Краткие содержания

Если при равномерном прямолинейном движении. Равномерное движение

Простейшим видом механического движения является движение тела вдоль прямой линии с постоянной по модулю и направлению скоростью . Такое движение называется равномерным . При равномерном движении тело за любые равные промежутки времени проходит равные пути. Для кинематического описания равномерного прямолинейного движения координатную ось OX удобно расположить по линии движения. Положение тела при равномерном движении определяется заданием одной координаты x . Вектор перемещения и вектор скорости всегда направлены параллельно координатной оси OX .

Поэтому перемещение и скорость при прямолинейном движении можно спроектировать на ось OX и рассматривать их проекции как алгебраические величины.

Если в некоторый момент времени t 1 тело находилось в точке с координатой x 1 , а в более поздний момент t 2 - в точке с координатой x 2 , то проекция перемещения Δs на ось OX за время Δt = t 2 - t 1 равна

Эта величина может быть и положительной и отрицательной в зависимости от направления, в котором двигалось тело. При равномерном движении вдоль прямой модуль перемещения совпадает с пройденным путем. Скоростью равномерного прямолинейного движения называют отношение

Если υ > 0, то тело движется в сторону положительного направления оси OX ; при υ < 0 тело движется в противоположном направлении.

Зависимость координаты x от времени t (закон движения ) выражается при равномерном прямолинейном движении линейным математическим уравнением :

В этом уравнении υ = const - скорость движения тела, x 0 - координата точки, в которой тело находилось в момент времени t = 0. График закона движения x (t ) представляет собой прямую линию. Примеры таких графиков показаны на рис. 1.3.1.

Для закона движения, изображенного на графике I (рис. 1.3.1), при t = 0 тело находилось в точке с координатой x 0 = -3. Между моментами времени t 1 = 4 с и t 2 = 6 с тело переместилось от точки x 1 = 3 м до точки x 2 = 6 м. Таким образом, за Δt = t 2 - t 1 = 2 с тело переместилось на Δs = x 2 - x 1 = 3 м. Следовательно, скорость тела составляет

Величина скорости оказалась положительной. Это означает, что тело двигалось в положительном направлении оси OX . Обратим внимание, что на графике движения скорость тела может быть геометрически определена как отношение сторон BC и AC треугольника ABC (см. рис. 1.3.1)

Чем больше угол α, который образует прямая с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше скорость тела. Иногда говорят, что скорость тела равна тангенсу угла α наклона прямой x (t ). С точки зрения математики это утверждение не вполне корректно, так как стороны BC и AC треугольника ABC имеют разные размерности : сторона BC измеряется в метрах, а сторона AC - в секундах.

Аналогичным образом для движения, изображенного на рис. 1.3.1 прямой II, найдем x 0 = 4 м, υ = -1 м/с.

На рис. 1.3.2 закон движения x (t ) тела изображен с помощью отрезков прямых линий. В математике такие графики называются кусочно-линейными . Такое движение тела вдоль прямой не является равномерным . На разных участках этого графика тело движется с различными скоростями, которые также можно определить по наклону соответствующего отрезка к оси времени. В точках излома графика тело мгновенно изменяет свою скорость. На графике (рис. 1.3.2) это происходит в моменты времени t 1 = -3 с, t 2 = 4 с, t 3 = 7 с и t 4 = 9 с. По графику движения нетрудно найти, что на интервале (t 2 ; t 1) тело двигалось со скоростью υ 12 = 1 м/с, на интервале (t 3 ; t 2) - со скоростью υ 23 = -4/3 м/с и на интервале (t 4 ; t 3) - со скоростью υ 34 = 4 м/с.

Следует отметить, что при кусочно-линейном законе прямолинейного движения тела пройденный путь l не совпадает с перемещением s . Например, для закона движения, изображенного на рис. 1.3.2, перемещение тела на интервале времени от 0 с до 7 с равно нулю (s = 0). За это время тело прошло путь l = 8 м.

1. Равномерное прямолинейное движение - движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Слова «любые равные» означают, что за каждый час, за каждую минуту, за каждые 30 минут, за каждую секунду, за каждую долю секунды тело совершает одинаковые перемещения.

Равномерное движение - идеализация, поскольку практически невозможно создать такие условия, чтобы движение тела было равномерным в течение достаточно большого промежутка времени. Реальное движение может лишь приближаться к равномерному движению с той или иной степенью точности.

2. Изменение положения тела в пространстве при равномерном движении может происходить с разной быстротой. Это свойство движения - его «быстрота» характеризуется физической величиной, называемой скоростью.

Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения ко времени, за которое это перемещение произошло.

Если за время ​\(t \) ​ тело совершило перемещение ​\(\vec{s} \) ​, то скорость его движения ​\(\vec{v} \) ​ равна ​\(\vec{v}=\frac{\vec{s}}{t} \) ​.

Единица скорости: \([\,v\,]=\frac{[\,s\,]}{[\,t\,]} \) ; \([\,v\,]=\frac{1\,м}{1\,с}=1\frac{м}{с} \) . За единицу скорости принимается 1 м/с - скорость такого равномерного движения, при котором тело за 1 с совершает перемещение 1 м.

Зная скорость равномерного движения, можно найти перемещение за любой промежуток времени: \(\vec{s}=\vec{v}t \) . Вектор скорости и вектор перемещения направлены в одну сторону - в сторону движения тела.

3. Поскольку основной задачей механики является определение в любой момент времени положения тела, т.е. его координаты, необходимо записать уравнение зависимости координаты тела от времени при равномерном движении.

Пусть \(\vec{s} \) - перемещение тела (рис. 11). Направим координатную ось ОХ по направлению перемещения. Найдем проекцию перемещения на координатную ось ОХ. На рисунке ​\(x_0 \) ​ - координата начальной точки перемещения, ​\(x \) ​ - координата конечной точки перемещения. Проекция перемещения равна разности координат конечной и начальной точек: ​\(\vec{s}_x=x-x_0 \) ​. С другой стороны, проекция перемещения равна проекции скорости, умноженной на время, т.е. \(\vec{s}_x=\vec{v}_xt \) . Откуда ​\(x-x_0=\vec{v}_xt \) ​ или \(x=x_0+\vec{v}_xt \) . Если начальная координата ​\(x_0 \) ​ = 0, то ​\(x=\vec{v}_xt \) ​.

Полученная формула позволяет определить координату тела при равномерном движении в любой момент времени, если известны начальная координата и проекция скорости движения.

Проекция скорости может быть как положительной, так и отрицательной. Проекция скорости положительна, если направление движения совпадает с положительным направлением оси ОХ (рис. 12). В этом случае ​\(x>x_0 \) ​. Проекция скорости отрицательна, если тело движется против положительного направления оси ОХ (рис. 12). В этом случае \(x

4. Зависимость координаты от времени можно представить графически.

Предположим, что тело движется из начала координат вдоль положительного направления оси ОХ с постоянной скоростью. Проекция скорости на ось ОХ равна 4 м/с. Уравнение движения в этом случае имеет вид: ​\(x \) ​ = 4 м/с · ​\(t \) ​. Зависимость координаты от времени - линейная. Графиком такой зависимости является прямая линия, проходящая через начало координат (рис. 13).

Для того чтобы её построить, необходимо иметь две точки: одна из них ​\(t \) ​ = 0 и ​\(x \) ​ = 0, а другая ​\(t \) ​ = 1 с, ​\(x \) ​ = 4 м. На рисунке приведён график зависимости координаты от времени, соответствующий данному уравнению движения.

Если в начальный момент времени координата тела ​\(x_0 \) ​ = 2 м, а проекция его скорости ​\(v_x \) ​ = 4 м/с, то уравнение движения имеет вид: ​\(x \) ​ = 2 м + 4 м/с · ​\(t \) ​. Это тоже линейная зависимость координаты от скорости, и её графиком является прямая линия, проходящая через точку, для которой ​\(t \) ​ = 0, ​\(x \) ​ = 2 м (рис. 14).

В том случае, если проекция скорости отрицательна, уравнение движения имеет вид: \(x \) ​ = 2 м – 4 м/с · ​\(t \) ​. График зависимости координаты такого движения от времени представлен на рисунке 15.

Таким образом, движение тела может быть описано аналитически, т.е. с помощью уравнения движения (уравнения зависимости координаты тела от времени), и графически, т.е. с помощью графика зависимости координаты тела от времени.

График зависимости проекции скорости равномерного прямолинейного движения от времени представлен на рисунке 16.

5. Ниже приведён пример решения основной задачи кинематики - определения положения тела в некоторый момент времени.

Задача. Два автомобиля движутся навстречу друг другу равномерно и прямолинейно: один со скоростью 15 м/с, другой - со скоростью 12 м/с. Определите время и место встречи автомобилей, если в начальный момент времени расстояние между ними равно 270 м.

При решении задачи целесообразно придерживаться следующей последовательности действий:

  1. Кратко записать условие задачи.
  2. Проанализировать ситуацию, описанную в условии задачи:
    - выяснить, можно ли принять движущиеся тела за материальные точки;
    - сделать рисунок, изобразив на нём векторы скорости;
    - выбрать систему отсчёта - тело отсчёта, направления координатных осей, начало отсчёта координат, начало отсчёта времени; записать начальные условия (значения координат в начальный момент времени) для каждого тела.
  3. Записать в общем виде уравнение движения в векторной форме и для проекций на координатные оси.
  4. Записать уравнение движения для каждого тела с учётом начальных условий и знаков проекций скорости.
  5. Решить задачу в общем виде.
  6. Подставить в формулу значения величин и выполнить вычисления.
  7. Проанализировать ответ.

Применим эту последовательность действий к приведённой выше задаче.

Дано: ​\(v_1 \) ​ = 15 м/с ​\(v_2 \) ​= 12 м/с ​\(l \) ​= 270 м. Найти: ​\(t \) ​ – ? \(x\) ​ – ?

Система отсчёта связана с Землёй, ось ​\(Ox \) ​ направлена в сторону движения первого тела, начало отсчёта координаты - т. ​\(O \) ​ - положение первого тела в начальный момент времени.

Начальные условия: ​\(t \) ​ = 0; ​\(x_{01} \) ​ = 0; \(x_{02} \) = 270.

Уравнение в общем виде: ​\(\vec{s}=\vec{v}t \) ​; ​\(x=x_0+v_xt \) .

Уравнения для каждого тела с учётом начальных условий: ​\(x_1=v_1t \) ​; ​\(x_2=l-v_2t \) ​. В месте встречи тел ​\(x_1=x_2 \) ; следовательно: ​\(v_1t=l-v_2t \) ​. Откуда ​\(t=\frac{l}{v_1+v_2}\cdot t \) ​. Подставив значение времени в уравнение для координаты первого автомобиля, получим значение координаты места встречи автомобилей: ​\(x \) ​ = 150 м.

Часть 1

1. Чему равна проекция скорости равномерно движущегося автомобиля, если проекция его перемещения за 4 с равна 80 м?

1) 320 м/с
2) 80 м/с
3) 20 м/с
4) 0,05 м/с

2. Чему равен модуль перемещения мухи за 0,5 мин., если она летит со скоростью 5 м/с?

1) 0,25 м
2) 6 м
3) 10 м
4) 150 м

3. Автомобиль «Рено» проезжает за 1 мин. путь 1,2 км. Автомобиль «Пежо» проезжает за 20 с путь 0,2 км. Сравните значения скорости «Рено» - ​\(v_1 \) ​ и скорости «Пежо» - \(v_2 \) .

1) ​\(v_1=v_2 \) ​
2) ​\(v_1=2v_2 \) ​
3) \(2v_1=v_2 \)
4) \(1,2v_1=10v_2 \)

4. На рисунке приведена столбчатая диаграмма. На ней представлены значения пути, которые при равномерном движении пролетают за одно и то же время муха (1) и воробей (2). Сравните их скорости ​\(v_1 \) ​ и \(v_2 \) .

1) ​\(v_1=v_2 \) ​
2) ​\(v_1=2v_2 \) ​
3) \(3v_1=v_2 \)
4) \(2v_1=v_2 \)

5. На рисунке приведён график зависимости модуля скорости равномерного движения от времени. Модуль перемещения тела за 2 с равен

1) 20 м
2) 40 м
3) 80 м
4) 160 м

6. На рисунке приведён график зависимости пути, пройденного телом при равномерном движении от времени. Модуль скорости тела равен

1) 0,1 м/с
2) 10 м/с
3) 20 м/с
4) 40 м/с

7. На рисунке приведены графики зависимости пути от времени для трёх тел. Сравните значения скорости ​\(v_1 \) ​, \(v_2 \) и \(v_3 \) движения этих тел.

1) ​\(v_1=v_2=v_3 \) ​
2) \(v_1>v_2>v_3 \) ​
3) \(v_1 4) ​\(v_1=v_2 \) , \(v_3

8. Какой из приведённых ниже графиков представляет собой график зависимости пути от времени при равномерном движении тела?

9. На рисунке приведён график зависимости координаты тела от времени. Чему равна координата тела в момент времени 6 с?

1) 9,8 м
2) 6 м
3) 4 м
4) 2 м

10. Уравнение движения тела, соответствующее приведённому в задаче 9 графику, имеет вид

1) ​\(x=1t \) ​ (м)
2) \(x=2+3t \) (м)
3) \(x=2-1t \) (м)
4) \(x=4+2t \) (м)

11. Установите соответствие между величинами в левом столбце и зависимостью значения величины от выбора системы отсчёта в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) перемещение
Б) время
B) скорость

ЗАВИСИМОСТЬ ОТ ВЫБОРА СИСТЕМЫ ОТСЧЁТА
1) зависит
2) не зависит

12. На рисунке приведён график зависимости координаты тела от времени. Какие выводы можно сделать из анализа графика? Укажите два правильных ответа.

1) тело двигалось все время в одну сторону
2) в течение четырёх секунд модуль скорости тела уменьшался, а затем увеличивался
3) проекция скорости тела все время была положительной
4) проекция скорости тела в течение четырёх секунд была положительной, а затем — отрицательной
5) в момент времени 4 с тело остановилось

Часть 2

13. Два автомобиля движутся друг за другом равномерно и прямолинейно: один со скоростью 20 м/с, другой - со скоростью 15 м/с. Через какое время второй автомобиль догонит первый, если в начальный момент времени расстояние между ними равно 100 м?

Ответы

«Физика - 10 класс»

При решении задач по данной теме необходимо прежде всего выбрать тело отсчёта и связать с ним систему координат. В данном случае движение происходит по прямой, поэтому для его описания достаточна одна ось, например ось ОХ. Выбрав начало отсчёта, записываем уравнения движения.


Задача I.

Определите модуль и направление скорости точки, если при равномерном движении вдоль оси ОХ её координата за время t 1 = 4 с изменилась от х 1 = 5 м до х 2 = -3 м.

Р е ш е н и е.

Модуль и направление вектора можно найти по его проекциям на оси координат. Так как точка движется равномерно, то проекцию её скорости на ось ОХ найдём по формуле

Отрицательный знак проекции скорости означает, что скорость точки направлена противоположно положительному направлению оси ОХ. Модуль скорости υ = |υ х | = |-2 м/с| = 2 м/с.

Задача 2.

Из пунктов А и В, расстояние между которыми вдоль прямого шоссе l 0 = 20 км, одновременно навстречу друг другу начали равномерно двигаться два автомобиля. Скорость первого автомобиля υ 1 = 50 км/ч, а скорость второго автомобиля υ 2 = 60 км/ч. Определите положение автомобилей относительно пункта А спустя время t = 0,5 ч после начала движения и расстояние I между автомобилями в этот момент времени. Определите пути s 1 и s 2 , пройденные каждым автомобилем за время t.

Р е ш е н и е.

Примем пункт А за начало координат и направим координатную ось ОХ в сторону пункта В (рис. 1.14). Движение автомобилей будет описываться уравнениями

x 1 = х 01 + υ 1x t, x 2 = х 02 + υ 2x t.

Так как первый автомобиль движется в положительном направлении оси ОХ, а второй - в отрицательном, то υ 1x = υ 1 , υ 2x = -υ 2 . В соответствии с выбором начала координат х 01 = 0, х 02 = l 0 . Поэтому спустя время t

x 1 = υ 1 t = 50 км/ч 0,5 ч = 25 км;

х 2 = l 0 - υ 2 t = 20 км - 60 км/ч 0,5 ч = -10 км.

Первый автомобиль будет находиться в точке С на расстоянии 25 км от пункта А справа, а второй - в точке D на расстоянии 10 км слева. Расстояние между автомобилями будет равно модулю разности их координат: l = |х 2 - x 1 | = |-10 км - 25 км| = 35 км. Пройденные пути равны:

s 1 = υ 1 t = 50 км/ч 0,5 ч = 25 км,

s 2 = υ 2 t = 60 км/ч 0,5 ч = 30 км.


Задача 3.

Из пункта А в пункт В выезжает первый автомобиль со скоростью υ 1 Спустя время t 0 из пункта В в том же направлении со скоростью υ 2 выезжает второй автомобиль. Расстояние между пунктами A и В равно l. Определите координату места встречи автомобилей относительно пункта В и время от момента отправления первого автомобиля, через которое они встретятся.

Р е ш е н и е.

Примем пункт А за начало координат и направим координатную ось ОХ в сторону пункта В (рис. 1.15). Движение автомобилей будет описываться уравнениями

x 1 = υ 1 t, х 2 = l + υ 2 (t - t 0).

В момент встречи координаты автомобилей равны: х 1 = х 2 = х в. Тогда υ 1 t в = l + υ 2 (t в - t 0) и время до встречи

Очевидно, что решение имеет смысл при υ 1 > υ 2 и l > υ 2 t 0 или при υ 1 < υ 2 и l < υ 2 t 0 . Координата места встречи


Задача 4.

На рисунке 1.16 представлены графики зависимости координат точек от времени. Определите по графикам: 1) скорости точек; 2) через какое время после начала движения они встретятся; 3) пути, пройденные точками до встречи. Напишите уравнения движения точек.

Р е ш е н и е.

За время, равное 4 с, изменение координаты первой точки: Δx 1 = 4 - 2 (м) = 2 м, второй точки: Δх 2 = 4 - 0 (м) = 4 м.

1) Скорости точек определим по формуле υ 1x = 0,5 м/с; υ 2x = 1 м/с. Заметим, что эти же значения можно было получить по графикам, определив тангенсы углов наклона прямых к оси времени: скорость υ 1x численно равна tgα 1 , а скорость υ 2x численно равна tgα 2 .

2) Время встречи - это момент времени, когда координаты точек равны. Очевидно что t в = 4 с.

3) Пути, пройденные точками, равны их перемещениям и равны изменениям их координат за время до встречи: s 1 = Δх 1 = 2 м, s 2 = Δх 2 = 4 м.

Уравнения движения для обеих точек имеют вид х = х 0 + υ x t, где х 0 = x 01 = 2 м, υ 1x = 0,5 м/с - для первой точки; х 0 = х 02 = 0, υ 2x = 1 м/с - для второй точки.

Вариант 1

а ) игла падает со стола _________ ;
б ) игла движется при работе машины ________?

2. Прямолинейным равномерным движением называется движение, при котором тело ________ совершает __________ .

а ) дерево:
x = ________ ,
б ) дорожный указатель:
x = _______ .

s 1 и s 2 на оси координат:

s 1x = _____ , s 2x = ______ ,
s 2x = _____ , s 2y = ______.

5. Если при равномерном прямолинейном движении тело за 20 мин перемещается на 20 км, то:

– за 5 мин оно перемещается на ____________ ,
– за 2 ч оно перемещается на _______________ .

а

v 1x = __________,

v 2x = __________ ;

б ) расстояние l t = 4 с:
l = ____________ .

x 1 = ___ ,
x 2 = _____
font-size:10.0pt;font-family:" arial cyr>.

t = ____________ ,
x = _____________ .

10. С какой скоростью относительно Земли будет опускаться парашютист в восходящем потоке воздуха, если скорость парашютиста относительно воздуха 5 м/с, а скорость потока относительно Земли 4 м/с?

v = _____________ .

Вариант 2

Тест № 1. Равномерное прямолинейное движение

а ) космонавт перемещается в космическом корабле ____ ;
б ) космонавт в космическом корабле обращается вокруг Земли ___?

2. Скоростью равномерного прямолинейного движения называется_________________величина, равная _______________ __________________________ к промежутку времени _____________________________________________________ .

3. Определите координату пешехода, взяв за тело отсчета:

а ) дерево:
x = ____________ ,
б ) дорожный указатель:
x = _____________ .

4. Определите проекции векторов s 1 и s 2 на оси координат:

s 1x = ___ , s 2x = ___ ,
s 1y = ___ , s 2y = ____.

5. Если при равномерном прямолинейном движении тело за 5 c перемещается на 25 м, то:

– за 2 с оно перемещается на _____________ ,
– за 1 мин оно перемещается на ___________________ .

6. В таблице даны координаты двух движущихся тел для определенных моментов времени.

7. По графикам движения определите:

а ) проекцию скорости каждого тела:
v 1x = ______________,
v 2x = ______________ ;
б ) расстояние l между телами в момент времени t = 4 с:
l = __________________

8. На рисунке показаны положения двух маленьких шариков в начальный момент времени и их скорости. Запишите уравнения движения этих тел.

x 1 = ___________ ,
x 2 = ___________ ;

9. Пользуясь условием предыдущего вопроса, постройте графики движения шариков и найдите время и место их столкновения.

t = ___________ ,
x = ___________ .

10. В неподвижной воде пловец плывет со скоростью 2 м/с. Когда он плывет по реке против течения, его скорость относительно берега равна 0,5 м/с вниз по течению. Чему равна скорость течения?

v = ____________

.

Вариант 3

Тест № 1. Равномерное прямолинейное движение

а ) поезд въезжает на станцию ________________;
б ) поезд движется между станциями ___________?

2. Поступательным называется движение, при котором ___________________ ________________________ .

3. Определите координату пешехода, взяв за тело отсчета:

а ) дерево:
x = ________ ,
б ) дорожный указатель:
x = _______ .

4. Определите проекции векторов s 1 и s 2 на оси координат:

s 1x = _____ , s 2x = ______ ,
s 1y = _____ , s 2y = ______.

5. Если при равномерном прямолинейном движении тело за 2 ч перемещается на 100 км, то:

– за 0,5 ч оно перемещается на ______________ ,
– за 3 ч оно перемещается на ________________ .

6. В таблице даны координаты двух движущихся тел для определенных моментов времени.

7. По графикам движения определите:

а ) проекцию скорости каждого тела:

v 1x = __________,

v 2x = __________;

б ) расстояние l между телами в момент времени t = 4 с:

l = ____________ .

8. На рисунке показаны положение двух маленьких шариков в начальный момент времени и их скорости. Запишите уравнения движения этих тел:

x 1 = ______ ,
x 2 = ______ .

9. Пользуясь условием предыдущего вопроса, постройте графики движения шариков и найдите время и место их столкновения:

t = _____________ ,

x = _____________ .

10. По реке, скорость течения которой 2 км/ч, плывет бревно. По бревну в том же направлении бежит мышонок. С какой скоростью относительно бревна бежит мышонок, если его скорость относительно берега 2,5 км/ч?

v = _______________ .

Вариант 4

Тест № 1. Равномерное прямолинейное движение

а ) автомобиль движется по шоссе _____________;
б ) автомобиль въезжает в гараж ______________?

2. Скорость тела относительно ______________ системы координат равна _________ сумме скорости ________ относительно ________ и скорости ____________ относительно ___________.

3. Определите координату пешехода, взяв за тело отсчета:

а ) дерево:
x = ________ ,
б ) дорожный указатель:
x = _______ .

4. Определите проекции векторов s 1 и s 2 на оси координат:

s 1x = ______ , s 2x = ______ ,
s 1y = ______ , s 2y = ______.

5. Если при равномерном прямолинейном движении тело за 1 мин перемещается на 120 м, то:

– за 10 с оно перемещается на _________________
– за 5 мин оно перемещается на ________________ .

6. В таблице даны координаты двух движущихся тел для определенных моментов времени.

Можно ли считать данные движения равно - мерными?

7. По графикам движения определите:

а ) проекцию скорости каждого тела:

v 1x = __________,

v 2x = __________ .

б ) расстояние l между телами в момент времени t = 4 с:

l = ____________ .

8. На рисунке показаны положения двух маленьких шариков в начальный момент времени и их скорости. Запишите уравнения движения этих тел:

x 1 = ______ ,
x 2 = ______ .

9. Пользуясь условием предыдущего вопроса, постройте графики движения шариков и найдите время и место их столкновения:

t = _____________ ,
x = _____________ .

10. Эскалатор движется вниз со скоростью 0,6 м/с относительно Земли. Вверх по эскалатору бежит человек со скоростью 1,4 м/с относительно эскалатора. Чему равна скорость человека относительно Земли?

v = _______________ .