жидкий азот является хладагентом при процедурах криотерапии, то есть лечения холодом. Мгновенная заморозка применяется для удаления различных новообразований. В жидком азоте хранят образцы тканей и живые клетки (в частности – сперматозоиды и яйцеклетки). Низкая температура позволяет сохранить биоматериал в течение длительного времени, а затем разморозить и использовать.

Возможность хранить в жидком азоте целые живые организмы, а при необходимости размораживать их без всякого вреда высказана писателями-фантастами. Однако в реальности освоить эту технологию пока не удалось;

в пищевой промышленности жидкий азот используется при розливе жидкостей для создания инертной среды в таре.

Вообще азот применяется в тех областях, где необходима газообразная среда без кислорода, например,

в пожаротушении . Азот вытесняет кислород, без которого процессы горения не поддерживаются и огонь затухает.

Газообразный азот нашел применение в таких отраслях:

производство продуктов питания . Азот используется как инертная газовая среда для сохранения свежести продуктов в упаковке;

в нефтедобывающей промышленности и горном деле . Азотом продувают трубопроводы и резервуары, его нагнетают в шахты для формирования взрывобезопасной газовой среды;

в самолетостроении азотом накачивают шины шасси.

Все вышесказанное относится к применению чистого азота, но не стоит забывать, что этот элемент является исходным сырьем для производства массы всевозможных соединений:

— аммиак. Чрезвычайно востребованное вещество с содержанием азота. Аммиак идет на производство удобрений, полимеров, соды, азотной кислоты. Сам по себе применяется в медицине, изготовлении холодильной техники;

— азотные удобрения;

— взрывчатые вещества;

— красители и т.д.


Азот – не только один из наиболее распространенных химических элементов, но и очень нужный компонент, применяемый во многих отраслях человеческой деятельности.

АЗОТ , N (франц. Az), химический элемент (Nitrogenium - от nitrum, селитра, «образующий селитру»; по-немецки - Stickstoff «удушающий газ», по-франц. - Azote, от греч. α - отрицание, ξωη - жизнь, безжизненный); атомный вес 14,009, порядковый номер 7.

Физические свойства . D чистого азота (при D воздуха = 1) 0,9674; но обычно мы имеем дело с азотом из воздуха, с содержанием 1,12% аргона, D такого азота 0,9721; вес 1 л чистого азота при 0°С и 760 мм - 1,2507 г, вес 1 л «атмосферного» азота - 1,2567 г. Растворимость азота в воде меньше растворимости кислорода. 1 л воды при 760 мм и 0°С растворяет 23,5 см 3 азота (растворимость О 2 - 48,9 см 3), при 20°С - 15,4 см 3 азота (растворимость О 2 - 31,0 см 3). Древесный уголь свежепрокаленный поглощает, по Дьюару, в 1 см 3 при 0°С всего 15 см 3 азота, при -185°С он поглощает 155 см 3 азота (объемы перечислены на 0°С и 760 мм). Температура критическая -147°С при критическом давлении в 33 atm., или 25 м ртутного столба, температура кипения при 760 мм равна -195°,67±0°,05, а температура плавления при 88 мм±4 мм равна - 210°,52±0°,2. Коэффициент расширения азота при 1 atm равен 0,003667; удельная теплота при 20°С равна 0,249, а для температурного интервала (0-1400)°С, в среднем, 0,262; отношение с р /с η = 1,40, как и для О 2 . Жидкий азот бесцветен, подвижен как вода, хотя легче последней. Удельный вес при температуре кипения и 760 мм - 0,7914, при -184°С - 0,7576, при -195,5°С - 0,8103 и при -205°С - 0,8537; близ точки застывания - 0,8792 (цифры колеблются в зависимости от содержания Аr). Удельная теплота жидкого азота между -196°С и -208°С - 0,430; теплота испарения 1кг жидкого азота при температуре кипения -195°,55 равна 47,65 Cal. Из 1 л жидкого азота при испарении, при атмосферном давлении и 0°С, 14°С и 27°С, образуется соответственно: 640, 670 и 700 л газообразного азота. Жидкий азот немагнитен и не проводит электричества.

Химические свойства азота в значительной степени определяются его крайней инертностью при обыкновенных условиях температуры и давления, объясняющеюся устойчивостью молекул N 2 . Только металл литий соединяется с азотом при невысокой температуре, выделяя при этом 69000 cal и образуя нитрид лития NLi 3 . Нитрид Ва образуется при 560°С и имеет формулу Ba 3 N 2 ; о других нитридах. Как с кислородом, так и с водородом азот соединяется лишь при высокой температуре, причем реакция с кислородом эндотермична, а с водородом экзотермична. Валентность азота определяется строением его атома по Бору. При удалении с наружного кольца всех пяти электронов азот становится пятизарядным положительным ионом; при пополнении верхнего кольца тремя электронами до предельного числа - восьми - атом азота проявляется как трехзарядный электроотрицательный ион. Состояние азота в аммонийных соединениях может быть легко выяснено теорией комплексных соединений. Азот дает целый ряд соединений с кислородом и с галоидами (последние соединения являются вследствие сильной эндотермичности своего образования чрезвычайно взрывчатыми). С водородом азот дает соединения: аммиак и азотистоводородную кислоту. Кроме того, известны: соединение азота с водородом - гидразин и с водородом и кислородом - гидроксиламин.

Применение азота . Газообразный азот имеет в качестве инертного газа применение в медицине для иммобилизации пораженных туберкулезом участков легких (операция Pneumotorax), для защиты металлов от химического действия на них активных газов и вообще в тех случаях, когда необходимо предотвратить какую-нибудь нежелательную химическую реакцию (например, для наполнения лампочек накаливания, для надувания автомобильных резиновых шин, на которые при высоком давлении разрушающим образом действует воздух, для сохранения красок ценных картин, помещаемых в наполненных азотом герметических сосудах, для предотвращения пожарной опасности при переливке бензина и других горючих жидкостей, и т. п.). Но самое важное техническое применение азота имеет в процессе получения синтетического аммиака из элементов.

При оценке свойств азота и его исключительного значения в общей экономике органической природы и общественной жизни человека следует резко различать азот свободный от азота связанного , т. е. уже вступившего в химическое соединение с каким-нибудь другим элементом, гл. обр. с кислородом, водородом и углеродом . Азот свободный при условиях температуры и давления, господствующих на поверхности земного шара, представляет собою крайне инертный элемент. Мышь в классическом опыте Лавуазье погибала в воздухе, лишенном кислорода, т. е. в почти чистом азоте. Между тем связанный азот является как бы носителем жизни, ибо все без исключения живые существа, будь это растения или животные, выстраивают свой организм обязательно при участии т. н. белковых веществ, неизбежно заключающих в своем химическом составе азот (белки содержат до 16% азота). Процесс перехода от свободного азота к связанному и обратно представляет собою величайшей важности процесс природы и грандиознейшую проблему сельского хозяйства, а в последнее время и индустрии. Свободный азот содержится в смеси с другими газами в атмосфере в необъятном количестве, составляя около 4 / 5 по объему (75,51 весовых %) от всей атмосферы и окутывая земной шар воздушным покровом, постепенно все более и более разрежающимся, достигающим в высоту десятков км. Над одним гектаром земной поверхности содержится азота столько, что, если бы он был в связанном состоянии, его хватило бы для обеспечения всей живой природы и потребностей человечества на 20 лет (А. Э. Мозер). Но свободный азот лишь с громадным усилием м. б. понужден к соединению с другими элементами, и притом не только в тех случаях, когда это соединение происходит эндотермически (как, например, при образовании кислородных соединений азота), но и в тех случаях, когда соединение азота с другим элементом сопровождается выделением энергии и является реакцией экзотермической (соединение азота с водородом).

Лишь в исключительных случаях, например, с литием, соединение азота протекает в обыкновенных условиях температуры и давления легко. Поэтому в общем балансе связанного азота в природе приходится констатировать круговорот . Растения поглощают связанный азот в виде растворимых солей из почвы и изготовляют белки; животные пользуются при обмене веществ готовыми азотистыми соединениями за счет поглощенной растительной пищи, выделяя соединения связанного азота, неусвоенные, а также образовавшиеся в результате распада в их организме белковых веществ - в экскрементах и в моче, и, наконец, внося при своей гибели весь свой организм в общий баланс связанного азота в природе для дальнейших процессов минерализации белковых и других азотистых веществ, происходящих в почве. В этих последних процессах громадная роль остается за микроорганизмами почвы, в результате жизнедеятельности которых сложные азотистые органические соединения превращаются в простейшие соли азотной кислоты, которая, в свою очередь, образуется в результате окисления в почве аммиачных соединений как более ранней стадии разрушения белковых веществ и продуктов ид распада. Принимая во внимание чрезвычайную инертность свободного азота, неспособного самостоятельно вступать в соединения, и, с другой стороны, потери или случаи глубокого разрушения азотистого соединения до свободного азота (например, в результате жизнедеятельности денитрифицирующих почвенных бактерий, при сжигании каменного угля , дров и торфа, при вымывании из почвы азотистых соединений дождем в реки и моря, при спуске в реки отбросов больших городов и т. д.), - можно было бы считать неизбежным последствием всего этого постепенное обеднение природы связанным азотом и в результате гибель органической жизни на земле, если бы в общее русло круговорота связанного азота не вливались бы некоторые процессы, пополняющие указанную убыль связанного азота в природе. Таким естественным источником связанного азота в природе являются атмосферные осадки, приносящие в почву окислы азота, образовавшиеся в атмосфере при электрических разрядах, которые понуждают некоторое количество атмосферного азота соединиться с кислородом (дождевая вода содержит около 0,00001% связанного азота). Можно подсчитать, что этим путем в почву земного шара ежегодно вносится до 400 млн. т связанного азота. Кроме того, Бертело удалось установить, что в почве, без внесения в нее новых запасов азотистых соединений, содержание азота с течением времени повышается благодаря жизнедеятельности некоторых видов бактерий. Впоследствии эти бактерии были выделены в чистых культурах, а именно: анаэробная бактерия маслянокислого брожения (Clostridium pasteuri- anum) и аэробная бактерия (Azotobakter Виноградского, которая может обогатить почву на 48 кг в год на 1 га). Кроме этих свободно живущих в почве бактерий, было обнаружено в клубеньковых наростах некоторых растений семейства бобовых (Leguminosae) присутствие симбиотически связанных с ними бактерий (Bacillus radicicola), также способных усваивать свободный атмосферный азот и передавать этот связанный ими азот своему «растению-хозяину». Как известно, это свойство бобовых растений (лупина, вики, сераделлы и др.) широко применяется для обогащения почвы азотистыми веществами, являясь своеобразным методом удобрения почвы для последующих посевов хлебных злаков на участке с запаханными и разложившимися в почве, предварительно взращенными на ней, удобрительными растениями. Однако указанные естественные источники пополнения связанного азота в природе никоим образом не могут восполнить его убыли, в особенности в виду громадного расточения связанного азота во всех процессах разрушения азотистых соединений в топливе, а также при использовании азотистых взрывчатых веществ. Принимая во внимание потребности в азотистой пище населения земли, исчисляемого в 1,6 млрд. чел., и ежегодный прирост населения земли в одних только странах, располагающих статистическими сведениями, в 4 млн. чел. или в 400 млн. в столетие, эту убыль связанного азота в природе приходится считать весьма существенной. Вильям Крукс еще в 1898 г. забил тревогу, предсказывая гибель человечества от голода в ближайшем будущем, когда, по его расчетам, должны будут иссякнуть единственные на земном шаре богатые месторождения чилийской селитры - того ресурса связанного азота, который гл. обр. должен был восполнить насущную нужду сельского хозяйства в азотных удобрениях, а вместо того хищнически расточался для военных целей, т. к. большинство взрывчатых веществ изготовлялось при действии азотной кислоты, полученной из чилийской селитры. Действительно, хотя Крукс преуменьшил несколько запасы селитры в Чили, однако и по последним геологическим подсчетам, если даже принять только довоенную норму выработки чилийской селитры (2750000 т селитры с содержанием 400000 т связанного азота), ее запасов (600 млн. т селитры с содержанием 30 млн. т связанного азота) не может хватить более, чем на 150-200 лет (см. Селитра). Однако запасы чилийской селитры отнюдь не являются единственным источником, из которого человечество черпает свои пополнения необходимого для его питания и промышленности связанного азота. По данным Интернационального агрикультурного института в Риме, вычисленным на основании сведений об урожаях всех стран света, мировое потребление связанного азота на 1924 г. определяется количеством около 7000000 т связанного азота; из них человек сумел выработать и вернуть природе лишь около 1 / 6 части, т. е. около 1200000 т связанного азота. На долю чилийской селитры в этом количестве пришлось в 1924 г. всего 420000 т. Остальное количество связанного азота поступило в общую экономику природы в значительной степени за счет таких же естественных ресурсов связанного азота в природе, как и селитра, требующих, однако, со стороны человека некоторой обработки. К числу таких естественных ресурсов связанного азота относятся мировые запасы каменного угля и торфа. Каменный уголь содержит даже в плохих сортах от 0,5 до 2% связанного азота. Те же сорта, которые идут для производства кокса и светильного газа, содержат обыкновенно от 1,2 до 1,9%, в среднем 1,3% связанного азота. По современным геологическим данным, мировые запасы каменного угля следует оценить приблизительной цифрой около 8000 млрд. т. Считая содержание связанного азота в угле в 1%, мы получим содержание связанного азота в мировом запасе каменного угля в 80 млрд. т, т. е. в 2000 раз больше, чем содержание связанного азота в запасах чилийской селитры. Это количество могло бы обеспечить потребность человечества в связанном азоте на 6000 лет, если бы при использовании угля можно было утилизировать весь заключающийся в нем связанный азот. Довоенная ежегодная выработка каменного угля была равна 1350 млн. т с содержанием связанного азота (1,3%) в 17 млн. т (соответственно 85 млн. т азотнокислого аммония, на сумму более 25 млрд. фр.). Однако почти все это количество связанного азота выпускалось в воздух в качестве свободного азота при сжигании каменного угля в печах заводов, паровозов, в домашних печах и т. д. Только примерно 1 / 50 ч. всего этого количества улавливалась азотной промышленностью и служила для получения сернокислого аммония, который является и поныне самым значительным, наравне с селитрой, ресурсом для искусственных азотных удобрений (Matignon). В среднем из каменного угля, подвергающегося коксованию или газации, добывается 12 кг сернокислого аммония на т. Утилизация связанного азота из торфа пока еще не представляет собою крупного фактора в экономике связанного азота. Т. о. использование каменноугольного азота только отчасти сглаживает остроту недостачи связанного азота для целей сельского хозяйства и промышленности, но отнюдь не является разрешением азотной проблемы в целом. Окончательное разрешение этой проблемы принесли с собой наука и техника, гл. обр. в продолжение текущего столетия, осуществив фиксацию атмосферного азота техническим путем. Эта фиксация осуществляется главным образом тремя основными методами: 1) путем сжигания азота воздуха при действии вольтовой дуги, с получением окислов азота и азотной кислоты; этот метод, вследствие эндотермичности реакции соединения N 2 + О 2 , требует затраты значительных количеств тепла, высокого напряжения, и является рентабельным только при наличии дешевой гидроэлектрической энергии; 2) путем присоединения азота при высокой температуре электрической печи к карбиду кальция, с образованием цианамида кальция; последний либо непосредственно идет для целей удобрения, либо при действии воды образует аммиак, нейтрализуемый до сернокислого или азотнокислого аммония; 3) путем непосредственного соединения атмосферного азота с водородом, с образованием синтетического аммиака; этот способ (Габер-Боша) является, несомненно, величайшим достижением химической технологии за истекшую часть 20 в. и одним из грандиознейших завоеваний науки и техники в истории человечества.

Несмотря на то, что для повышения урожая необходимо внесение в почву также и других удобрений - фосфорных и калийных, все же именно азотные удобрения играют преобладающее значение в экономике сельского хозяйства. Если, например, в мясе фосфорного ангидрида и окиси калия содержится по 0,4%, то количество связанного азота в том же продукте достигает около 3%, т. е. на 30 ч. связанного азота в мясе приходится лишь по 4 ч. Р 2 О 6 и К 2 О. При этом цены указанных трех видов искусственных удобрений в 1913 г., при нормальных, сравнительно, условиях довоенного времени, выражались следующими цифрами: за 1 кг связанного азота - 1,5 фр., а за 1 кг К 2 О или Р 2 О 5 - по 0,4 фр. за каждый. Т. о. мы можем считать, что азотные удобрения дают экономический эффект в 32 раза более значительный по сравнению с эффектом остальных двух классов удобрительных туков. Насколько значительна роль азотных удобрений, видно из того факта, что внесение в почву искусственных азотных удобрений вызывает, при прочих равных условиях, прирост урожая на 1 т внесенного связанного азота: для зерновых хлебов - в 20 т, для картофеля - в 200 т и для свеклы - в 300 т. Для количественной оценки роли вносимых в экономику сельского хозяйства азотистых удобрительных туков интересно хотя бы приблизительно подсчитать общий мировой капитал связанного азота, участвующий в органической жизни нашей планеты. При поверхности суши земного шара в 135000000 км 2 и толщине слоя пахотной земли в 0,4 м, мы можем оценить (приняв плотность почвы за единицу) весь капитал всей плодородной почвы земли в 54 млрд. т. Среднее содержание связанного азота в почве не превышает 0,1%. Уменьшив весь расчет до 3 / 4 вследствие учета пустынь, ледников, скал и других неплодородных почв, не содержащих азота, мы можем оценить общий тоннаж связанного азота в почве всего земного шара приблизительно в 40 млрд. т, т. е. в половину всех запасов связанного азота, имеющихся в каменном угле, утилизация которых возможна лишь в самой ограниченной степени.

Потребность мирового сельского хозяйства в азотных удобрительных туках характеризуется следующими цифрами (Partington, The Nitrogen Industry):

Мировое потребление чилийской селитры в военные годы мало показательно, ибо на нем отразились факторы блокады, затрудненного транспорта и пр.

Мировое производство связанного азота достигло 1200000 т в год, из которых: около 30% - 360000 т было выделено при коксовании и газификации из каменного угля, около 35% - 420000 т было выработано в виде чилийской селитры, около 35% - 420000 т было произведено путем фиксации атмосферного азота. В самые последние годы это соотношение несколько изменилось в смысле увеличения выработки селитры (до 36,5%) за счет уменьшения утилизации каменноугольного азота (около 30%).

Из всей продукции связанного азота путем фиксации атмосферного азота в свою очередь 60% д. б. отнесено к синтетическому аммиаку, 30% - к цианамиду и только 10% - к норвежской синтетической селитре. Особенно быстрое развитие азотной промышленности наблюдается в Германии, что характеризуется следующими цифрами: всего в Германии азотных продуктов было произведено: в 1915 г. - 64000 т связанного азота, в 1919 г. - 132000 т, в 1920 г. - 190000 т, в 1922 г. - 238000 т (в эти количества не входит ввезенная чилийская селитра). Следующая диаграмма наглядно рисует степень удовлетворения на 1925 г. мировой потребности в связанном азоте со стороны добывающей и обрабатывающей азотной промышленности.

Из всего количества добытого связанного азота 83% (около 1000000 т) было израсходовано для удобрения, вследствие чего был получен прирост сельскохозяйственных продуктов, эквивалентный 20000000 т (1,2 млрд. пудов) пшеницы, т. е. почти в два раза большего количества, чем весь хлебный годовой экспорт России в довоенные годы. Развитие синтетической азотной промышленности иллюстрируют следующие цифры:

По отдельным странам мировая производительная способность заводов, вырабатывающих соединения связанного азота, в 1925 г. подразделяется следующим образом (в т):

Т. о. в технической фиксации атмосферного азота по тому или иному методу участвуют: Германия на 60%, Франция - 14%, Англия - 2,5%, Италия - 4,3%, Япония - 1,9% и США - 18%. Но синтетическая азотная промышленность развивается чрезвычайно быстро. Уже в настоящее время частью заканчивается постройкой, а частью находится в действии целый ряд новых установок. Когда все они начнут функционировать, то общая продукция синтетического связанного азота будет еще больше.

Преобладающее значение и наибольшие перспективы из всех синтетических методов фиксации атмосферного азота следует признать за способами получения синтетического аммиака. Главным преимуществом этого пути фиксации атмосферного азота является весьма незначительная затрата энергии на его производство, ибо энергия, в виду экзотермичности процесса, д. б. затрачена, при рациональном использовании теплоты самой реакции, исключительно на компрессию газов до давления в 200 и более atm. Parsons (JournalofInd. a. Eng. Chem., v. 9, p. 839, 1917) приводит интересный подсчет расходуемой энергии на тонну связанного азота при разных методах:

Современное состояние синтетической аммиачной промышленности (на 1925 г.) характеризуется следующими цифрами:

Т. о. 93% всего синтетического аммиака производится в Германии. Когда все установки по фиксации атмосферного азота будут закончены, то количество производимого синтетического аммиака будет приблизительно равно, в переводе на тонну связанного азота:

В общем все виды технической фиксации атмосферного азота (аммиак, дуговой процесс и цианамидный метод) смогут дать ежегодную продукцию, вероятно несколько меньшую указанной выше, а именно:

В СССР выработано в 1924 г. около 7400 т концентрированной аммиачной воды с содержанием около 400 т связанного азота, кроме того было импортировано значительное количество чилийской селитры с содержанием 1700 т связанного азота. О потребностях СССР можно получить представление из следующих цифр. Во время войны Россией было израсходовано на производство взрывчатых веществ около 330000 т селитры с 48000 т связанного азота. Потребность в азотистых удобрениях для культур сахарной свекловицы, хлопка и других технических растений исчисляется десятками тысяч тонн, а потребность в удобрениях для крестьянского хозяйства - многими сотнями тыс. т связанного азота. Недостаток удобрений вызывает слабый урожай в СССР, в среднем с 1 га 6,5 ц хлеба и 98 ц свекловицы, против 24,5 ц хлеба и 327,5 ц свекловицы в странах Западной Европы, применяющих азотные и другие искусственные удобрения (Мозер). В настоящее время в СССР принимаются решительные меры для обеспечения развития азотной промышленности. См. .

Снег еще не успел полностью растаять, а беспокойные владельцы загородных участков уже спешат оценить фронт работ в саду. А заняться тут и правда, есть чем. И, пожалуй, самое главное, о чём необходимо подумать ранней весной – как защитить свой сад от болезней и вредителей. Опытные садоводы знают, что пускать на самотёк эти процессы нельзя, а промедление и откладывание на потом сроков обработки могут существенно снизить урожай и качество плодов.

Пирог с рыбными консервами и сыром - идея простого обеда или ужина для ежедневного или воскресного меню. Пирог рассчитан на небольшую семью из 4-5 человек с умеренным аппетитом. В этой выпечке есть сразу все - и рыба, и картошка, и сыр, и хрустящая корочка из теста, в общем, почти как закрытая пицца-кальцоне, только вкуснее и проще. Рыбные консервы могут быть любыми - скумбрия, сайра, горбуша или сардины, выбирайте по своему вкусу. Такой пирог также готовят с вареной рыбой.

Инжир, фига, смоковница - это всё названия одного и того же растения, которое у нас стойко ассоциируется со средиземноморской жизнью. Кто хоть раз пробовал на вкус плоды инжира, знает, какая это вкуснятина. Но, кроме нежного сладкого вкуса, они ещё и очень полезны для здоровья. И вот какая интересная деталь: оказывается, инжир - совершенно неприхотливое растение. К тому же, его с успехом можно выращивать на участке в средней полосе или в доме - в контейнере.

Вкусный крем-суп с морепродуктами готовится чуть меньше часа, он получается нежным и кремовым. Морепродукты выбирайте по своему вкусу и кошельку, это может быть и морской коктейль, и королевские креветки, и кальмары. Я готовила суп с крупными креветками и мидиями в раковинах. Во-первых, это очень вкусно, во-вторых, красиво. Если готовите для праздничного ужина или обеда, то мидии в раковинах и большие неочищенные креветки выглядят в тарелке аппетитно и симпатично.

Довольно часто сложности по выращиванию рассады томатов возникают даже у бывалых дачников. У кого-то вся рассада получается вытянутая и слабая, у кого-то - внезапно начинает падать и гибнет. Все дело в том, что в квартире трудно поддерживать идеальные условия для выращивания рассады. Сеянцам любых растений нужно обеспечить много света, достаточную влажность и оптимальную температуру. Что еще нужно знать и соблюдать при выращивании рассады томатов в квартире?

Сорта томатов серии «Алтайский» пользуются большой популярностью у огородников по причине своего сладкого нежного вкуса, больше напоминающего вкус фрукта, нежели овоща. Это крупные помидоры, вес каждого плода равняется в среднем 300 граммов. Но это не предел, есть томаты крупнее. Мякоть этих томатов характеризуется сочностью и мясистостью с незначительной приятной маслянистостью. Вырастить отличные томаты серии «Алтайский» можно из семян «Агроуспех».

Долгие годы алоэ оставалось самым недооцененным комнатным растением. И это не удивительно, ведь широкое распространение алоэ обыкновенного в прошлом столетии привело к тому, что о других видах этого удивительного суккулента все забыли. Алоэ – растение, в первую очередь, декоративное. И при правильном выборе вида и сорта способно затмить любого конкурента. В модных флорариумах и в обычных горшках алоэ – выносливое, красивое и удивительно долговечное растение.

Вкусный винегрет с яблоком и квашеной капустой - вегетарианский салат из сваренных и охлажденных, сырых, квашеных, солёных, маринованных овощей и фруктов. Название произошло от французского соуса из уксуса, оливкового масла и горчицы (vinaigrette). Винегрет появился в русской кухне не так давно, примерно в начале 19 века, возможно рецепт позаимствовали в австрийской или немецкой кухне, так как ингредиенты для австрийского селёдочного салата весьма похожи.

Когда мы мечтательно перебираем в руках яркие пакетики с семенами, то порой подсознательно уверены, что обладаем прототипом будущего растения. Мысленно выделяем ему место в цветнике и предвкушаем заветный день появления первого бутона. Однако покупка семян далеко не всегда гарантирует, что в конечном итоге вы получите желанный цветок. Мне хотелось бы обратить внимание на причины, вследствие которых семена могут не взойти или погибнуть в самом начале прорастания.

Приближается весна и у дачников появляются заботы, как вырастить хорошую рассаду. Многие выращивают рассаду томата, перца, огурца. Что нужно сделать, чтобы рассада была качественной с развитой корневой системой и надземной частью? Прежде всего правильно выбрать сорт или гибрид для выращивания в открытом грунте или теплице. Внимательно прочитайте информацию на пакете с семенами, обратите внимание на срок годности, обработаны семена протравителем или нет.

Наступает весна, и работ у садоводов прибавляется, причём с наступлением тепла изменения в саду происходят стремительно. На растениях, вчера ещё спавших, уже начинают набухать почки, всё буквально на глазах оживает. После долгой зимы это не может не радовать. Но вместе с садом оживают и его проблемы – насекомые-вредители и возбудители болезней. Долгоносики, цветоеды, тли, клястероспориоз, манилиоз, парша, мучнистая роса - перечислять можно очень долго.

Тосты на завтрак с авокадо и яичным салатом - отличное начало дня. Яичный салат в этом рецепте выступает в роли густого соуса, которым приправлены свежие овощи и креветки. Мой яичный салат довольно необычен, это диетический вариант всеми любимой закуски - с сыром «Фета», греческим йогуртом и красной икрой. Если утром у вас есть время, никогда не отказывайте себе в удовольствии приготовить что-нибудь вкусное и полезное. День нужно начать с положительных эмоций!

Пожалуй, каждая женщина хоть раз получала в подарок цветущую орхидею. Неудивительно, ведь такой живой букет потрясающе выглядит и долго цветёт. Орхидеи нельзя назвать очень сложными в выращивании комнатными культурами, но не выполнение главных условий их содержания часто приводит к потере цветка. Если вы только начинаете знакомство с комнатными орхидеями, вам стоит узнать правильные ответы на главные вопросы по выращиванию этих прекрасных растений в доме.

Пышные сырники с маком и изюмом, приготовленные по этому рецепту, в моей семье съедают в мгновение ока. В меру сладкие, толстенькие, нежные, с аппетитной корочкой, без лишнего масла, словом, именно такие, как в детстве жарила мама или бабушка. Если изюм очень сладкий, то сахарный песок можно не добавлять вовсе, без сахара сырники лучше поджарятся и никогда не пригорят. Готовьте их на хорошо разогретой сковородке, смазанной маслом, на маленьком огне и без крышки!