Времена года

Тяжелые металлы в почвах. Тяжелые металлы в почве

1

Охрана окружающей среды от загрязнения стала насущной задачей общества. Среди многочисленных загрязнителей особое место занимают тяжелые металлы. К ним условно относят химические элементы с атомной массой свыше 50, обладающие свойствами металлов. Считается, что среди химических элементов тяжелые металлы являются наиболее токсичными.

Почва является основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан.

Тяжелые металлы опасны тем, что они обладают способностью накапливаться в живых организмах, включаться в метаболический цикл, образовывать высокотоксичные металлорганические соединения, изменять формы нахождения при переходе от одной природной среды в другую, не подвергаясь биологическому разложению. Тяжелые металлы вызывают у человека серьезные физиологические нарушения, токсикоз, аллергию, онкологические заболевания, отрицательно влияют на зародыш и генетическую наследственность.

Среди тяжелых металлов приоритетными загрязнителями считаются свинец, кадмий, цинк, главным образом потому, что техногенное их накопление в окружающей среде идет высокими темпами. Эта группа веществ обладает большим сродством к физиологически важным органическим соединениям.

Загрязнение почвы подвижными формами тяжелых металлов является наиболее актуальной, так как в последние годы проблема загрязнения окружающей среды приняла угрожающий характер. В сложившейся ситуации необходимо не только усилить исследования по всем аспектам проблемы тяжелых металлов в биосфере, но и периодически подводить итоги для осмысливания результатов, полученных в разных, часто слабо связанных между собой отраслях науки.

Объектом данного исследования являются антропогенные почвы Железнодорожного района г.Ульяновска (на примере ул.Транспортной).

Главная цель проводимого исследования - определение степени загрязнения городских почв тяжелыми металлами.

Задачами исследования являются: определение величины рН в отобранных образцах почвы; определение концентрации подвижных форм меди, цинка, кадмия, свинца; проведения анализа полученных данных и предложение рекомендаций по снижению содержания тяжёлых металлов в городских почвах.

Пробы в 2005 году отбирались вдоль автодороги по ул.Транспортная, а в 2006 году на территории личных приусадебных участков (по той же улице), расположенных вблизи железнодорожных путей. Пробы отбирались на глубину 0-5 см и 5-10 см. Всего было отобрано 20 проб, массой по 500 г.

Исследуемые образцы проб 2005 и 2006 года относятся к нейтральной почве. Нейтральные почвы поглощают тяжелые металлы из растворов в большей степени, чем кислые. Но есть опасность увеличения подвижности тяжёлых металлов и их проникновение в грунтовые воды и близлежащий водоём, при выпадении кислотных дождей (обследуемый участок находиться в пойме р.Свияги), что незамедлительно скажется на пищевых цепях. В данных пробах наблюдается низкое содержание гумуса (2-4%). Соответственно нет способности почвы к образованию органо - металлических комплексов.

По лабораторным исследованиям почв на содержание Cu, Cd, Zn, Pb были сделаны выводы об их концентрациях в почвах обследуемой территории. В пробах 2005 года было выявлено превышение ПДК Cu в 1-1,2 раза,Cd в 6-9 раз, а содержание Zn и Pb ПДК не превысило. В пробах 2006 года отобранных на приусадебных участках концентрация Cu не превысила ПДК, содержание Cd меньше, чем в пробах отобранных вдоль дороги, но всё же превышает ПДК в разных точках от 0,3 до 4,6 раз. Содержание Zn увеличено только в 5 точке и составляет на глубине 0-5 см 23,3 мг/кг почвы (ПДК 23 мг/кг), а на глубине 5-10 см 24,8 мг/кг.

По результатам исследования сделаны следующие выводы: для почв характерна нейтральная реакция почвенного раствора; в пробах почвы низкое содержание гумуса; на территории Железнодорожного района г.Ульяновска наблюдается различное по интенсивности загрязнение тяжелыми металлами почвы; установлено, что в некоторых пробах значительное превышение ПДК, особенно это наблюдается в исследованиях почвы на концентрацию кадмия; для улучшения эколого-географического состояния почвы на данном участке рекомендуется выращивать растения-аккумуляторы тяжелых металлов и управлять экологическими свойствами самой почвы посредством ее искусственного конструирования; необходимо проводить систематический мониторинг и выявлять наиболее загрязненные и опасные для здоровья населения участки.

Библиографическая ссылка

Антонова Ю.А., Сафонова М.А. ТЯЖЁЛЫЕ МЕТАЛЛЫ В ГОРОДСКИХ ПОЧВАХ // Фундаментальные исследования. – 2007. – № 11. – С. 43-44;
URL: http://fundamental-research.ru/ru/article/view?id=3676 (дата обращения: 31.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Загрязнение почвы тяжелыми металлами

К тяжелым металлам (ТМ) относятся около 40 металлов с атомными массами свыше 50 и плотностью более 5 г/см 3 , хотя в число ТМ входит и легкий бериллий. Оба признака достаточно условны и перечни ТМ по ним не совпадают.

По токсичности и распространению в окружающей среде можно выделить приоритетную группу ТМ: Pb, Hg, Cd, As, Bi, Sn, V, Sb. Несколько меньшее значение имеют: Сг, Cu, Zn, Mn, Ni, Co, Mo.

Все ТМ в той или иной степени ядовиты, хотя некоторые из них (Fe, Cu, Co, Zn, Mn) входят в состав биомолекул и витаминов.

Тяжелые металлы антропогенного происхождения попадают из воздуха в почву в виде твердых или жидких осадков. Лесные массивы с их развитой контактирующей поверхностью особенно интенсивно задерживают тяжелые металлы.

В общем, опасность загрязнения тяжелыми металлами из воздуха существует в равной степени для любых почв. Тяжелые металлы негативно влияют на почвенные процессы, плодородие почв и качество сельскохозяйственной продукции. Восстановление биологической продуктивности почв, загрязненных тяжелыми металлами – одна из наиболее сложных проблем охраны биоценозов.

Важной особенностью металлов является устойчивость загрязнения. Сам элемент разрушиться не может, переходя из одного соединения в другое или перемещаясь между жидкой и твердой фазами. Возможны окислительно-восстановительные переходы металлов с переменной валентностью.

Опасные для растений концентрации ТМ зависят от генетического типа почвы. Основными показателями, влияющими на накопление ТМ в почвах, являются кислотно-основные свойства и содержание гумуса .

Учесть все разнообразие почвенно-геохимических условий при установлении ПДК тяжелых металлов практически невозможно. В настоящее время для ряда тяжелых металлов установлены ОДК их содержания в почвах, которые используются в качестве ПДК (приложение 3).

При превышении допустимых значений содержания ТМ в почвах эти элементы накапливаются в растениях в количествах, превышающих их ПДК в кормах и продуктах питания.

В загрязненных почвах глубина проникновения ТМ обычно не превышает 20 см, однако при сильном загрязнении ТМ могут проникать на глубину до 1,5м. Среди всех тяжелых металлов цинк и ртуть обладают наибольшей миграционной способностью и распределяются равномерно в слое почвы на глубине 0…20 см, в то время как свинец накапливается только в поверхностном слое (0…2,5 см). Промежуточное положение между этими металлами занимает кадмий.

У свинца четко выражена тенденция к накоплению в почве, т.к. его ионы малоподвижны даже при низких значениях рН. Для различных видов почв скорость вымывания свинца колеблется от 4г до 30 г/га в год. В то же время количество вносимого свинца может составлять в различных районах 40…530 г/га в год. Попадающий при химическом загрязнении в почву свинец сравнительно легко образует гидроксид в нейтральной или щелочной среде. Если почва содержит растворимые фосфаты, тогда гидроксид свинца переходит в труднорастворимые фосфаты.

Значительные загрязнения почвы свинцом можно обнаружить вдоль крупных автомагистралей, вблизи предприятий цветной металлургии, вблизи установок по сжиганию отходов, где отсутствует очистка отходящих газов. Проводимая постепенная замена моторного топлива, содержащего тетраэтилсвинец, топливом без свинца дает положительные результаты: поступление свинца в почву резко снизилось и в будущем этот источник загрязнения в значительной степени будет ликвидирован.

Опасность попадания свинца с частицами почв в организм ребенка является одним из определяющих факторов при оценке опасности загрязнения почв населенных пунктов. Фоновые концентрации свинца в почвах разного типа колеблются в пределах 10…70 мг/кг. По мнению американских исследователей, содержание свинца в городских почвах не должно превышать 100 мг/кг – при этом обеспечивается защита организма ребенка от избыточного поступления свинца через руки и загрязненные игрушки. В реальных же условиях содержание свинца в почве значительно превышает этот уровень. В большинстве городов содержание свинца в почве варьируется в пределах 30…150 мг/кг при средней величине около 100 мг/кг. Наиболее высокое содержание свинца – от 100 до 1000 мг/кг – обнаруживается в почве городов, в которых расположены металлургические и аккумуляторные предприятия (Алчевск, Запорожье, Днепродзержинск, Днепропетровск, Донецк, Мариуполь, Кривой Рог).

Растения более устойчивы по отношению к свинцу, чем люди и животные, поэтому необходимо тщательно следить за содержанием свинца в продуктах питания растительного происхождения и в фураже.

У животных на пастбищах первые признаки отравления свинцом наблюдаются при суточной дозе около 50 мг/кг сухого сена (на сильно загрязненных свинцом почвах получаемое сено может содержать свинца 6,5 г/кг сухого сена!). Для людей при употреблении салата ПДК составляет 7,5 мг свинца на 1 кг листьев.

В отличие от свинца кадмий попадает в почву в значительно меньших количествах: около 3…35 г/га в год. Кадмий заносится в почву из воздуха (около 3 г/га в год) либо с фосфорсодержащими удобрениями (35…260 г/т). В некоторых случаях источником загрязнения могут быть предприятия, связанные с переработкой кадмия. В кислых почвах со значением рН<6 ионы кадмия весьма подвижны и накопления металла не наблюдается. При значениях рН>6 кадмий отлагается вместе с гидроксидами железа, марганца и алюминия, при этом происходит потеря протонов группами ОН. Такой процесс при понижении рН становится обратимым, и кадмий, а также другие ТМ, могут необратимо медленно диффундировать в кристаллическую решетку оксидов и глин.

Соединения кадмия с гуминовыми кислотами значительно менее устойчивы, чем аналогичные соединения свинца. Соответственно накопление кадмия в гумусе протекает в значительно меньшей степени, чем накопление свинца.

В качестве специфичного соединения кадмия в почве можно назвать сульфид кадмия, который образуется из сульфатов при благоприятных условиях восстановления. Карбонат кадмия образуется только при значениях рН >8, таким образом, предпосылки для его осуществления крайне незначительны.

В последнее время большое внимание стали уделять тому обстоятельству, что в биологическом иле, который вносится в почву для ее улучшения, обнаруживается повышенная концентрация кадмия. Около 90% кадмия, имеющегося в сточных водах, переходит в биологический ил: 30% при первоначальном осаждении и 60…70% при его дальнейшей обработке.



Удалить кадмий из ила практически невозможно. Однако, более тщательный контроль за содержанием кадмия в сточных водах позволяет снизить его содержание в иле до значений ниже 10 мг/кг сухого вещества. Поэтому практика использования ила очистных сооружений в качестве удобрения весьма различается в разных странах.

Основными параметрами, определяющими содержания кадмия в почвенных растворах или его сорбцию почвенными минералами и органическими компонентами, являются рН и вид почвы, а также присутствие других элементов, например кальция.

В почвенных растворах концентрация кадмия может составлять 0,1…1мкг/л. В верхних слоях почвы, глубиной до 25см, в зависимости от концентрации и типа почвы элемент может удерживаться в течение 25…50 лет, а в отдельных случаях даже 200…800 лет.

Растения усваивают из минеральных веществ почвы не только жизненно важные для них элементы, но и такие, физиологическое действие которых либо неизвестно, либо безразлично для растения. Содержание кадмия в растении полностью определяется его физическими и морфологическими свойствами – его генотипом.

Коэффициент переноса тяжелых металлов из почвы в растения приведены ниже:

Pb 0,01…0,1 Ni 0,1…1,0 Zn 1…10

Cr 0,01…0,1 Cu 0,1…1,0 Cd 1…10

Кадмий склонен к активному биоконцентрированию, что приводит в довольно короткое время к его накоплению в избыточных биодоступных концентрациях. Поэтому кадмий, по сравнению с другими ТМ, является наиболее сильным токсикантом почв (Cd > Ni > Cu > Zn).

Между отдельными видами растений наблюдаются значительные различия. Если шпинат (300 млрд -1), кочанный салат (42 млрд -1), петрушку (31 млрд -1), а также сельдерей, кресс-салат, свеклу и лук-резанец можно отнести к растениям, „обогащенным” кадмием, то в бобовых, томатах, косточковых и семечковых фруктах содержится относительно мало кадмия (10…20 млрд -1). Все концентрации указаны относительно массы свежего растения (или плода). Из зерновых культур зерно пшеницы сильнее загрязнено кадмием, чем зерно ржи (50 и 25 млрд -1), однако 80…90% поступившего из корней кадмия остается в корнях и соломе.

Поглощение кадмия растениями из почвы (перенос почва/растение) зависит не только от вида растения, но и от содержания кадмия в почве. При высокой концентрации кадмия в почве (более 40 мг/кг) на первом месте стоит его поглощение корнями; при меньшем содержании наибольшее поглощение происходит из воздуха через молодые побеги. Длительность роста также влияет на обогащение кадмием: чем короче вегетация, тем меньше перенос из почвы в растение. Это является причиной того, что накопление кадмия в растениях из удобрений оказывается меньшим, чем его разбавление за счет ускорения роста растения, вызванного действием этих же удобрений.

Если в растениях достигается высокая концентрация кадмия, то это может привести к нарушениям нормального роста растений. Урожай бобов и моркови, например, снижается на 50%, если содержание кадмия в субстрате составляет 250 млн -1 . У моркови листья увядают при концентрации кадмия 50 мг/кг субстрата. У бобов при этой концентрации на листьях выступают ржавые (резко очерченные) пятна. У овса на концах листьев можно наблюдать хлороз (пониженное содержание хлорофилла).

По сравнению с растениями многие виды грибов накапливают большое количество кадмия. К грибам с высоким содержанием кадмия относят некоторые разновидности шампиньонов, в частности овечий шампиньон, в то время как луговой и культурный шампиньоны содержат относительно мало кадмия. При исследовании различных частей грибов было установлено, что пластинки в них содержат больше кадмия, чем сама шляпка, а меньше всего кадмия в ножке гриба. Как показывают опыты по выращиванию шампиньонов, двух-трехкратное увеличение содержания кадмия в грибах обнаруживается в том случае, если его концентрация в субстрате увеличивается в 10 раз.

Дождевые черви обладают способностью быстрого накопления кадмия из почвы, вследствие чего они оказались пригодными для биоиндикации остатков кадмия в почве.

Подвижность ионов меди еще выше, чем подвижность ионов кадмия. Это создает более благоприятные условия для усвоения меди растениями. Благодаря своей высокой подвижности медь легче вымывается из почвы, чем свинец. Растворимость соединений меди в почве заметно увеличивается при значениях рН< 5. Хотя медь в следовых концентрациях считается необходимой для жизнедеятельности, у растений токсические эффекты проявляются при содержании 20 мг на кг сухого вещества.

Известно альгицидное действие меди. Медь оказывает токсическое действие и на микроорганизмы, при этом достаточна концентрация около 0,1мг/л. Подвижность ионов меди в гумусном слое ниже, чем в расположенном ниже минеральном слое.

К сравнительно подвижным элементам в почве относится цинк. Цинк принадлежит к числу распространенных в технике и быту металлов, поэтому ежегодное внесение его в почву достаточно велико: оно составляет 100…2700г на гектар. Особенно загрязнена почва вблизи предприятий, перерабатывающих цинксодержащие руды.

Растворимость цинка в почве начинает увеличиваться при значениях рН<6. При более высоких значениях рН и в присутствии фосфатов усвояемость цинка растениями значительно понижается. Для сохранения цинка в почве важнейшую роль играют процессы адсорбции и десорбции, определяемые значением рН, в глинах и различных оксидах. В лесных гумусовых почвах цинк не накапливается; например, он быстро вымывается благодаря постоянному естественному поддержанию кислой среды.

Для растений токсический эффект создается при содержании около 200мг цинка на кг сухого материала. Организм человека достаточно устойчив по отношению к цинку и опасность отравления при использовании сельскохозяйственных продуктов, содержащих цинк, невелика. Тем не менее, загрязнение почвы цинком представляет серьезную экологическую проблему, так как при этом страдают многие виды растений. При значениях рН>6 происходит накопление цинка в почве в больших количествах благодаря взаимодействию с глинами.

Различные соединения железа играют существенную роль в почвенных процессах в связи со способностью элемента менять степень окисления с образованием соединений различной растворимости, окисленности, подвижности. Железо в очень высокой степени вовлечено в антропогенную деятельность, оно отличается настолько высокой технофильностью, что нередко говорят о современном «ожелезнении» биосферы. В техносферу в настоящее время вовлечено более 10 млрд т железа, 60% которого рассеяно в пространстве.

Аэрация восстановленных горизонтов почвы, различных отвалов, терриконов приводит к реакциям окисления; при этом присутствующие в таких материалах сульфиды железа преобразуются в сульфаты железа с одновременным образованием серной кислоты:

4FeS 2 + 6H 2 O + 15O 2 = 4FeSO 4 (OH) + 4H 2 SO 4

В таких средах значения рН могут снижаться до 2,5…3,0. Серная кислота разрушает карбонаты с образованием гипса, сульфатов магния и натрия. Периодическая смена окислительно-восстановительных условий среды приводит к декарбонизации почв, дальнейшему развитию устойчивой кислой среды с рН 4…2,5, причем соединения железа и марганца накапливаются в поверхностных горизонтах.

Гидроксиды и оксиды железа и марганца при образовании осадков легко захватывают и связывают никель, кобальт, медь, хром, ванадий, мышьяк.

Основные источники загрязнения почвы никелем – предприятия металлургии, машиностроения, химической промышленности, сжигание каменного угля и мазута на ТЭЦ и котельных. Антропогенное загрязнение никелем наблюдается на расстоянии до 80…100 км и более от источника выброса.

Подвижность никеля в почве зависит от концентрации органического вещества (гумусовых кислот), рН и потенциала среды. Миграция никеля носит сложный характер. С одной стороны, никель поступает из почвы в виде почвенного раствора в растения и поверхностные воды, с другой – его количество в почве пополняется вследствие разрушения почвенных минералов, отмирания растений и микроорганизмов, а также за счет его внесения в почву с атмосферными осадками и пылью, с минеральными удобрениями.

Основной источник загрязнения почвы хромом – сжигание топлива и отходы гальванических производств, а также отвалы шлаков при производстве феррохрома, хромовых сталей; некоторые фосфорные удобрения содержат хрома до 10 2 …10 4 мг/кг.

Поскольку Cr +3 в кислой среде инертен (выпадая почти полностью в осадок при рН 5,5), его соединения в почве весьма стабильны. Напротив, Cr +6 крайне нестабилен и легко мобилизуется в кислых и щелочных почвах. Снижение подвижности хрома в почвах может приводить к его дефициту в растениях. Хром входит в состав хлорофилла, придающего листьям растений зеленый цвет, и обеспечивает усвоение растениями из воздуха углекислоты.

Установлено, что известкование, а также применение органических веществ и соединений фосфора существенно снижает токсичность хроматов в загрязненных почвах. При загрязнении почв шестивалентным хромом подкисление, а затем применение восстанавливающих агентов (например, серы) используется для восстановления его до Cr +3 , после чего проводится известкование для осаждения соединений Cr +3 .

Высокая концентрация хрома в почве городов (9…85 мг/кг) связана с высоким содержанием его в дождевых и поверхностных водах.

Накопление или вымывание токсичных элементов, попавших в почву, в значительной степени зависит от содержания гумуса, который связывает и удерживает ряд токсичных металлов, но в первую очередь – медь, цинк, марганец, стронций, селен, кобальт, никель (в гумусе количество этих элементов в сотни-тысячи раз больше, чем в минеральной составляющей почв).

Природные процессы (солнечная радиация, климат, выветривание, миграция, разложение, вымывание) способствуют самоочищению почв, основной характеристикой которого является его продолжительность. Продолжительность самоочищения – это время, в течение которого происходит уменьшение на 96% массовой доли загрязняющего вещества от начального значения или до его фонового значения. Для самоочищения почв, а также их восстановления требуется много времени, которое зависит от характера загрязнения и природных условий. Процесс самоочищения почв длится от нескольких дней до нескольких лет, а процесс восстановления нарушенных земель – сотни лет.

Способность почв к самоочищению от тяжелых металлов невелика. Из довольно богатых органическим веществом лесных почв умеренного пояса с поверхностным стоком удаляется только примерно 5% поступающего из атмосферы свинца и около 30% цинка и меди. Остальная часть выпавших ТМ практически полностью задерживается в поверхностном слое почвы, поскольку миграция вниз по почвенному профилю происходит крайне медленно: со скоростью 0,1…0,4 см/год. Поэтому время полувыведения свинца в зависимости от типа почв может составить от 150 до 400 лет, а для цинка и кадмия – 100…200 лет.

Сельскохозяйственные почвы несколько быстрее очищаются от избыточных количеств некоторых ТМ в силу более интенсивной миграции за счет поверхностного и внутрипочвенного стока, а также из-за того, что заметная часть микроэлементов через корневую систему переходит в зеленую биомассу и уносится с урожаем.

Следует отметить, что загрязнение почв некоторыми токсичными веществами существенно тормозит процесс самоочищения почв от бактерий группы кишечной палочки. Так, при содержании 3,4-бензпирена 100 мкг/кг почвы численность этих бактерий в почве в 2,5 раза выше, чем в контроле, а при концентрации более 100 мкг/кг и до 100 мг/кг – их значительно больше.

Исследования почв в районе металлургических центров, проведенные Институтом почвоведения и агрохимии, свидетельствуют, что в радиусе 10км содержание свинца в 10 раз превышает фоновое значение. Наибольшее превышение отмечено в г.г.Днепропетровске, Запорожье и Мариуполе. Содержание кадмия в 10…100 раз выше фонового уровня отмечено вокруг Донецка, Запорожье, Харькова, Лисичанска; хрома – вокруг Донецка, Запорожье, Кривого Рога, Никополя; железа, никеля – вокруг Кривого Рога; марганца – в районе Никополя. В общем, по данным того же института, около 20% территории Украины загрязнено тяжелыми металлами.

Во время оценки степени загрязнения тяжелыми металлами используют данные о ПДК и их фоновом содержании в почвах основных природно-климатических зон Украины. В случае установления в почве повышенного содержания нескольких металлов загрязнение оценивают по металлу, содержание которого превышает норматив в наибольшей степени.

Соединения Cr(VI) и Cr(III) в повышенных количествах обладают канцерогенными свойствами. Соединения Cr(VI) являются более опасными.

Попадает в природные воды в результате протекающих в природе процессов разрушения и растворения горных пород и минералов (сфалерит, цинкит, госларит, смитсонит, каламин), а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и др.

В воде существует главным образом в ионной форме или в форме его минеральных и органических комплексов. Иногда встречается в нерастворимых формах: в виде гидроксида, карбоната, сульфида и др.

В речных водах концентрация цинка обычно колеблется от 3 до 120 мкг/дм 3 , в морских - от 1.5 до 10 мкг/дм 3 . Содержание в рудных и особенно в шахтных водах с низкими значениями рН может быть значительным.

Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего его сульфат и хлорид.

ПДК в Zn 2+ составляет 1 мг/дм 3 (лимитирующий показатель вредности - органолептический), ПДК вр Zn 2+ - 0.01 мг/дм 3 (лимитирующий признак вредности - токсикологический).

Тяжёлые металлы уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы, в прогнозе же они должны стать самыми опасными, более опасными, чем отходы АЭС и твердые отходы. Загрязнение тяжёлыми металлами связано с их широким использованием в промышленном производстве вкупе со слабыми системами очистки, в результате чего тяжёлые металлы попадают в окружающую среду, в том числе и почву, загрязняя и отравляя её.

Тяжёлые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах. В различных научных и прикладных работах авторы по-разному трактуют значение понятия "тяжёлые металлы". В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

Почва являются основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу более высокоорганизованным животным.

3.3. Свинцовая интоксикация

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Это вызвано широким применением его в различных отраслях промышленности. Воздействию свинца подвергаются рабочие, добывающие свинцовую руду, на свинцово-плавильных заводах, в производстве аккумуляторов, при пайке, в типографиях, при изготовлении хрустального стекла или керамических изделий, этилированного бензина, свинцовых красок и др. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и, прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.

С сожалением надо отметить, что в России отсутствует государственная политика по правовому, нормативному и экономическому регулированию влияния свинца на состояние окружающей среды и здоровье населения, по снижению выбросов (сбросов, отходов) свинца и его соединений в окружающую среду, полному прекращению производства свинецсодержащих бензинов.

Вследствие чрезвычайно неудовлетворительной просветительной работы по разъяснению населению степени опасности воздействия тяжелых металлов на организм человека, в России не снижается, а постепенно увеличивается численность контингентов, имеющих профессиональный контакт со свинцом. Случаи свинцовой хронической интоксикации зафиксированы в 14 отраслях промышленности России. Ведущими являются электротехническая промышленность (производство аккумуляторов), приборостроение, полиграфия и цветная металлургия, в них интоксикация обусловлена превышением в 20 и более раз предельно допустимой концентрации (ПДК) свинца в воздухе рабочей зоны.

Значительным источником свинца являются автомобильные выхлопные газы, так как половина России все еще использует этилированный бензин. Однако металлургические заводы, в частности медеплавильные, остаются главным источником загрязнений окружающей среды. И здесь есть свои лидеры. На территории Свердловской области находятся 3 самых крупных источника выбросов свинца в стране: в городах Красноуральск, Кировоград и Ревда.

Дымовые трубы Красноуральского медеплавильного завода, построенного еще в годы сталинской индустриализации и использующего оборудование 1932 года, ежегодно извергают на 34-тысячный город 150 -170 тонн свинца, покрывая все свинцовой пылью.

Концентрация свинца в почве Красноуральска варьируется от 42,9 до 790,8 мг/кг при предельно допустимой концентрации ПДК=130 мк/кг. Пробы воды в водопроводе соседнего пос. Октябрьский, питаемого подземным водоисточником, фиксировали превышение ПДК до двух раз.

Загрязнение окружающей среды свинцом оказывает влияние на состояние здоровья людей. Воздействие свинца нарушает женскую и мужскую репродуктивную систему. Для женщин беременных и детородного возраста повышенные уровни свинца в крови представляют особую опасность, так как под действием свинца нарушается менструальная функция, чаще бывают преждевременные роды, выкидыши и смерть плода вследствие проникновения свинца через плацентарный барьер. У новорожденных детей высока смертность.

Отравление свинцом чрезвычайно опасно для маленьких детей - он действует на развитие мозга и нервной системы. Проведенное тестирование 165 красноуральских детей от 4 лет выявило существенную задержку психического развития у 75,7%, а у 6,8% обследованных детей обнаружена умственная отсталость, включая олигофрению.

Дети дошкольного возраста наиболее восприимчивы к вредному воздействию свинца, поскольку их нервная система находится в стадии формирования. Даже при низких дозах свинцовое отравление вызывает снижение интеллектуального развития, внимания и умения сосредоточиться, отставание в чтении, ведет к развитию агрессивности, гиперактивности и другим проблемам в поведении ребенка. Эти отклонения в развитии могут носить длительный характер и быть необратимыми. Низкий вес при рождении, отставание в росте и потеря слуха также являются результатом свинцового отравления. Высокие дозы интоксикации ведут к умственной отсталости, вызывают кому, конвульсии и смерть.

Белая книга, опубликованная российскими специалистами, сообщает, что свинцовое загрязнение покрывает всю страну и является одним из многочисленных экологических бедствий в бывшем Советском Союзе, которые стали известны в последние годы. Большая часть территории России испытывает нагрузку от выпадения свинца, превышающую критическую для нормального функционирования экосистемы. В десятках городов отмечается превышение концентраций свинца в воздухе и почве выше величин, соответствующих ПДК.

Наибольший уровень загрязнения воздуха свинцом, превышающий ПДК, отмечался в городах Комсомольск-на-Амуре, Тобольск, Тюмень, Карабаш, Владимир, Владивосток.

Максимальные нагрузки выпадения свинца, ведущие к деградации наземных экосистем, наблюдаются в Московской, Владимирской, Нижегородской, Рязанской, Тульской, Ростовской и Ленинградской областях.

Стационарные источники ответственны за сброс более 50 тонн свинца в виде различных соединений в водные объекты. При этом 7 аккумуляторных заводов сбрасывают ежегодно 35 тонн свинца через канализационную систему. Анализ распределения сбросов свинца в водные объекты на территории России показывает, что по этому виду нагрузки лидируют Ленинградская, Ярославская, Пермская, Самарская, Пензенская и Орловская области.

В стране необходимы срочные меры по снижению свинцового загрязнения, однако пока экономический кризис России затмевает экологические проблемы. В затянувшейся промышленной депрессии Россия испытывает недостаток средств для ликвидации прежних загрязнений, но если экономика начнет восстанавливаться, а заводы вернутся к работе, загрязнение может только усилиться.

10 наиболее загрязненных городов бывшего СССР

(Металлы приведены в порядке убывания уровня приоритетности для данного города)

1. Рудная Пристань (Примор. край) свинец, цинк, медь, марганец+ванадий, марганец.
2. Белово (Кемеровская область) цинк, свинец, медь, никель.
3. Ревда (Свердловская область) медь, цинк, свинец.
4. Магнитогорск никель, цинк, свинец.
5. Глубокое (Белоруссия) медь, свинец, цинк.
6. Усть-Каменогорск (Казахстан) цинк, медь, никель.
7. Дальнегорск (Приморский край) свинец, цинк.
8. Мончегорск (Мурманская обл.) никель.
9. Алаверди (Армения) медь, никель, свинец.
10. Константиновка (Украина) свинец, ртуть.

4. Гигиена почвы. Обезвреживание отходов.

Почва в городах и прочих населенных пунктах и их окрест­ностях уже давно отличается от природной, биологически цен­ной почвы, играющей важную роль в поддержании экологиче­ского равновесия. Почва в городах подвержена тем же вредным воздействиям, что и городской воздух и гидросфера, поэтому по­всеместно происходит значительная ее деградация. Гигиене поч­вы не уделяется достаточного внимания, хотя ее значение как одного из основных компонентов биосферы (воздух, вода, поч­ва) и биологического фактора окружающей среды еще более весомое, чем воды, поскольку количество последней (в первую очередь качество подземных вод) определяется состоянием поч­вы, и отделить эти факторы друг от друга невозможно. Почва обладает способностью биологического самоочищения: в почве происходит расщепление попавших в нее отходов н их минера­лизация; в конечном итоге почва компенсирует за их счет утра­ченные минеральные вещества.


Содержание тяжелых металлов (ТМ) в почвах зависит, как установлено многими исследователями, от состава исходных горных пород, значительное разнообразие которых связано со сложной геологической историей развития территорий. Химический состав почвообразующих пород, представленный продуктами выветривания горных пород, предопределен химическим составом исходных горных пород и зависит от условий гипергенного преобразования.

В последние десятилетия в процессы миграции ТМ в природной среде интенсивно включилась антропогенная деятельность человечества.

Одной из важнейших групп токсикантов, загрязняющих почву, являются тяжелые металлы. К ним относятся металлы с плотностью более 8 тыс. кг/м 3 (кроме благородных и редких): Pb, Cu, Zn, Ni, Cd, Hg, Co, Sb, Sn, Be. В прикладных работах к списку тяхелых металлов нередко добавляют также Pt, Ag, W, Fe, Mn. почти все тяжелые металлы токсичны. Антропогенное рассеивание этой группы загрезнителей (в том числе и в виде солей) в биосфере приводит к отравлению или угрозе отравления живого.

Отнесение тяжелых металлов, попадающих в почву из выбросов, отбросов, отходов, к классам опасности (по ГОСТу 17.4.1.02-83. Охрана природы. Почвы) представлено в табл. 1.

Таблица 1. Классификация химических веществ по классам опасности

Медь – является одним из важнейших незаменимых элементов, необходимых для живых организмов. В растениях она активно участвует в процессах фотосинтеза, дыхания, восстановления и фиксации азота. Медь входит в состав целого ряда ферментов-оксидаз – цитохромоксидазы, церулоплазмина, супероксидадисмутазы, уратоксидазы и других, и участвует в биохимических процессах как составная часть ферментов, осуществляющих реакции окисления субстратов молекулярным кислородом.

Кларк в земной коре 47 мг/кг. В химическом отношении медь – малоактивный металл. Основополагающим фактором, влияющим на величину содержания Cu, является концентрация ее в почвообразующих породах. Из изверженных пород наибольшее количество элемента накапливают основные породы – базальты (100-140 мг/кг) и андезиты (20-30 мг/кг). Покровные и лессовидные суглинки (20-40 мг/кг) менее богаты медью. Наименьшее же ее содержание отмечается в песчаниках, известняках и гранитах (5-15 мг/кг). Концентрация металла в глинах европейской части территории России достигает 25 мг/кг, в лессовидных суглинках – 18 мг/кг. Супесчаные и песчаные почвообразующие породы Горного Алтая накапливают в среднем 31 мг/кг меди, юга Западной Сибири – 19 мг/кг.

В почвах медь является слабомиграционным элементом, хотя содержание подвижной формы бывает достаточно высоким. Количество подвижной меди зависит от многих факторов: химического и минералогического состава материнской породы, рН почвенного раствора, содержания органического вещества и др. Наибольшее количество меди в почве связано с оксидами железа, марганца, гидроксидами железа и алюминия и, особенно, с монтмориллонитом вермикулитом. Гуминовые и фульвокислоты способны образовывать устойчивые комплексы с медью. При рН 7-8 растворимость меди наименьшая.

ПДК меди в России – 55 мг/кг, ОДК для песчаных и супесчаных почв – 33 мг/кг.

Данные по токсичности элемента для растений немногочисленны. В настоящее время основной проблемой считается недостаток меди в почвах или ее дисбаланс с кобальтом. Основные признаки дефицита меди для растений – замедление, а затем и прекращение формирования репродуктивных органов, появление щуплого зерна, пустозернистых колосьев, снижение устойчивости к неблагоприятным факторам внешней среды. Наиболее чувствительны к ее недостатку пшеница, овес, ячмень, люцерна, столовая свекла, лук и подсолнечник.

Марганец широко распространён в почвах, но находится там, в меньших количествах по сравнению с железом. В почве марганец находится в нескольких формах. Единственные формы, доступные для растений, – это обменные и водорастворимые формы марганца. Доступность почвенного марганца снижается с ростом pH (при уменьшении кислотности почвы). Однако редко встречаются почвы, истощённые выщелачиванием до такой степени, что доступного марганца не хватает для питания растений.

В зависимости от типа почв содержание марганца колеблется: каштановая 15,5 ± 2,0 мг/кг, сероземная 22,0 ± 1,8 мг/кг, луговая 6,1 ± 0,6 мг/кг, желтоземная 4,7 ± 3,8 мг/кг, песчаная 6,8 ± 0,7 мг/кг.

Соединения марганца являются сильными окислителями. Предельно допустимая концентрация для черназемных почв составляет
1500 мг/кг почвы.

Содержание марганца в растительных пищевых продуктах, выращенных на луговых, желтоземных и песчаных почвах, коррелирует с его содержанием в этих почвах. Количество марганца в суточном пищевом рационе в этих геохимических провинциях более чем в 2 раза меньше суточной потребности человека и пищевого рациона людей, проживающих в зонах каштановых и сероземных почв.



Тяжелые металлы в почве

В последнее время в связи с бурным развитием промышленности наблюдается значительное возрастание уровня тяжелых металлов в окружающей среде. Термин "тяжелые металлы" применяется к металлам либо с плотностью, превышающей 5 г/см 3 , либо с атомным номером больше 20. Хотя, существует и другая точка зрения, согласно которой к тяжелым металлам относятся свыше 40 химических элементов с атомными массами, превышающими 50 ат. ед. Среди химических элементов тяжелые металлы наиболее токсичны и уступают по уровню своей опасности только пестицидам. При этом к токсичным относятся следующие химические элементы: Co, Ni, Cu, Zn, Sn, As, Se, Te, Rb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt.

Фитотоксичность тяжелых металлов зависит от их химических свойств: валентности, ионного радиуса и способности к комплексообразованию. В большинстве случаев элементы по степени токсичности располагаются в последовательности: Cu> Ni > Cd>Zn> Pb> Hg>Fe> Mo> Mn. Однако этот ряд может несколько изменяться в связи с неодинаковым осаждением элементов почвой и переводом в недоступное для растений состояние, условиями выращивания, физиолого-генетическими особенностями самих растений. Трансформация и миграция тяжелых металлов происходит при непосредственном и косвенном влиянии реакции комплексообразования. При оценке загрязнения окружающей среды необходимо учитывать свойства почвы и, в первую очередь, гранулометрический состав, гумусированность и буферность. Под буферностью понимают способность почв поддерживать концентрацию металлов в почвенном растворе на постоянном уровне.

В почвах тяжелые металлы присутствуют в двух фазах – твердой и в почвенном растворе. Форма существования металлов определяется реакцией среды, химическим и вещественным составом почвенного раствора и, в первую очередь, содержанием органических веществ. Элементы - комплексанты, загрязняющие почву, концентрируются, в основном, в ее верхнем 10 см слое. Однако при подкислении малобуферной почвы значительная доля металлов из обменно-поглощенного состояния переходит в почвенный раствор. Сильной миграционной способностью в кислой среде обладают кадмий, медь, никель, кобальт. Уменьшение рН на 1,8-2 единицы приводит к увеличению подвижности цинка в 3,8-5,4, кадмия - в 4-8, меди - в 2-3 раза..

Таблица 1 Нормативы ПДК (ОДК), фоновые содержания химических элементов в почвах (мг/кг)

Элемент Класс опасности ПДК ОДК по группам почв Фоновое содержание
Валовое содержание Извлекаемые ацетатно-аммонийным буфером (рН=4,8) Песчаные, супесчаные Суглинистые, глинистые
рН кс l < 5,5 рН кс l > 5,5
Pb 1 32 6 32 65 130 26
Zn 1 - 23 55 110 220 50
Cd 1 - - 0,5 1 2 0,3
Cu 2 - 3 33 66 132 27
Ni 2 - 4 20 40 80 20
Со 2 - 5 - - - 7,2

Таким образом, при попадании в почву тяжелые металлы быстро взаимодействуют с органическими лигандами с образованием комплексных соединений. Так, что при низких концентрациях в почве (20-30 мг/кг) приблизительно 30% свинца находится в виде комплексов с органическими веществами. Доля комплексных соединений свинца увеличивается с возрастанием его концентрации до 400 мг/г, а затем уменьшается. Металлы также сорбируются (обменно или необменно) осадками гидроксидов железа и марганца, глинистыми минералами и органическим веществом почвы. Металлы, доступные растениям и способные к вымыванию, находятся в почвенном растворе в виде свободных ионов, комплексов и хелатов.

Поглощение ТМ почвой в большей степени зависит от реакции среды и от того, какие анионы преобладают в почвенном растворе. В кислой среде больше сорбируются медь, свинец и цинк, а в щелочной – интенсивно поглощаются кадмий и кобальт. Медь преимущественно связывается с органическими лигандами и гидроксидами железа.

Таблица 2 Подвижность микроэлементов в различных почвах в зависимости от рН почвенного раствора

Почвенно-климатические факторы часто определяют направление и скорость миграции и трансформации ТМ в почве. Так, условия почвенного и водного режимов лесостепной зоны способствуют интенсивной вертикальной миграции ТМ по профилю почвы, в том числе возможен перенос металлов с потоком воды по трещинам, ходам корней и т.д..

Никель(Ni) – элемент VIII группы периодической системы с атомной массой 58,71. Никель наряду с Mn, Fe, Co и Cu относится к так называемым переходным металлам, соединения которых обладают высокой биологической активностью. Вследствие особенностей строения электронных орбиталей вышеуказанные металлы, в том числе и никель, обладают хорошо выраженной способностью к комплексообразованию. Никель способен формировать стабильные комплексы, например, с цистеином и цитратом, а также со многими органическими и неорганическими лигандами. Геохимический состав материнских пород во многом определяет содержание никеля в почвах. Наибольшее количество никеля содержат почвы, образовавшиеся из основных и ультраосновных пород. По данным некоторых авторов, границы избыточного и токсичного уровней никеля для большинства видов изменяются от 10 до 100 мг/кг. Основная масса никеля закреплена в почве неподвижно, а очень слабая миграция в коллоидном состоянии и в составе механических взвесей не влияет на распределение их по вертикальному профилю и вполне равномерна.

Свинец (Pb). Химизм свинца в почве определяется тонким равновесием противоположно направленных процессов: сорбция-десорбция, растворение-переход в твердое состояние. Попавший в почву с выбросами свинец включается в цикл физических, химических и физико-химических превращений. Сначала доминируют процессы механического перемещения (частицы свинца перемещаются по поверхности и в толще почвы по трещинам) и конвективной диффузии. Затем по мере растворения твердофазных соединений свинца вступают в действие более сложные физико-химические процессы (в частности, процессы ионной диффузии), сопровождающиеся трансформацией поступивших с пылью соединений свинца.

Установлено, что свинец мигрирует как в вертикальном, так и в горизонтальном направлении, причем второй процесс превалирует над первым. За 3 года наблюдений на разнотравном лугу нанесенная локально на поверхность почвы свинцовая пыль переместилась в горизонтальном направлении на 25-35 см, глубина же ее проникновения в толщину почвы составила 10-15 см. Важную роль в миграции свинца играют биологические факторы: корни растений поглощают ионы металлов; во время вегетации происходит их перемещение в толще почвы; при отмирании и разложении растений свинец выделяется в окружающую почвенную массу.

Известно, что почва обладает способностью связывать (сорбировать) поступивший в нее техногенный свинец. Сорбция, как полагают, включает несколько процессов: полный обмен с катионами поглощающего комплекса почв (неспецифическая адсорбция) и ряд реакций комплексообразования свинца с донорами почвенных компонентов (специфическая адсорбция). В почве свинец ассоциируется главным образом с органическим веществом, а также с глинистыми минералами, оксидами марганца, гидроокислами железа и алюминия. Связывая свинец, гумус препятствует его миграции в сопредельные среды и ограничивает поступление в растения. Из глинистых минералов склонностью к сорбции свинца характеризуются иллиты. Повышение рН почвы при известковании ведет к еще большему связыванию свинца почвой за счет образования труднорастворимых соединений (гидроокислов, карбонатов и др.).

Свинец, присутствующий в почве в подвижных формах, со временем фиксируется почвенными компонентами и становится недоступным для растений. По данным отечественных исследователей, наиболее прочно фиксируется свинец черноземных и торфяно-иловых почв.

Кадмий (Cd) Особенность кадмия, отличающая его от других ТМ, заключается в том, что в почвенном растворе он присутствует в основном в виде катионов (Cd 2+), хотя в почве с нейтральной реакцией среды он может образовывать труднорастворимые комплексы с сульфатами, фосфатами или гидроокислами.

По имеющимся данным, концентрация кадмия в почвенных растворах фоновых почв колеблется от 0,2 до 6 мкг/л. В очагах загрязнения почв она возрастает до 300-400 мкг/л..

Известно, что кадмий в почвах очень подвижен, т.е. способен переходить в больших количествах из твердой фазы в жидкую и обратно (что затрудняет прогнозирование его поступления в растение). Механизмы, регулирующие концентрацию кадмия в почвенном растворе, определяются процессами сорбции (под сорбцией понимают собственно адсорбцию, преципитацию и комплексообразование). Кадмий поглощается почвой в меньших количествах, чем другие ТМ. Для характеристики подвижности тяжелых металлов в почве используют отношение концентраций металлов в твердой фазе к таковой в равновесном растворе. Высокие значения этого отношения свидетельствуют о том, что ТМ удерживаются в твердой фазе благодаря реакции сорбции, низкие – благодаря тому, что металлы находятся в растворе, откуда они могут мигрировать в другие среды или вступать в различные реакции (геохимические или биологические). Известно, что ведущим процессом в связывании кадмия является адсорбция глинами. Исследования последних лет показали также большую роль в этом процессе гидроксильных групп, окислов железа и органического вещества. При невысоком уровне загрязнения и нейтральной реакции среды кадмий адсорбируется в основном окислами железа. А в кислой среде (рН=5) в качестве мощного адсорбента начинает выступать органическое вещество. При более низком показателе рН (рН=4) функции адсорбции переходят почти исключительно к органическому веществу. Минеральные компоненты в этих процессах перестают играть какую-либо роль.

Известно, что кадмий не только сорбируется поверхностью почв, но и фиксируется за счет осаждения, коагуляции, межпакетного поглощения глинистыми минералами. Внутрь почвенных частиц он диффундирует по микропорам и другими путями.

Кадмий по-разному закрепляется в почвах разного типа. Пока мало что известно о конкурентных взаимоотношениях кадмия с другими металлами в процессах сорбции в почвенно-поглощающем комплексе. По исследованиям специалистов Технического университета Копенгагена (Дания), в присутствии никеля, кобальта и цинка поглощение кадмия почвой подавлялось. Другие исследования показали, что процессы сорбции кадмия почвой затухают в присутствии ионов хлора. Насыщение почвы ионами Са 2+ приводило к увеличению сорбируемости кадмия. Многие связи кадмия с компонентами почвы оказываются непрочными, в определенных условиях (например, кислая реакция среды) он высвобождается и снова переходит в раствор.

Выявлена роль микроорганизмов в процессе растворения кадмия и перехода его в подвижное состояние. В результате их жизнедеятельности либо образуются водорастворимые металлокомплексы, либо создаются физико-химические условия, благоприятствующие переходу кадмия из твердой фазы в жидкую.

Процессы, происходящие с кадмием в почве (сорбция-десорбция, переход в раствор и пр.) взаимосвязаны и взаимозависимы, от их направленности, интенсивности и глубины зависит поступление этого металла в растения. Известно, что величина сорбции кадмия почвой зависит от величины рН: чем выше рН почвы, тем больше она сорбирует кадмия. Так, по имеющимся данным, в интервале рН от 4 до 7,7 при увеличении рН на единицу сорбционная емкость почв по отношению к кадмию возрастала примерно втрое.

Цинк (Zn). Недостаток цинка может проявляться как на кислых сильнооподзоленных легких почвах, так и на карбонатных, бедных цинком, и на высокогумусированных почвах. Усиливают проявление цинковой недостаточности применение высоких доз фосфорных удобрений и сильное припахивание подпочвы к пахотному горизонту.

Наиболее высокое валовое содержание цинка в тундровых (53-76 мг/кг) и черноземных (24-90 мг/кг) почвах, наиболее низкое - в дерново-подзолистых почвах (20-67 мг/кг). Недостаток цинка чаще всего проявляется на нейтральных и слабощелочных карбонатных почвах. В кислых почвах цинк более подвижен и доступен растениям.

Цинк в почве присутствует в ионной форме, где адсорбируется по катионообменному механизму в кислой или в результате хемосорбции в щелочной среде. Наиболее подвижен ион Zn 2+ . На подвижность цинка в почве в основном влияют величина рН и содержание глинистых минералов. При рН<6 подвижность Zn 2+ возрастает, что приводит к его выщелачиванию. Попадая в межпакетные пространства кристаллической решетки монтмориллонита, ионы цинка теряют свою подвижность. Кроме того, цинк образует устойчивые формы с органическим веществом почвы, поэтому он накапливается в основном в горизонтах почв с высоким содержанием гумуса и в торфе.

Тяжелые металлы в растениях

По мнению А. П. Виноградова (1952), все химические элементы в той или иной степени участвуют в жизнедеятельности растений, и если многие из них считаются физиологически значимыми, то только потому, что для этого пока нет доказательств. Поступая в растение в небольшом количестве и становясь в них составной частью или активаторами ферментов, микроэлемента выполняют сервисные функции в процессах метаболизма. Когда же в среду поступают непривычно высокие концентрации элементов, они становятся токсичными для растений. Проникновение тяжелых металлов в ткани растений в избыточном количестве приводит к нарушению нормальной работы их органов, и это нарушение тем сильнее, чем больше избыток токсикантов. Продуктивность при этом падает. Токсическое действие ТМ проявляется с ранних стадий развития растений, но в различной степени на различных почвах и для разных культур.

Поглощение химических элементов растениями – активный процесс. Пассивная диффузия составляет всего 2-3% от всей массы усвоенных минеральных компонентов. При содержании металлов в почве на уровне фона происходит активное поглощение ионов, и если учитывать малую подвижность данных элементов в почвах, то их поглощению должна предшествовать мобилизация прочносвязанных металлов. При содержании ТМ в корнеобитаемом слое в количествах, значительно превышающих предельные концентрации, при которых металл может быть закреплен за счет внутренних ресурсов почвы, в корни поступают такие количества металлов, которые мембраны удержать уже не могут. В результате этого поступление ионов или соединений элементов перестает регулироваться клеточными механизмами. На кислых почвах идет более интенсивное накопление ТМ, чем на почвах с нейтральной или близкой к нейтральной реакцией среды. Мерой реального участия ионов ТМ в химических реакциях является их активность. Токсическое действие высоких концентраций ТМ на растения может проявляться в нарушении поступления и распределения других химических элементов. Характер взаимодействия ТМ с другими элементами изменяется в зависимости от их концентраций. Миграция и поступление в растение осуществляется в виде комплексных соединений.

В начальный период загрязнения среды тяжелыми металлами, благодаря буферным свойствам почвы, приводящим к инактивации токсикантов, растения практически не будут испытывать неблагоприятного воздействия. Однако защитные функции почвы небезграничны. При повышении уровня загрязнения тяжелыми металлами их инактивация становится неполной и поток ионов атакует корни. Часть ионов растение способно перевести в менее активное состояние еще до проникновения их в корневую систему растений. Это, например, хелатирование с помощью корневых выделений или адсорбирование на внешней поверхности корней с образованием комплексных соединений. Кроме того, как показали вегетационные опыты с заведомо токсичными дозами цинка, никеля, кадмия, кобальта, меди, свинца, корни располагаются в слоях не загрязненные ТМ почвы и в этих вариантах отсутствуют симптомы фототоксичности.

Несмотря на защитные функции корневой системы, ТМ в условиях загрязнения поступают в корень. В этом случае в действие вступают механизмы защиты, благодаря которым происходит специфическое распределение ТМ по органам растений, позволяющее как можно полнее обезопасить их рост и развитие. При этом содержание, например, ТМ в тканях корня и семян в условиях сильно загрязненной среды может различаться в 500-600 раз, что свидетельствует о больших защитных возможностях этого подземного органа растений.

Избыток химических элементов вызывает токсикозы у растений. По мере возрастания концентрации ТМ вначале задерживается рост растений, затем наступает хлороз листьев, который сменяется некрозами, и, наконец, повреждается корневая система. Токсическое действие ТМ может проявляться непосредственно и косвенно. Прямое воздействие избытка ТМ в растительных клетках обусловлено реакциями комплексообразования, в результате которых происходит блокировка ферментов или осаждение белков. Дезактивация ферментативных систем происходит в результате замены металла фермента на металл-загрязнитель. При критическом содержании токсиканта каталитическая способность фермента значительно снижается или полностью блокируется.

Растения - гипераккумуляторы тяжелых металлов

А. П. Виноградов (1952) выделил растения, которые способны концентрировать элементы. Он указал на два типа растений - концентраторов: 1) растения, концентрирующие элементы в массовом масштабе; 2) растения с селективным (видовым) концентрированием. Растения первого типа обогащаются химическими элементами, если последние содержатся в почве в повышенном количестве. Концентрирование в данном случае вызвано экологическим фактором. Растениям второго типа свойственно постоянно высокое количество того или иного химического элемента независимо от его содержания в среде. Оно обусловлено генетически закрепленной потребностью.

Рассматривая механизм поглощения тяжелых металлов из почвы в растения, можно говорить о барьерном (не концентрирующем) и безбарьерном (концентрирующем) типах накопления элементов. Барьерное накопление характерно для большинства высших растений и не характерно для мохообразных и лишайниковых. Так, в работе М. А. Тойкка и Л. Н. Потехиной (1980) в качестве растения-концентратора кобальта назван сфагнум (2,66 мг/кг); меди (10,0 мг/кг)- береза, костяника, ландыш; марганца (1100 мг/кг) - черника. Lepp и соавт. (1987) выявили высокие концентрации кадмия в спорофорах гриба Amanita muscaria, растущего в березовых лесах. В спорофорах гриба содержание кадмия составляло 29,9 мг/кг сухой массы, а в почве, на которой они выросли, - 0,4 мг/кг. Существует мнение, что растения, которые являются концентраторами кобальта, отличаются также высокой толерантностью к никелю и способны его накапливать в больших количествах. К ним, в частности, относятся растения семейств Boraginaceae, Brassicaceae, Myrtaceae, Fabaceae, Caryophyllaceae. Концентраторы и сверхконцентраторы никеля обнаружены также среди лекарственных растений. К сверхконцентраторам относятся дынное дерево, красавка беладонна, мачок желтый, пустырник сердечный, страстоцвет мясокрасный и термопсис ланцетовидный. Тип накопления химических элементов, находящихся в больших концентрациях в питающей среде, зависит от фаз вегетации растений. Безбарьерное накопление характерно для фазы проростков, когда у растений нет дифференциации надземных частей на различные органы и в заключительные фазы вегетации - после созревания, а так же в период зимнего покоя, когда безбарьерное накопление может сопровождаться выделением избыточных количеств химических элементов в твердой фазе (Ковалевский, 1991).

Гипераккумулирующие растения обнаружены в семействах Brassicaceae, Euphorbiaceae, Asteraceae, Lamiaceae и Scrophulariaceae (Baker 1995). Наиболее известным и изученным среди них является Brassica juncea (Индийская горчица) - растение, развивающее большую биомассу и способное к аккумуляции Pb, Cr (VI), Cd, Cu, Ni, Zn, 90Sr, B и Se (Nanda Kumar et al. 1995; Salt et al. 1995; Raskin et al. 1994). Из различных видов протестированных растений B. juncea имела наиболее выраженную способность транспортировать свинец в надземную часть, аккумулируя при этом более 1,8% данного элемента в надземных органах (в пересчете на сухую массу). За исключением подсолнечника (Helianthus annuus) и табака (Nicotiana tabacum), другие виды растений, не относящиеся к семейству Brassicaceae, имели коэффициент биологического поглощения менее 1.

Согласно классификации растений по ответной реакции на присутствие в среде произрастания тяжелых металлов, используемой многими зарубежными авторами, растения имеют три основные стратегии для роста на загрязненных металлами почвах:

Исключатели металлов. Такие растения сохраняют постоянную низкую концентрацию металла несмотря на широкое варьирование его концентраций в почве, удерживая главным образом металл в корнях. Растения-исключатели способны изменять проницаемость мембран и металл-связывающую способность клеточных стенок или выделять большое количество хелатирующих веществ.

Металл-индикаторы. К ним относятся виды растений, которые активно аккумулируют металл в надземных частях и в целом отражают уровень содержания металла в почве. Они толерантны к существующему уровню концентрации металла благодаря образованию внеклеточных металл-связывающих соединений (хелаторов), или меняют характер компартментации металла путем его запасания в нечувствительных к металлу участках. Аккумулирующие металлы виды растений. Относящиеся к этой группе растения могут накапливать металл в надземной биомассе в концентрациях, намного превышающих таковые в почве. Baker и Brooks дали определение гипераккумуляторам металлов как растениям, содержащим свыше 0,1%, т.е. более чем 1000 мг/г меди, кадмия, хрома, свинца, никеля, кобальта или 1% (более 10 000 мг/г) цинка и марганца в сухой массе. Для редких металлов эта величина составляет более 0,01% в пересчете на сухую массу. Исследователи идентифицируют гипераккумулирующие виды путем сбора растений в областях, где почвы содержат металлы в концентрациях, превышающих фоновые, как в случае с загрязненными районами или в местах выхода рудных тел. Феномен гипераккумуляции ставит перед исследователями много вопросов. Например, какое значение имеет для растений накопление металла в высокотоксичных концентрациях. Окончательного ответа на этот вопрос еще не получено, однако существует несколько основных гипотез. Предполагают, что такие растения обладают усиленной системой поглощения ионов (гипотеза "неумышленного" поглощения) для осуществления определенных физиологических функций, которые еще не исследованы. Считают также, что гипераккумуляция – это один из видов толерантности растений к высокому содержанию металлов в среде произрастания.