Времена года

Виды математических способностей и их характеристика. Психология математических способностей. Психологическая структура математических способностей

Особенности развития математических и спортивных способностей школьников

2.1 Психологическая структура математических способностей

способность школьник математический спортивный

Математика - это инструмент познания, мышления, развития. Он богат возможностями творческого обогащения. Ни один школьный предмет не может конкурировать с возможностями математики в воспитании мыслящей личности. Особое значение математики в умственном развитии отметил еще в ХVIII веке М.В. Ломоносов: "Математику уже затем учить следует, что она ум в порядок приводит".

Существует общепризнанная классификация способностей. Согласно ей способности делятся на общие и специальные, определяющие успехи человека в отдельных видах деятельности и общения, где необходимы особого рода задатки и их развитие (способности математические, технические, литературно-лингвистические, художественно-творческие, спортивные и т.д.).

Математические способности обуславливаются не только хорошей памятью и вниманием. Для математика важно умение уловить порядок элементов, и умение оперировать этими данными. Эта своеобразная интуиция и есть основа математической способности.

В исследование математических способностей внесли свой вклад такие ученые в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Разумеется, исследование математических способностей следует начинать с определения. Попытки такого рода делались неоднократно, но установившегося, удовлетворяющего всех определения математических способностей не имеется до сих пор. Единственное, в чём сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, "школьные" способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Ещё в 1918 году в работе А. Роджерс отмечались две стороны математических способностей, репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

Из работ отечественных авторов необходимо упомянуть оригинальную статью Д. Мордухай-Болтовского "Психология математического мышления", опубликованную в 1918 году. Автор, специалист математик, писал с идеалистической позиции, придавая, например, особое значение "бессознательному мыслительному процессу", утверждая, что "мышление математика глубоко внедряется в бессознательную сферу, то, всплывая на её поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движения смычка" [цит. по 13, с. 45]. Внезапное появление в сознание готового решения какой-либо задачи, которую мы не можем долго решить, - пишет автор, - мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания [цит. по 13, с. 48]. По мнению Мордухай-Болтовского наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся "черновая" работа, причём бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Автор отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуще даже гениальным людям, что между математическим и нематематическим умом есть существенная разница. Большой интерес представляет попытка Мордухай-Болтовского выделить компоненты математических способностей. К таким компонентам он относит в частности:

* "сильную память", память на "предметы того типа, с которыми имеет дело математика", память скорее не на факты, а на идеи и мысли.

* "остроумие", под которым понимается способность "обнимать в одном суждении" понятия из двух малосвязанных областей мысли, находить в уже известном сходное с данным, отыскивать сходное в самых отдалённых казалось бы, совершенно разнородных предметах.

* быстроту мысли (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному). Бессознательное мышление, по мнению автора, протекает гораздо быстрее, чем сознательное.

Д. Мордухай-Болтовский высказывает так же свои соображения по поводу типов математического воображения, которые лежат в основе разных типов математиков - "геометров" и "алгебраистов". Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать так, как "геометр".

Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях в обучаемости детей, вводит понятие психологических свойств, определяющих при прочих равных условиях успех в учении. Они не употребляют термина "способности", но по существу соответствующее понятие близко к тому определению, которое дано выше.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, отнюдь не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявления которой мы условно называем "синдром математической одаренности".

Говоря о структуре математических способностей, следует отметить вклад в разработку данной проблемы В.А. Крутецкого. Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одарённость.

Общая схема структуры математических способностей в школьном возрасте

1. Получение математической информации

А) Способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи.

2. Переработка математической информации.

А) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

Б) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

В) Способность к свёртыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

Г) Гибкость мыслительных процессов в математической деятельности.

Д) Стремление к ясности, простоте, экономности и рациональности решений.

Е) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

3. Хранение математической информации.

А) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним)

4. Общий синтетический компонент.

А) Математическая направленность ума.

Не входят в структуру математической одарённости те компоненты, наличие которых в этой структуре не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее степень развития) определяют типы математического склада ума.

1. Быстрота мыслительных процессов как временная характеристика.

Индивидуальный темп работы не имеет решающего значения. Математик может размышлять неторопливо, даже медленно, но очень обстоятельно и глубоко.

2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме). Известно, что есть люди, способные производить в уме сложные математические вычисления (почти мгновенное возведение в квадрат и куб трёхзначных чисел), но не умеющие решать сколько-нибудь сложные задачи.

Известно также, что существовали и существуют феноменальные "счётчики" не давшие математике ничего, а выдающийся математик А. Пуанкаре писал о себе, что без ошибки не может сделать даже сложение.

3. Память на цифры, формулы, числа. Как указывал академик А.Н. Колмогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

4. Способность к пространственным представлениям.

5. Способность наглядно представлять абстрактные математические отношения и зависимости.

Следует подчеркнуть, что схема структуры математических способностей имеет в виду математические способности школьника. Нельзя сказать в какой мере её можно считать общей схемой структуры математических способностей, в какой мере её можно отнести к вполне сложившимся одарённым математикам.

Типы математических складов ума.

Хорошо известно, что в любой области науки одарённость как качественное сочетание способностей всегда многообразна и в каждом отдельном случае своеобразна. Но при качественном многообразии одарённости всегда можно наметить какие-то основные типологические различия в структуре одарённости, выделить определённые типы, значительно отличающиеся один от другого, разными путями приходящие к одинаково высоким достижениям в соответствующей области.

Об аналитическом и геометрическом типах упоминается работах А. Пуанкаре, Ж. Адамара, Д. Мордухай-Болтовского, но с этими терминами у них связывается скорее логический, интуитивный пути творчества в математике.

Из отечественных исследователей вопросами индивидуальных различий учащихся при решении задач с точки зрения соотношения абстрактных и образных компонентов мышления много занималась Н.А. Менчинская. Она выделяла учащихся с относительным преобладанием: а) образного мышления над абстрактным; б) абстрактного над образным и в) гармоническим развитием обоих видов мышления.

Нельзя думать, что аналитический тип проявляется только в алгебре, а геометрический - в геометрии. Аналитический склад может проявляться в геометрии, а геометрический - в алгебре. В.А. Крутецкий дал развернутую характеристику каждого типа.

Аналитический тип.

Мышление представителей этого типа характеризуется явным преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлечёнными схемами. У них нет потребности в наглядных опорах, в использование предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости "наталкивают" на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализом геометрической схемы или чертежа.

Геометрический тип

Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим условно можно говорить о преобладании над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактного материала и демонстрируют большую избирательность в этом отношении. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлечёнными схемами. Они упорно пытаются оперировать наглядными схемами, образами, представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднительно.

Гармонический тип.

Для этого типа характерно относительное равновесие хорошо развитых словесно-логического и наглядно-образного компонентов при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они избирательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся чётко осознают, что содержание обобщения не исчерпывается частными случаями. Успешно осуществляют они и образно-геометрический подход к решению многих задач.

Установленные типы, по-видимому, имеют общее значение. Наличие их подтверждается многими исследованиями [цит. по 10, с. 115].

Возрастные особенности математических способностей.

В зарубежной психологии до настоящего времени широко распространены представления о возрастных особенностях математического развития школьника, исходящих из ранних исследований Ж. Пиаже. Пиаже считал, что ребёнок только к 12 годам становится способным к абстрактному мышлению. Анализируя стадии развития математических рассуждений подростка, Л. Шоанн пришёл к выводу, что в плане наглядно-конкретном школьник мыслит до 12-13 лет, а мышление в плане формальной алгебре, связанной с овладением операциями, символами, складывается лишь к 17 годам.

Исследование отечественных психологов дают иные результаты. Ещё П.П. Блонский писал об интенсивном развитие у подростка (11-14 лет) обобщающего и абстрагирующего мышления, умения доказывать и разбираться в доказательствах.

Возникает законный вопрос: в какой мере можно говорить о математических способностях по отношению к младшим школьникам? Исследования под руководством И.В. Дубровиной, даёт основание ответить на этот вопрос следующим образом. Конечно, исключая случаи особой одарённости, мы не можем говорить о сколько-либо сформированной структуре собственно математических способностей применительно к этому возрасту. Поэтому понятие "математические способности" условно в применении к младшим школьникам - детям 7-10-лет, при исследовании компонентов математических способностей в этом возрасте речь обычно может идти лишь об элементарных формах таких компонентов. Но отдельные компоненты математических способностей формируются уже и в начальных классах.

Опытное обучение, которое осуществлялось в ряде школ сотрудниками Института психологии (Д.Б. Эльконин, В.В. Давыдов) показывает, что при специальной методике обучения младшие школьники приобретают большую способность к отвлечению и рассуждению, чем принято думать. Однако, хотя возрастные особенности школьника в большей мере зависят от условий, в которых осуществляется обучение, считать, что они целиком создаются обучением, было бы неверно. Поэтому неправильна крайняя точка зрения на этот вопрос, когда считают, что не существует никакой закономерности естественного психического развития. Более эффективная система обучения может "стать" весь процесс, но до известных пределов, может несколько измениться последовательность развития, но не может придать линии развития совершенно иной характер.

Произвольности здесь быть не может. Не может, например, способность к обобщению сложных математических отношений и методов сформироваться раньше, чем способность к обобщению простых математических отношений.

Таким образом, возрастные особенности, о которых говорится, - это несколько условное понятие. Поэтому все исследования ориентированные на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

Половые различия в характеристике математических способностей.

Оказывают ли какое-нибудь влияние на характер развития математических способностей и на уровень достижений в соответствующей области половые различия? Имеют ли место качественно своеобразные особенности математического мышления мальчиков и девочек в школьном возрасте?

В зарубежной психологии имеются работы, где, сделана попытка выявить, отдельные качественные особенности математического мышления мальчиков и девочек. В. Штерн, говорит о своём не согласии с той точкой зрения, согласно которой различия в умственной области мужчин и женщин есть результат неодинакового воспитания. По его мнению, причины кроются в разных внутренних задатках. Поэтому женщины менее склоны к абстрактному мышлению и менее способны в этом отношении. Также проводились исследования под руководством Ч. Спирмена и Э. Торндайка, они пришли к выводу, что "в отношении способностей большой разницы нет", но при этом отмечают большую склонность девочек к детализированию, запоминанию подробностей.

Соответствующие исследования в отечественной психологии были проведены под руководством И.В. Дубровиной и С.И. Шапиро, они не обнаружили каких-либо качественных специфических особенностей в математическом мышление мальчиков и девочек. Не указали на эти различия и опрошенные ими учителя.

Разумеется, фактически мальчики чаще обнаруживают математические способности.

Победителями в математических олимпиадах чаще бывают мальчики, чем девочки. Но это фактическое различие надо отнести за счёт разницы в традициях, в воспитании мальчиков и девочек, за счет распространенного взгляда на мужские и женские профессии.

Это приводит к тому, что математика часто оказывается вне направленности интересов девочек.

1. Математические способности обуславливаются не только хорошей памятью и вниманием. Для математика важно умение уловить порядок элементов, и умение оперировать этими данными. Эта своеобразная интуиция и есть основа математической способности.

2. Возрастные особенности - это несколько условное понятие. Поэтому все исследования ориентированные на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

3. Соответствующие исследования в отечественной психологии не обнаружили каких-либо качественных специфических особенностей в математическом мышлении мальчиков и девочек.

Генетико-математические методы психогенетики

В 20--30-х годах работами С. Райта, Дж. Холдена и Р. Фишера были заложены основы генетико-математических методов изучения процессов, происходящих в популяциях...

Изучение условий развития творческих способностей детей 5-6 лет в условиях дошкольного образовательного учреждения

Процесс развития личности человека происходит на протяжении всей его жизни и затрагивает все ее стороны: совершенствование высших психических функций, становление черт характера, развитие способностей...

Личность и направленность личности в психологии

Различают статистическую и динамическую структуры личности. Под статистической структурой понимается отвлеченная от реально функционирующей личности абстрактная модель, характеризующая основные компоненты психики индивида...

Механизмы взаимопонимания в общении

В психологической науке взаимопонимание рассматривается как комплексный феномен, состоящий, по крайней мере, из четырех компонентов. Во-первых...

Образное мышление как необходимая компонента теоретического мышления (на материале математики)

Подобные представления об этих вещах весьма полезны, поскольку ничто не является для нас более наглядным, чем фигура, ибо ее можно осязать и видеть. Р...

Особенности развития математических и спортивных способностей школьников

В литературе широко используется понятие спортивных способностей. К сожалению, это понятие до сих пор четко не определено. В него включают все параметры...

Половая дифференциация: мышление

Привлекательность диагностики общих, а не специальных способностей состоит в том, что есть возможность решить "одним махом" ряд проблем, поскольку общие способности необходимы для любой деятельности и, по мнению многих исследователей...

Психологическая характеристика математических способностей школьников. Педагогические способности и их диагностика

Структура совокупности психических качеств, которая выступает как способность, в конечном счете, определяется требованиями конкретной деятельности и является различной для разных видов деятельности. Так...

Психологические особенности допроса и других процессуальных действий в судебном следствии

Психологическая структура судебной деятельности складывается из: 1.Познавательной; 2.Конструктивной; 3.Воспитательной; Если на предварительном следствии основной является познавательная деятельность, то в суде основной...

Психология музыкальных способностей

Пути воспитания и развития педагогических способностей у учителей

Развитие способностей связано с усвоением и творческим применением знаний, навыков и умений. Особенно важна обобщенность знаний и умений -- способность человека использовать их в различных ситуациях...

Современные представления о структуре личности в трудах отечественных и зарубежных ученых

Структура личности - основные части личности и способы взаимодействия между ними. Структура личности - то, из чего (из каких элементов) и как построена личность. В самых разных моделях...

Способности и возраст

Каждая способность имеет свою структуру, где можно различить опорные и ведущие свойства. Например, основным свойством способности к изобразительному искусству будет высокая природная чувствительность зрительного анализатора...

Структура личности с позиций деятельностного подхода

Личность человека представляет собой сложную психическую систему, находящуюся в состоянии непрерывного движения, динамики, развития. Как системное образование личность включает в себя элементы...

Формы и методы работы психолога с одаренными детьми

Любая деятельность, которой овладевает человек, предъявляет высокие требования к его психологическим качествам (особенностям интеллекта, эмоционально-волевой сферы, сенсомоторики)...

Калькуляторы могут быть удивительно полезными, но они не всегда под рукой. К тому же не всем удобно доставать калькуляторы или телефоны, чтобы подсчитать, сколько нужно заплатить в ресторане, или вычислить размер чаевых. Вот десять подсказок, которые могут помочь вам произвести все эти подсчеты в уме. На самом деле это совсем не сложно, особенно если запомнить несколько простых правил.

Прибавляйте и вычитайте слева направо

Помните, как в школе нас учили прибавлять и вычитать в столбик справа налево? Это сложение и вычитание удобно, когда под рукой карандаш и листок бумаги, но в уме эти математические действия легче выполнить, считая слева направо. В числе слева расположена цифра, определяющая большие ценности, например сотни и десятки, а справа меньшие, то есть единицы. Слева направо считать интуитивнее. Таким образом, прибавляя 58 и 26, начните с первых цифр, сначала 50 + 20 = 70, потом 8 + 6 = 14, затем сложите оба результата - и получите 84. Легко и просто.

Облегчите себе задачу

Если вы столкнулись со сложным примером или задачей, попытайтесь найти способ упростить ее, например, добавить или отнять определенное число, чтобы сделать общее вычисление проще. Если, например, вам нужно посчитать, сколько будет 593 + 680, сначала прибавьте 7 к 593, чтобы получить более удобное число 600. Вычислите, сколько будет 600 + 680, а затем от полученного результата 1280 отнимите те же 7, чтобы получить правильный ответ - 1273.

Подобным образом можно поступать и с умножением. Чтобы умножить 89 x 6, вычислите, сколько будет 90 x 6, а затем отнимите оставшиеся 1 х 6. Таким образом, 540 - 6 = 534.

Запомните стандартные блоки

Запоминание таблиц умножения является важной и нужной частью математики, которая отлично помогает решать примеры в уме.

Запоминая основные «стандартные блоки» математики, такие как таблица умножения, квадратные корни, процентные соотношения десятичных и обыкновенных дробей, мы можем немедленно получить ответы на простые задачи, спрятанные в более трудных.

Помните полезные уловки

Чтобы быстрее справиться с умножением, важно помнить несколько простых уловок. Одно из самых очевидных правил - умножение на 10, то есть просто добавление ноля к умножаемому числу или перенос запятой на один десятичный показатель. При умножении на 5, ответ будет всегда заканчиваться цифрой 0 или 5.

Кроме того, умножая число на 12, сначала умножьте его на 10, а потом на 2, затем прибавьте результаты. Например, вычисляя 12 x 4, сначала умножьте 4 x 10 = 40, а затем 4 x 2 = 8, и прибавьте 40 + 8 = 48. Умножая на 15, просто умножьте число на 10, и затем прибавьте еще половину полученного, например, 4 x 15 = 4 x 10 = 40, плюс еще половина (20), получается 60.

Есть также хитрая уловка для умножения на 16. Во-первых, умножьте рассматриваемое число на 10, а затем умножьте половину числа на 10. После прибавьте оба результата к числу, чтобы получить окончательный ответ. Таким образом, чтобы вычислить 16 x 24, сначала вычислите 10 x 24 = 240, затем половину 24, то есть 12, умножьте на 10 и получите 120. И последний шаг: 240 + 120 + 24 = 384.

Квадраты и их корни очень полезны

Почти как таблица умножения. И помочь они могут с умножением более крупных чисел. Квадрат получается при умножении числа на само себя. Вот как работает умножение с использованием квадратов.

Давайте предположим на мгновение, что мы не знаем ответ на 10 x 4. Сначала выясняем среднее число между этими двумя числами, оно равно 7 (т. е. 10 - 3 = 7, и 4 + 3=7, при этом различие между средним числом равно 3 - это важно).

Затем определяем квадрат 7, который равен 49. У нас теперь есть число, близкое к финальному ответу, но оно не достаточно близко. Чтобы получить правильный ответ, возвращаемся к различию между средним числом (в этом случае 3), его квадрат дает нам 9. Последний шаг включает в себя простое вычитание, 49 - 9 = 40, теперь у вас есть правильный ответ.

Это похоже на окольный и чересчур сложный способ вычислить, сколько же будет 10 x 4, но та же самая техника прекрасно работает и для больших чисел. Возьмем, например, 15 x 11. Сначала мы должны найти среднее число между этими двумя (15 - 2 = 13, 11 + 2 = 13). Квадрат 13 равен 169. Квадрат различия среднего числа 2 равен 4. Получаем 169 - 4 = 165, вот и правильный ответ.

Иногда достаточно и приблизительного ответа

Если вы пытаетесь решить сложные задачи в уме, неудивительно, что на это уходит немало времени и усилий. Если вам не нужен абсолютно точный ответ, возможно, достаточно будет подсчитать приблизительное число.

То же самое касается и задач, в условиях которых вам не известны все точные данные. Например, во время Манхэттенского проекта физик Энрико Ферми хотел примерно подсчитать силу атомного взрыва, прежде чем ученые получат точные данные. С этой целью он набросал бумажных обрывков на пол и следил за ними с безопасного расстояния, в тот момент, когда до бумажек дошла взрывная волна. Измерив расстояние, на которое сдвинулись обрывки, он предположил, что сила взрыва составила приблизительно 10 килотонн в тротиловом эквиваленте. Эта оценка оказалась довольно точна для предположения навскидку.

К счастью, нам не приходится регулярно оценивать приблизительную силу атомных взрывов, однако приблизительные подсчеты не повредят, если, например, вам нужно предположить, сколько в городе настройщиков фортепиано. Для этого проще всего оперировать числами, которые просто делить и умножать. Таким образом, сначала вы оцениваете население своего города (например, сто тысяч человек), затем оцениваете предположительное число фортепьяно (скажем, десять тысяч), ну и затем количество настройщиков фортепьяно (например, 100). Вы не получите точный ответ, но сумеете быстро предположить приблизительное количество.

Перестраивайте примеры

Основные правила математики помогают перестроить сложные примеры в более простые. Например, вычисление в уме примера 5 x (14 + 43) кажется грандиозной и даже непосильной задачей, но пример можно «разломить» на три довольно несложных вычисления. Например, эта непосильная задача может быть перестроена следующим образом: (5 x 14) + (5 x 40) + (5 x 3) = 285. Не так уж и сложно, правда?

Упрощайте задачи

Если задача кажется сложной, упростите ее. Всегда проще справиться с несколькими простыми заданиями, чем с одним сложным. Решение многих сложных примеров в уме заключается в умении правильно разделить их на более простые примеры, решение которых не составляет труда.

Например, умножать на 8 проще всего, удваивая число три раза. Таким образом, вместо того, чтобы пытаться решить, сколько будет 12 x 8 традиционным способом, просто удвойте 12 три раза: 12 х 2 = 24, 24 х 2 = 48, 48 х 2 = 96.

Или умножая на 5, сначала умножайте на 10, так как это легко, затем разделите результат на 2, так как это также довольно легко. Например, для решения 5 x 18, вычислите 10 x 18 и разделите на 2, где 180: 2 = 90.

Пользуйтесь возведением в степень

Вычисляя большие суммы в уме, помните, что вы можете преобразовать их в более мелкие числа, умноженные на 10 в нужной степени. Например, сколько получится, если 44 миллиарда разделить на 400 тысяч? Простой способ решить эту задачу состоит в том, чтобы преобразовать 44 миллиарда в следующее число - 44 х 10 9 , а из 400 тысяч сделать 4 х 10 5 . Теперь мы можем преобразовать задачу следующим образом: 44: 4 и 10 9: 10 5 . Согласно математическим правилам, все это выглядит так: 44: 4 х 10(9-5), таким образом, мы получаем 11 x 10 4 = 110,000.

Самый простой способ вычислить необходимые чаевые

Математика необходима даже во время ужина в ресторане, точнее после него. В зависимости от заведения, размер чаевых может составлять от 10% до 20% от стоимости счета. Например, в США принято оставлять на чай официантам 15%. И там, как и во многих европейских странах, чаевые обязательны.

Если вычислить 10% от общей суммы сравнительно легко (просто разделите сумму на 10), то с 15 и с 20% дело, кажется, обстоит сложнее. Но на самом деле, все так же просто и очень логично.

Вычисляя 10-процентные чаевые за ужин, который обошелся в 112,23 доллара, просто переместите десятичную точку влево на одну цифру, получится 11,22 $. Вычисляя 20-процентные чаевые, сделайте то же самое, и просто удвойте полученную сумму (20% просто в два раза больше 10%), в этом случае чаевые составят 22,44 $.

Для 15-процентных чаевых сначала определите 10% от суммы, а затем добавьте половину полученной суммы (дополнительные 5% - это половина 10-процентной суммы). Не волнуйтесь, если не можете получить точный ответ, до последнего цента. Если не заморачиваться слишком сильно с десятичными знаками, мы можем быстро вычислить, что 15-процентные чаевые от суммы 112,23 $ составляют 11 + 5,50 $, что дает нам 16,50 $. Достаточно точно. Если вы не хотите обидеть официанта, недосчитав нескольких центов, округлите сумму до целого числа и заплатите 17 долларов.

Наверняка вам встречались люди, которые как будто родились с логарифмической линейкой в руках. Насколько способности к математике предопределены природой?

У всех нас есть врождённое математическое чувство - именно оно позволяет нам грубо оценивать и сравнивать количество предметов, не прибегая к точному счёту. Именно с помощью этого чувства мы автоматически выбираем самую короткую очередь у кассы в супермаркете, не подсчитывая количество людей.

Но у некоторых людей математическое чувство развито лучше, чем у других. Несколько исследований, опубликованный в 2013 году, предполагают, что эта врождённая способность, являющаяся фундаментом для дальнейшего успешного изучения математической науки, может быть значительно развита с помощью практики и тренировок.

Исследователи обнаружили структурные особенности в мозге детей, которые наиболее успешно справлялись с математическими задачами. По словам психолога Элизабет Брэннон из Университета Дьюка, в итоге эти новые открытия могут помочь в поиске наиболее эффективных способов преподавания математики.

Как проводились исследования?

Можно ли развить математическое чувство?

Но врождённые способности вовсе не накладывают на нас ограничения. Брэннон и её коллега Джунку Парк привлекли 52 взрослых добровольцев к участию в небольшом эксперименте . В ходе эксперимента участники должны были решить несколько арифметических примеров с двузначными числами. Половина группы после этого прошла через 10 тренировочных сессий, в которых в уме оценивали количество точек на карточках. Контрольная группа такую серию испытаний не проходила. После этого обеим группам было предложено ещё раз решить арифметические примеры. Было обнаружено, что результаты участников, которые проходили тренировочные сессии, значительно превосходили результаты контрольной группы.

Эти два небольших исследования показывают, что врождённое математическое чувство и приобретаемые математические навыки неразрывно связаны между собой; работа над одним качеством неизбежно приведёт к совершенствованию и другого. Детские игры, направленные на тренировку математических способностей, действительно играют большую роль в последующем обучении математике.

Ещё одно опубликованное исследование помогает объяснить, почему одни дети обучаются лучше, чем другие. Учёные из Стэнфордского университета в течение 8 недель обучали 24 третьеклассников по специальной учебной программе с математическим уклоном. Уровень улучшения математических навыков этой группы детей колебался от 8% до 198% и не зависел от результатов тестов на интеллектуальное развитие, уровень памяти и когнитивных способностей.

СПЕЦИФИКА РАЗВИТИЯ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ

В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей школьников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально - психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности - сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов.

Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.

Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие.

Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди педагогов заблуждений.

Во-первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме) . На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во-вторых, многие думают, что способные к математике школьники отличаются хорошей памятью на формулы, цифры, числа.

Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов.

Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ребенок может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.

Крутецкий В. А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей) :

1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;

2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;

3) Способность к оперированию числовой и знаковой символикой;

4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;

5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами;

6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли) ;

7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;

8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;

9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.

Многие родители полагают, что главное при подготовке к школе - это познакомить ребенка с цифрами и научить его писать, считать, складывать и вычитать (на деле это обычно выливается в попытку выучить наизусть результаты сложения и вычитания в пределах 10) . Однако при обучении математике по учебникам современных развивающих систем (система Л. В. Занкова, система В. В. Давыдова, система "Гармония", "Школа 2100" и др.) эти умения очень недолго выручают ребенка на уроках математики. Запас заученных знаний кончается очень быстро (через месяц-два) , и несформированность собственного умения продуктивно мыслить (то есть самостоятельно выполнять указанные выше мыслительные действия на математическом содержании) очень быстро приводит к появлению "проблем с математикой».

В то же время ребенок с развитым логическим мышлением всегда имеет больше шансов быть успешным в математике, даже если он не был заранее научен элементам школьной программы (счету, вычислениям и

т. п.) . Не случайно в последние годы во многих школах, работающих по развивающим программам, проводится собеседование с детьми, поступающими в первый класс, основным содержанием которого являются вопросы и задания логического, а не только арифметического, характера. Закономерен ли такой подход к отбору детей для обучения? Да, закономерен, поскольку учебники математики этих систем построены таким образом, что уже на первых уроках ребенок должен использовать умения сравнивать, классифицировать, анализировать и обобщать результаты своей деятельности.

Однако не следует думать, что развитое логическое мышление - это природный дар, с наличием или отсутствием которого следует смириться. Существует большое количество исследований, подтверждающих, что развитием логического мышления можно и нужно заниматься (даже в тех случаях, когда природные задатки ребенка в этой области весьма скромны) . Прежде всего разберемся в том, из чего складывается логическое мышление.

Логические приемы умственных действий - сравнение, обобщение, анализ, синтез, классификация, сериация, аналогия, систематизация, абстрагирование - в литературе также называют логическими приемами мышления. При организации специальной развивающей работы над формированием и развитием логических приемов мышления наблюдается значительное повышение результативности этого процесса независимо от исходного уровня развития ребенка.

Для выработки определенных математических умений и навыков необходимо развивать логическое мышление дошкольников. В школе им понадобятся умения сравнивать, анализировать, конкретизировать, обобщать.

Поэтому необходимо научить ребенка решать проблемные ситуации, делать определенные выводы, приходить к логическому заключению. Решение логических задач развивает способность выделять существенное, самостоятельно подходить к обобщениям (см. Приложение) .

Логические игры математического содержания воспитывают у детей познавательный интерес, способность к творческому поиску, желание и умение учиться. Необычная игровая ситуация с элементами проблемности, характерными для каждой занимательной задачи, всегда вызывает интерес у детей.

Занимательные задачи способствуют развитию у ребенка умения быстро воспринимать познавательные задачи и находить для них верные решения. Дети начинают понимать, что для правильного решения логической задачи необходимо сосредоточиться, они начинают осознавать, что такая занимательная задачка содержит в себе некий "подвох" и для ее решения необходимо понять, в чем тут хитрость.

Логические задачки могут быть следующими:

У двух сестер по одному брату. Сколько детей в семье? (Ответ: 3)

Очевидно, что конструктивная деятельность ребенка в процессе выполнения данных упражнений развивает не только математические способности и логическое мышление ребенка, но и его внимание, воображение, тренирует моторику, глазомер, пространственные представления, точность и т. д.

Каждое из приведенных в Приложении упражнений направлено на формирование логических мыслительных приемов. Например, упражнение 4 учит ребенка сравнивать; упражнение 5 - сравнивать и обобщать, а также анализировать; упражнение 1 учит анализу и сравнению; упражнение 2 - синтезу; упражнение 6 - фактическая классификация по признаку.

Логическое развитие ребенка предполагает также формирование умения понимать и прослеживать причинно-следственные связи явлений и умения выстраивать простейшие умозаключения на основе причинно-следственной связи.

Таким образом, за два года до школы можно оказать значимое влияние на развитие математических способностей дошкольника. Даже если ребенок не станет непременным победителем математических олимпиад, проблем с математикой у него в начальной школе не будет, а если их не будет в начальной школе, то есть все основания рассчитывать на их отсутствие и в дальнейшем.

Взгляды зарубежных психологов на математические способности
В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды.

Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. В этом плане можно выделить три важные проблемы.
1. Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?
2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.
3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

Взгляды Б.М. Теплова на математические способности
Хотя математические способности и не были предметом специального рассмотрения в трудах Б.М. Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей. Среди них особое место занимают две монографические работы «Психология музыкальных способностей» и «Ум полководца», ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

В обеих работах Б. М. Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б. М. Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке - слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

Наиболее ярко роль общих способностей продемонстрирована в работе «Ум полководца». Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б.М. Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б.М. Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

Важное место в интеллектуальной деятельности полководца занимает память. Она очень избирательна, то есть удерживает прежде всего необходимые, существенные детали. В качестве классического примера такой памяти Б.М. Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

Б.М. Теплов приходит к выводу, что «умение находить и выделять существенное и постоянная систематизация материала - вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца» (Б.М. Теплов 1985, стр. 249). Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это прежде всего мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием «воля». Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

Особое место в интеллектуальной деятельности полководца Б.М. Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б. М. Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае «озарению» должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

Подтверждения положениям, проанализированным и обобщенным Б.М. Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков. Так, в психологическом этюде «Математическое творчество» Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом «озарения» необходимо следовал второй этап - тщательной сознательной работы по приведению в порядок доказательства и его проверке. А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия.

Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж. Адамар, «между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера». Для того чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Советский психолог, исследовавший математические способности у школьников, В.А. Крутецкий дает следующее определение математическим способностям: «Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики».

Исследование математических способностей включает в себя и решение одной из важнейших проблем - поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б.М. Теплов и С.Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В.С. Мерлин, 1986). Б. Г. Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами «талант» и «призвание» (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу

Общая схема структуры математических способностей в школьном возрасте по В.А. Крутецкому
Собранный В. А. Крутецким материал позволил ему выстроить общую схему структуры математических способностей в школьном возрасте.
1. Получение математической информации.
Способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи.
2. Переработка математической информации.
1) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.
2) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.
3) Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.
4) Гибкость мыслительных процессов в математической деятельности.
5) Стремление к ясности, простоте, экономности и рациональности решений.
6) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).
3. Хранение математической информации.
1) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним).
4. Общий синтетический компонент.
1) Математическая направленность ума. Выделенные компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:
1. Быстрота мыслительных процессов как временная характеристика.
2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).
3. Память на цифры, числа, формулы.
4. Способность к пространственным представлениям.
5. Способность наглядно представить абстрактные математические отношения и зависимости.