Времена года

Обратная теорема виета. Теорема Виета для полного квадратного уравнения. Методы решения полных квадратных уравнений

Формулировка и доказательство теоремы Виета для квадратных уравнений. Обратная теорема Виета. Теорема Виета для кубических уравнений и уравнений произвольного порядка.

Квадратные уравнения

Теорема Виета

Пусть и обозначают корни приведенного квадратного уравнения
(1) .
Тогда сумма корней равна коэффициенту при , взятому с обратным знаком. Произведение корней равно свободному члену:
;
.

Замечание по поводу кратных корней

Если дискриминант уравнения (1) равен нулю, то это уравнение имеет один корень. Но, чтобы избежать громоздких формулировок, принято считать, что в этом случае, уравнение (1) имеет два кратных, или равных, корня:
.

Доказательство первое

Найдем корни уравнения (1). Для этого применим формулу для корней квадратного уравнения :
;
;
.

Находим сумму корней:
.

Чтобы найти произведение, применим формулу:
.
Тогда

.

Теорема доказана.

Доказательство второе

Если числа и являются корнями квадратного уравнения (1), то
.
Раскрываем скобки.

.
Таким образом, уравнение (1) примет вид:
.
Сравнивая с (1) находим:
;
.

Теорема доказана.

Обратная теорема Виета

Пусть и есть произвольные числа. Тогда и являются корнями квадратного уравнения
,
где
(2) ;
(3) .

Доказательство обратной теоремы Виета

Рассмотрим квадратное уравнение
(1) .
Нам нужно доказать, что если и , то и являются корнями уравнения (1).

Подставим (2) и (3) в (1):
.
Группируем члены левой части уравнения:
;
;
(4) .

Подставим в (4) :
;
.

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Теорема доказана.

Теорема Виета для полного квадратного уравнения

Теперь рассмотрим полное квадратное уравнение
(5) ,
где , и есть некоторые числа. Причем .

Разделим уравнение (5) на :
.
То есть мы получили приведенное уравнение
,
где ; .

Тогда теорема Виета для полного квадратного уравнения имеет следующий вид.

Пусть и обозначают корни полного квадратного уравнения
.
Тогда сумма и произведение корней определяются по формулам:
;
.

Теорема Виета для кубического уравнения

Аналогичным образом мы можем установить связи между корнями кубического уравнения. Рассмотрим кубическое уравнение
(6) ,
где , , , есть некоторые числа. Причем .
Разделим это уравнение на :
(7) ,
где , , .
Пусть , , есть корни уравнения (7) (и уравнения (6)). Тогда

.

Сравнивая с уравнением (7) находим:
;
;
.

Теорема Виета для уравнения n-й степени

Тем же способом можно найти связи между корнями , , ... , , для уравнения n-й степени
.

Теорема Виета для уравнения n-й степени имеет следующий вид:
;
;
;

.

Чтобы получить эти формулы мы записываем уравнение в следующем виде:
.
Затем приравниваем коэффициенты при , , , ... , и сравниваем свободный член.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
С.М. Никольский, М.К. Потапов и др., Алгебра: учебник для 8 класса общеобразовательных учреждений, Москва, Просвещение, 2006.

Одним из методов решений квадратного уравнения является применение формулы ВИЕТА , которую назвали в честь ФРАНСУА ВИЕТА.

Он был известным юристом, и служил в 16 веке у французского короля. В свободное время занимался астрономией и математикой. Он установил связь между корнями и коэффициентами квадратного уравнения.

Достоинства формулы:

1 . Применив формулу, можно быстро найти решение. Потому что не нужно вводить в квадрат второй коэффициент, затем из него вычитать 4ас, находить дискриминант, подставлять его значение в формулу для нахождения корней.

2 . Без решения можно определить знаки корней, подобрать значения корней.

3 . Решив систему из двух записей, несложно найти сами корни. В приведенном квадратном уравнении сумма корней равна значению второго коэффициента со знаком минус. Произведение корней в приведенном квадратном уравнении равно значению третьего коэффициента.

4 . По данным корням записать квадратное уравнение, то есть решить обратную задачу. Например, этот способ применяют при решении задач в теоретической механике.

5 . Удобно применять формулу, когда старший коэффициент равен единице.

Недостатки:

1 . Формула не универсальна.

Теорема Виета 8 класс

Формула
Если x 1 и x 2 - корни приведенного квадратного уравнения x 2 + px + q = 0 , то:

Примеры
x 1 = -1; x 2 = 3 - корни уравнения x 2 - 2x - 3 = 0.

P = -2, q = -3.

X 1 + x 2 = -1 + 3 = 2 = -p,

X 1 x 2 = -1 3 = -3 = q.

Обратная теорема

Формула
Если числа x 1 , x 2 , p, q связаны условиями:

То x 1 и x 2 - корни уравнения x 2 + px + q = 0 .

Пример
Составим квадратное уравнение по его корням:

X 1 = 2 - ? 3 и x 2 = 2 + ? 3 .

P = x 1 + x 2 = 4; p = -4; q = x 1 x 2 = (2 - ? 3 )(2 + ? 3 ) = 4 - 3 = 1.

Искомое уравнение имеет вид: x 2 - 4x + 1 = 0.

Для начала сформулируем саму теорему: Пусть у нас есть приведённое квадратное уравнение вида x^2+b*x + c = 0. Допустим, это уравнение содержит корни x1 и x2. Тогда по теореме следующие утверждения допустимы:

1) Сумма корней x1 и x2 будет равняться отрицательному значению коэффициента b.

2) Произведение этих самых корней будет давать нам коэффициент c .

Но что же такое приведённое уравнение

Приведённым квадратным уравнением называется квадратное уравнение, коэффициент старшей степени, которой равен единицы, т.е. это уравнение вида x^2 + b*x + c = 0. (а уравнение a*x^2 + b*x + c = 0 неприведенное). Другими словами, чтобы привести уравнение к приведённому виду, мы должны разделить это уравнение на коэффициент при старшей степени (a). Задача привести данное уравнение к приведённому виду:

3*x^2 12*x + 18 = 0;

−4*x^2 + 32*x + 16 = 0;

1,5*x^2 + 7,5*x + 3 = 0; 2*x^2 + 7*x − 11 = 0.

Поделим каждое уравнение на коэффициент старшей степени, получим:

X^2 4*x + 6 = 0; X^2 8*x − 4 = 0; X^2 + 5*x + 2 = 0;

X^2 + 3,5*x − 5,5 = 0.

Как можно увидеть из примеров, даже уравнения содержащие дроби, можно привести к приведённому виду.

Использование теоремы Виета

X^2 5*x + 6 = 0 ⇒ x1 + x2 = − (−5) = 5; x1*x2 = 6;

получаем корни: x1 = 2; x2 = 3;

X^2 + 6*x + 8 = 0 ⇒ x1 + x2 = −6; x1*x2 = 8;

в результате получаем корни: x1 = -2 ; x2 = -4;

X^2 + 5*x + 4 = 0 ⇒ x1 + x2 = −5; x1*x2 = 4;

получаем корни: x1 = −1; x2 = −4.

Значение теоремы Виета

Теорема Виета позволяет нам решить любое квадратное приведённое уравнение практически за секунды. На первый взгляд это кажется достаточно сложной задачей, но после 5 10 уравнений, можно научиться видеть корни сразу.

Из приведённых примеров, и пользуясь теоремой, видно как можно значительно упростить решение квадратных уравнений, ведь используя эту теорему, можно решить квадратное уравнение практически без сложных расчётов и вычисления дискриминанта, а как известно чем меньше расчётов, тем сложнее допустить ошибку, что немаловажно.

Во всех примерах мы использовали это правило, опираясь на два важных предположения:

Приведённое уравнение, т.е. коэффициент при старшей степени равен единицы (это условие легко избежать. Можно использовать неприведенный вид уравнения, тогда будут допустимы следующие утверждения x1+x2=-b/a; x1*x2=c/a, но обычно сложнее решать:))

Когда уравнение будет иметь два различных корня. Мы предполагаем что неравенство верно и дискриминант строго больше нуля.

Поэтому, мы можем составить общий алгоритм решения по теореме Виета.

Общий алгоритм решения по теореме Виета

Приводим квадратное уравнение к приведённому виду, если уравнение дано нам в неприведённом виде. Когда коэффициенты в квадратном уравнении, которое раньше мы представили как приведённое, получились дробными(не десятичными), то в этом случае следует решать наше уравнение через дискриминант.

Также бывают случаи когда возврат к начальному уравнению позволяет нам работать с “удобными” числами.

I. Теорема Виета для приведенного квадратного уравнения.

Сумма корней приведенного квадратного уравнения x 2 +px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

x 1 +x 2 =-p; x 1 ∙x 2 =q.

Найти корни приведенного квадратного уравнения, используя теорему Виета.

Пример 1) x 2 -x-30=0. Это приведенное квадратное уравнение ( x 2 +px+q=0) , второй коэффициент p=-1 , а свободный член q=-30. Сначала убедимся, что данное уравнение имеет корни, и что корни (если они есть) будут выражаться целыми числами. Для этого достаточно, чтобы дискриминант был полным квадратом целого числа.

Находим дискриминант D =b 2 — 4ac=(-1) 2 -4∙1∙(-30)=1+120=121=11 2 .

Теперь по теореме Виета сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, т.е. (-p ), а произведение равно свободному члену, т.е. (q ). Тогда:

x 1 +x 2 =1; x 1 ∙x 2 =-30. Нам надо подобрать такие два числа, чтобы их произведение было равно -30 , а сумма – единице . Это числа -5 и 6 . Ответ: -5; 6.

Пример 2) x 2 +6x+8=0. Имеем приведенное квадратное уравнение со вторым коэффициентом р=6 и свободным членом q=8 . Убедимся, что есть целочисленные корни. Найдем дискриминант D 1 D 1 =3 2 -1∙8=9-8=1=1 2 . Дискриминант D 1 является полным квадратом числа 1 , значит, корни данного уравнения являются целыми числами. Подберем корни по теореме Виета: сумма корней равна –р=-6 , а произведение корней равно q=8 . Это числа -4 и -2 .

На самом деле: -4-2=-6=-р; -4∙(-2)=8=q. Ответ: -4; -2.

Пример 3) x 2 +2x-4=0 . В этом приведенном квадратном уравнении второй коэффициент р=2 , а свободный член q=-4 . Найдем дискриминант D 1 , так как второй коэффициент – четное число. D 1 =1 2 -1∙(-4)=1+4=5. Дискриминант не является полным квадратом числа, поэтому, делаем вывод : корни данного уравнения не являются целыми числами и найти их по теореме Виета нельзя. Значит, решим данное уравнение, как обычно, по формулам (в данном случае по формулам ). Получаем:

Пример 4). Составьте квадратное уравнение по его корням, если x 1 =-7, x 2 =4.

Решение. Искомое уравнение запишется в виде: x 2 +px+q=0 , причем, на основании теоремы Виета –p=x 1 +x 2 =-7+4=-3 → p=3; q=x 1 ∙x 2 =-7∙4=-28 . Тогда уравнение примет вид: x 2 +3x-28=0.

Пример 5). Составьте квадратное уравнение по его корням, если:

II. Теорема Виета для полного квадратного уравнения ax 2 +bx+c=0.

Сумма корней равна минус b , деленному на а , произведение корней равно с , деленному на а:

x 1 +x 2 =-b/a; x 1 ∙x 2 =c/a.

Любое полное квадратное уравнение ax 2 + bx + c = 0 можно привести к виду x 2 + (b/a)x + (c/a) = 0 , если предварительно разделить каждое слагаемое на коэффициент a перед x 2 . А если ввести новые обозначения (b/a) = p и (c/a) = q , то будем иметь уравнение x 2 + px + q = 0 , которое в математике называется приведенным квадратным уравнением .

Корни приведенного квадратного уравнения и коэффициенты p и q связаны между собой. Это подтверждается теоремой Виета , названной так в честь французского математика Франсуа Виета, жившего в конце XVI века.

Теорема . Сумма корней приведенного квадратного уравнения x 2 + px + q = 0 равна второму коэффициенту p , взятому с противоположным знаком, а произведение корней – свободному члену q .

Запишем данные соотношения в следующем виде:

Пусть x 1 и x 2 различные корни приведенного уравнения x 2 + px + q = 0 . Согласно теореме Виета x 1 + x 2 = -p и x 1 · x 2 = q .

Для доказательства подставим каждый из корней x 1 и x 2 в уравнение. Получаем два верных равенства:

x 1 2 + px 1 + q = 0

x 2 2 + px 2 + q = 0

Вычтем из первого равенства второе. Получим:

x 1 2 – x 2 2 + p(x 1 – x 2) = 0

Первые два слагаемых раскладываем по формуле разности квадратов:

(x 1 – x 2)(x 1 – x 2) + p(x 1 – x 2) = 0

По условию корни x 1 и x 2 различные. Поэтому мы можем сократить равенство на (x 1 – x 2) ≠ 0 и выразить p.

(x 1 + x 2) + p = 0;

(x 1 + x 2) = -p.

Первое равенство доказано.

Для доказательства второго равенства подставим в первое уравнение

x 1 2 + px 1 + q = 0 вместо коэффициента p равное ему число – (x 1 + x 2):

x 1 2 – (x 1 + x 2) x 1 + q = 0

Преобразовав левую часть уравнения, получаем:

x 1 2 – x 2 2 – x 1 x 2 + q = 0;

x 1 x 2 = q, что и требовалось доказать.

Теорема Виета хороша тем, что, даже не зная корней квадратного уравнения, мы можем вычислить их сумму и произведение .

Теорема Виета помогает определять целые корни приведенного квадратного уравнения. Но у многих учащихся это вызывает затруднения из-за того, что они не знают четкого алгоритма действия, особенно если корни уравнения имеют разные знаки.

Итак, приведенное квадратное уравнение имеет вид x 2 + px + q = 0, где x 1 и x 2 его корни. Согласно теореме Виета x 1 + x 2 = -p и x 1 · x 2 = q.

Можно сделать следующий вывод .

Если в уравнении перед последним членом стоит знак «минус», то корни x 1 и x 2 имеют различные знаки. Кроме того, знак меньшего корня совпадает со знаком второго коэффициента в уравнении.

Исходя из того, что при сложении чисел с разными знаками их модули вычитаются, а перед полученным результатом ставится знак большего по модулю числа, следует действовать следующим образом:

  1. определить такие множители числа q, чтобы их разность была равна числу p;
  2. поставить перед меньшим из полученных чисел знак второго коэффициента уравнения; второй корень будет иметь противоположный знак.

Рассмотрим некоторые примеры.

Пример 1 .

Решить уравнение x 2 – 2x – 15 = 0.

Решение .

Попробуем решить данное уравнение с помощью предложенных выше правил. Тогда можно точно сказать, что данное уравнение будет иметь два различных корня, т.к. D = b 2 – 4ac= 4 – 4 · (-15) = 64 > 0.

Теперь из всех множителей числа 15 (1 и 15, 3 и 5) выбираем те, разность которых равна 2. Это будут числа 3 и 5. Перед меньшим числом ставим знак «минус», т.е. знак второго коэффициента уравнения. Таким образом, получим корни уравнения x 1 = -3 и x 2 = 5.

Ответ. x 1 = -3 и x 2 = 5.

Пример 2 .

Решить уравнение x 2 + 5x – 6 = 0.

Решение .

Проверим, имеет ли данное уравнение корни. Для этого найдем дискриминант:

D = b 2 – 4ac= 25 + 24 = 49 > 0. Уравнение имеет два различных корня.

Возможные множители числа 6 - это 2 и 3, 6 и 1. Разность равна 5 у пары 6 и 1. В этом примере коэффициент второго слагаемого имеет знак «плюс», поэтому и меньшее число будет иметь такой же знак. А вот перед вторым числом будет стоять знак «минус».

Ответ: x 1 = -6 и x 2 = 1.

Теорему Виета можно записать и для полного квадратного уравнения. Так, если квадратное уравнение ax 2 + bx + c = 0 имеет корни x 1 и x 2 , то для них выполняются равенства

x 1 + x 2 = -(b/a) и x 1 · x 2 = (c/a) . Однако применение этой теоремы в полном квадратном уравнении довольно проблематично, т.к. при наличии корней, хотя бы один из них является дробным числом. А работать с подбором дробей достаточно трудно. Но все-таки выход есть.

Рассмотрим полное квадратное уравнение ax 2 + bx + c = 0. Умножим его левую и правую части на коэффициент a. Уравнение примет вид (ax) 2 + b(ax) + ac = 0. Теперь введем новую переменную, например t = ax.

В этом случае полученное уравнение превратиться в приведенное квадратное уравнение вида t 2 + bt + ac = 0, корни которого t 1 и t 2 (при их наличии) могут быть определены по теореме Виета.

В этом случае корни исходного квадратного уравнения будут

x 1 = (t 1 / a) и x 2 = (t 2 / a).

Пример 3 .

Решить уравнение 15x 2 – 11x + 2 = 0.

Решение .

Составляем вспомогательное уравнение. Умножим каждое слагаемое уравнения на 15:

15 2 x 2 – 11 · 15x + 15 · 2 = 0.

Делаем замену t = 15x. Имеем:

t 2 – 11t + 30 = 0.

По теореме Виета корнями данного уравнения будут t 1 = 5 и t 2 = 6.

Возвращаемся к замене t = 15x:

5 = 15x или 6 = 15x. Таким образом, x 1 = 5/15 и x 2 = 6/15. Сокращаем и получаем окончательный ответ: x 1 = 1/3 и x 2 = 2/5.

Ответ. x 1 = 1/3 и x 2 = 2/5.

Чтобы освоить решение квадратных уравнений с помощью теоремы Виета, учащимся необходимо как можно больше тренироваться. Именно в этом и заключается секрет успеха.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.