Краткие содержания

Кван­товые числа. Атомные орбитали. Квантовые числа. Формы орбиталей

После завершения формального описания квантово-механического движения стало ясно, что в атомном пространстве каждый объект имеет такую характеристику, как атомная орбиталь.

Атомная орбиталь (АО) - область пространства вокруг ядра атома, в которой по законам квантовой механики с наибольшей вероятностью находится электрон с заданной энергией.

Энергетическое состояние электрона описывается функцией трех целочисленных параметров п } I, т 1У которые называются квантовыми числами. При определенных значениях квантовых чисел можно получить характеристики области, где может находиться электрон.

Квантовые числа имеют следующий физический смысл :

  • п - главное квантовое число , характеризует энергетический уровень и размер орбитали;
  • / - орбитальное квантовое число , характеризует энергетический подуровень и форму орбитали;
  • т { - магнитное квантовое число , учитывает влияние внешнего магнитного поля на энергетическое состояние электрона.

Главное квантовое число п является натуральным и соответствует номерам периодов в таблице Д. И. Менделеева (1, 2, 3, 4, 5, 6, 7). Главное квантовое число определяет основную долю энергии электрона, находящегося на данной орбитали. Это квантовое число называют также номером энергетического уровня. Чем больше п , тем больше размер орбитали.

Атомы, в которых электроны находятся на орбиталях с большим значением п (п > 8), называются ридберговскими атомами. Первые экспериментальные данные по ридберговским атомам в радиоастрономии были получены в 1964 г. сотрудниками ФИАПа (Р. С. Сороченко и др.) на 22-метровом зеркальном радиотелескопе. При ориентации телескопа на туманность Омега в спектре ее радиоизлучения была обнаружена линия излучения с длиной волны X = 3,4 см. Эта длина волны соответствует переходу между ридберговскими состояниями п = 90 и п = 91 в спектре атома водорода. Сегодня в лаборатории получены ридберговские атомы с п ~ 600! Это почти макроскопические объекты размером около 0,1 мм и временем жизни ~1 с. Изучение ридберговских состояний атомов оказалось полезным в работах по созданию квантовых компьютеров.

При этом увеличение размера не меняет формы орбитали. Чем больше п у тем больше энергия электрона. Электроны с одинаковым значением главного квантового числа находятся на одном энергетическом уровне. Номер п энергетического уровня указывает на число подуровней, входящих в состав данного уровня.

Орбитальное квантовое число I может принимать значения / = 0, 1,2,... до (п - 1), т.е. при данном главном квантовом числе п орбитальное квантовое число / может принять п значений. Орбитальное квантовое число определяет геометрическую форму орбиталей и определяет орбитальный момент количества движения (импульс) электрона, т.е. вклад данного подуровня в общую энергию электрона. Кроме численных значений, орбитальное квантовое число / имеет и буквенное обозначение:

Формы 5-, р-, (1-, /-орбиталей приведены на рис. 1.1. Знаки, проставленные на геометрических элементах орбиталей, не являются знаками заряда, а относятся к значениям волновой функции у для этих элементов. Поскольку при расчете вероятности рассматривается | н/| 2 - квадрат величины по модулю, то области орбиталей волновой функции у со знаками «+» и «-» становятся равнозначными.

Рис. 1.1.

Сложная форма большинства орбиталей обусловлена тем, что волновая функция электрона в полярных координатах имеет две составляющие - радиальную и угловую. При этом вероятность нахождения электрона в данной точке зависит как от ее расстояния до ядра, так и от направления в пространстве вектора, связывающего ядро с этой точкой. Эти функции зависят как от / (для 5- и р-орбиталей), так и от т 1 (для с1 - и /-орбиталей).

Например, абрисом (внешним контуром) всех 5-орбиталей является сфера. По оказывается, что вероятность обнаружения электрона внутри этой сферы не равномерна, а напрямую зависит от расстояния данной орбитали от ядра. На рис. 1.2 показана внутренняя структура 15- и 25-орбиталей. Как следует из рисунка, 25-орбиталь подобна «двухслойной луковице» с внутренними оболочками, расположенными на расстоянии 1 и 4 радиуса боровской орбиты. Как правило, в химии факт сложности внутреннего строения орбиталей не играет значительной роли и в данном курсе нс рассматривается.


Рис. 1.2. Распределение вероятности обнаружения электрона в атоме водорода в состояниях is и 2s. г { = 5,29*10 11 м - радиус первой боровской орбиты

Источник : wvw.college.ru/enportal/physics/content/chapter9/section/paragraph3/theory.html

Орбитальное магнитное квантовое число m t может принимать значения от -/ до +/, включая нуль. Это квантовое число определяет ориентацию орбитали в пространстве при воздействии внешнего магнитного поля и характеризует изменение энергии электрона, находящегося на этой орбитали, под влиянием внешнего магнитного поля. Количество орбиталей с данным значением т 1 составляет (2/ + 1).

Рассмотренные три квантовых числа п, /, т { являются следствием решения волнового уравнения Шредингера и позволяют определить энергию электрона через описание его волновых свойств. При этом не учитывался двойственный характер природы элементарных частиц, их корпускулярноволновой дуализм в описании энергетического состояния электрона.

Собственное магнитное квантовое число электрона m s {спин). Как следствие корпускулярных свойств электрона , в описании его энергетического состояния играет роль еще одно число - собственное квантовое число m s электрона {спин). Это квантовое число характеризует не орбиталь, а свойство самого электрона, находящегося на этой орбитали.

Спин (от англ, spin - вертеть[-ся], вращение) - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Часто используемая аналогия для описания спина как свойства, связанного с вращением электрона вокруг своей оси, оказалась несостоятельной. Такое описание приводит к противоречию со специальной теорией относительности - экваториальная скорость вращения электрона в этой модели превышает скорость света. Введение спина явилось удачным применением новой физической идеи: постулируется, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Необходимость введения такого пространства состояний свидетельствует о необходимости рассмотрения и более общего вопроса о реальности физического многомирия.

Электрон проявляет свои собственные магнитные свойства в том, что во внешнем электрическом иоле собственный момент импульса электрона ориентируется либо по полю, либо против ноля. В первом случае принимается, что собственное квантовое число электрона m s = +1/2, а во втором m s = -1/2. Отметим, что спин - единственное дробное число среди набора квантовых характеристик, определяющих состояние электрона в атоме.

Общее аналитическое выражение для функций R(r), 0(0) и Ф(ф) записываются с помощью специальных математических функций. Их можно найти в специализированной литературе по квантовой механике и квантовой химии. В этом разделе на примере s-, р- и «/-электронов будут рассмотрены основные положения, принятые для описания электронных орбиталей, являющихся основой теории химической связи.

Из полученных ранее результатов следует, что описание состояния электрона в атоме оказывается намного более сложным, чем это предполагалось теорией Бора. Квантовая механика показывает, что атомный электрон может находиться в различных областях пространства, окружающего ядро, и вероятность его пребывания меняется при переходе от точки к точке. Отсюда возникло понятие электронных орбита- лей, выражающее более общее понятие электронного облака. Физики под электронной орбиталью понимают саму волновую функцию, соответствующую определенным квантовым числам. В химии под орбиталью понимается совокупность положений электрона в атоме с учетом вероятности его пребывания в тех или иных областях пространства в окрестности ядра. Эта вероятность и определяется функциями R, 0, Ф. В таблице 8.2 приведены в сферической системе координат выражения для волновых функций s-,p- и «/-электронов.

На рисунке 8.21 представлены графики функций R(r) (рис. 8.21, а) и плотности вероятности обнаружить электрон в шаровом слое толщиной dr|^^ = 4nr 2 i? 2 (r)j - (рис. 8.21, б) в зависимости от г. Следует

обратить внимание на то обстоятельство, что для j-состояний радиальная часть волновой функции при г = 0 (т.е. на ядре) (см. графики функций R{r) на рис. 8.21, а) имеют максимум. Никакого противоречия со здравым смыслом (электрон в ядре) при этом не возникает, так как функция R{r) определяет плотность вероятности, а сама вероятность

Таблица 8.2

Волновые функции для S-, р- и «/-электронов

Окончание


Примечание. В таблице приняты обозначения: а = (Z/a^rvL а 0 = Й 2 /(те 2) = = 0,5292 1(7 10 м - боровский радиус электронной орбиты атома водорода.

при т -> 0 (см. график функции 4лг 2 /? 2 (г) на рис. 8.21, б) в окрестности ядра стремится к нулю .

На рисунке 8.22 приведена схема построения графиков угловой части волновой функции 7(0, а) и ее квадрата 7 2 (0, б) на примере р г -орбитали. Значение 7(0, ф) для угла 0 изображается длиной отрезка ОМ. Целесообразно обратить внимание на то, что график функции 7(0) представляется сферами, тогда как график 7 2 (0) - вытянутыми «гантелями». Так, в табл. 8.2 были представлены волновые функции атома водорода для п = 1, 2 и 3. В первой строке этой таблицы приведены данные для 15- состояния электрона. В этом случае функция R{r) имеет максимум при г = 0 и спадает экспоненциально с увеличением г. Функция же 7(0, ф) не зависит ни от 0, ни от ф, поэтому распределение плотности вероятности | у| 2 сферически симметрично. Это же справедливо и для 25- и 35-СОСТОЯНИЙ.


Рис. 8.21. Радиальная часть волновых функций R(r ) (а) и величины 4лг 2 Л 2 (г) (б) для некоторых электронных состояний

Рис. 8.22. Схема построения графиков угловых частей волновой функции Y(0,

Решения для 2/ьсостояний ся = 2, / = 0и1и/Я/ = 0и±1 приведены в последующих строках табл. 8.2. Обращает на себя внимание факт, что решение для р г -орбитали имеет более простой вид, чем для орбиталей р х и Ру. Такое выделение оси z связано с природой сферической системы координат (см. рис 8.16). Для того, чтобы получить угловую часть волновой функции в действительной форме и найти общее аналитическое выражение для орбиталейр х ир у, надо воспользоваться тем свойством, что любая линейная комбинация решений уравнения Шредингера также является решением этого уравнения. Поэтому, воспользовавшись формулой Эйлера, надо составить линейные комбинации решений У, и У 1; _ 1, дающие действительные волновые функции:



В этом виде орбитали р х и р у представлены в табл. 8.2. Именно они широко используются в химии. Таким же образом получены угловые части в действительной форме для ^/-состояний электронов. Определив значения всех частей волновой функции в точке с г(г, 0,

В случае отсутствия какого-либо внешнего воздействия, когда нет оснований для выбора выделенной оси Oz, все решения уравнения Шредингера и все их линейные комбинации могут иметь место. Однако физического смысла они не имеют, потому что нет возможности проверить это: любая попытка установить характер орбитали внесет возмущение в систему и выделит ось Oz. В этом также проявляется особенность квантовой механики (как оказывается, прибор для исследования состояния нарушает само состояние объекта исследования).

Если же рассматриваемый атом попадает в окружение других атомов, то возникновение взаимодействий вносит существенные изменения в его энергетическое состояние. При этом в разных обстоятельствах энергетически более выгодными могут стать другие линейные комбинации решений (например, хорошо известные s-p и s-д-^-гибридные состояния, представляющие собой суперпозицию - линейную комбинацию, приведенных в табл. 8.2 орбиталей).

Вероятность пребывания электронов в одинаковых по объему областях пространства, но в разных его точках для изображенных орбиталей разная. Представить в графической, наглядной форме атомные орбитали в общем виде чрезвычайно сложно. Вместе с тем существуют разные способы сделать это.

Все усложняется еще больше при попытке изобразить полную волновую функцию электрона в атоме, представляющую собой произвеЭтим методом, в частности, в научной литературе представляются результаты рентгеновского исследования структуры молекул химических соединений.

дение трех функций, и ее квадрат модуля |у(г, 0, q в виде изолиний, т.е. линий, соединяющих точки с одинаковыми значениями --- (по примеру широко известных географических карт). dV

В квантовой химии также иногда используются графики орбиталей в виде замкнутых поверхностей, внутри которых заключено определенное количество (чаще всего 90%) полного электронного заряда. На рисунке 8.23 изображены орбитали для разных состояний электрона в атоме водорода. Обращает на себя внимание тот факт, что орби-

Рис. 8.23.

тали не касаются нулевой точки (положения ядра). Это происходит от того, что в этой области из-за радиальной части волновой функции плотность вероятности обнаружить электрон очень мала (практически нулевая вероятность нахождения электрона в ядре).

Уже для водородоподобных атомов, не говоря о более сложных системах, атомные орбитали оказываются значительно более сложными. К сожалению, получить точные аналитические решения для таких случаев не представляется возможным. Поэтому в квантовой химии используются разного рода модификации (приближения), более-менее приемлемо описывающие ту или иную систему, ту или иную область атома. Например, в показатель степени экспоненты, характеризующей радиальную часть волновой функции, вводится некоторый постоянный множитель, описывающий сжатие-расширение атома (множитель Слейтера). Иногда для радиальной функции используется не одна, а сумма двух или нескольких экспонент, каждая из которых по отдельности более точно описывает распределение электронной плотности вблизи ядра и вдали от него. Эти и другие эмпирические модификации решения для разных атомов рассматриваются в квантово-химических приложениях.

  • Для тяжелых атомов вероятность нахождения электрона внутри ядра становится значительной. Именно она определяет ядерное превращение, называемое К-захватом - захватом ядром электрона К-оболочки, в результате которого протон превращается в нейтрон, и заряд ядра меняется.

В химии и физике атомные орбитали - это функция, называемая волновой, которая описывает свойства, характерные для не более двух электронов в окрестностях или системы ядер, как в молекуле. Орбиталь часто изображается как трехмерная область, внутри которой существует 95-процентная вероятность нахождения электрона.

Орбитали и орбиты

Когда планета движется вокруг Солнца, она очерчивает путь, называемый орбитой. Подобным образом атом можно представить в виде электронов, кружащих на орбитах вокруг ядра. На самом деле все обстоит иначе, и электроны находятся в областях пространства, известных как атомные орбитали. Химия довольствуется упрощенной моделью атома для расчета волнового уравнения Шредингера и, соответственно, определения возможных состояний электрона.

Орбиты и орбитали звучат похоже, но они имеют совершенно разные значения. Крайне важно понимать разницу между ними.

Невозможность изображения орбит

Чтобы построить траекторию движения чего-то, нужно точно знать, где объект находится, и быть в состоянии установить, где он будет через мгновение. Для электрона это сделать невозможно.

Согласно нельзя точно знать, где частица находится в данный момент и где она окажется потом. (На самом деле принцип говорит о том, что невозможно определить одновременно и с абсолютной точностью ее момент и импульс).

Поэтому невозможно построить орбиту движения электрона вокруг ядра. Является ли это большой проблемой? Нет. Если что-то невозможно, это следует принять и найти способы обойти.

Электрон водорода - 1s-орбиталь

Предположим, имеется один атом водорода и в определенный момент времени графически запечатлевается положение одного электрона. Вскоре после этого, процедура повторяется, и наблюдатель обнаруживает, что частица находится в новом положении. Как она из первого места попала во второе, неизвестно.

Если продолжать действовать таким образом, то постепенно сформируется своего рода 3D-карта мест вероятного нахождения частицы.

В случае электрон может находиться в любом месте в пределах сферического пространства, окружающего ядро. На диаграмме показано поперечное сечение этого сферического пространства.

95 % времени (или любой другой процент, так как стопроцентную уверенность могут обеспечить лишь размеры Вселенной) электрон будет находиться в пределах довольно легко определяемой области пространства, достаточно близкой к ядру. Такой участок называется орбиталью. Атомные орбитали - это области пространства, в которых существует электрон.

Что он там делает? Мы не знаем, не можем знать и поэтому просто игнорируем эту проблему! Мы можем сказать лишь, что если электрон находится на конкретной орбитали, то он будет обладать определенной энергией.

Каждая орбиталь имеет название.

Пространство, занимаемое электроном водорода, называется 1s-орбиталью. Единица здесь обозначает то, что частица находится на ближайшем к ядру энергетическом уровне. S говорит о форме орбиты. S-орбитали сферически симметричны относительно ядра - по крайней мере, как полый шар из довольно плотного материала с ядром в его центре.

2s

Следующая орбиталь - 2s. Она похожа на 1s, за исключением того, что область наиболее вероятного нахождения электрона расположена дальше от ядра. Это орбиталь второго энергетического уровня.

Если присмотреться внимательно, то можно заметить, что ближе к ядру есть еще один регион несколько более высокой плотности электрона («плотность» является еще одним способом обозначения вероятности того, что эта частица присутствует в определенном месте).

2s-электроны (и 3s, 4s и т. д.) проводят часть своего времени намного ближе к центру атома, чем можно было бы ожидать. Результатом этого является небольшое снижение их энергии на s-орбиталях. Чем ближе ​​электроны приближаются к ядру, тем меньше становится их энергия.

3s-, 4s-орбитали (и т. д.) располагаются все дальше от центра атома.

Р-орбитали

Не все электроны населяют s-орбитали (на самом деле, очень немногие из них там находятся). На первом единственным доступным местом расположения для них является 1s, на втором добавляются 2s и 2p.

Орбитали этого типа скорее походят на 2 одинаковых воздушных шара, связаны друг с другом на ядре. На диаграмме показано поперечное сечение 3-мерной области пространства. Опять же, орбиталь показывает лишь область с 95-процентной вероятностью нахождения отдельного электрона.

Если представить себе горизонтальную плоскость, которая проходит через ядро таким образом, что одна частью орбиты будет находиться над плоскостью, а другая под ней, то существует нулевая вероятность нахождения электрона на этой плоскости. Так как же частица попадает из одной части в другую, если он никогда не сможет пройти через плоскость ядра? Это связано с ее волновой природой.

В отличие от s-, p-орбиталь имеет определенную направленность.

На любом энергетическом уровне можно иметь три абсолютно эквивалентные р-орбитали, расположенные под прямым углом друг к другу. Они произвольно обозначаются символами р х, р у и p z . Так принято для удобства - то, что подразумевается под направлениями X, Y или Z, постоянно изменяется, т. к. атом беспорядочно движется в пространстве.

Р-орбитали на втором энергетическом уровне называются 2р х, 2р у и 2p z . Есть подобные орбитали и на последующих - 3p x , 3p y , 3p z , 4p x , 4p y , 4p z и так далее.

Все уровни, за исключением первого, имеют р-орбитали. На более высоких «лепестки» вытянутее, с наиболее вероятным местом нахождения электрона на большем удалении от ядра.

d- и f-орбитали

В дополнение к s- и р-орбиталям, существует два других набора орбиталей, доступных для электронов на более высоких уровнях энергии. На третьем возможно существование пяти d-орбиталей (со сложными формами и именами), а также 3s- и 3p-орбиталей (3p x , 3p y , 3p z). В общей сложности их здесь имеется 9.

На четвертом, наряду с 4s и 4p и 4d появляются 7 дополнительных f-орбиталей - всего 16, доступных также на всех более высоких энергетических уровнях.

Размещение электронов на орбиталях

Атом можно представить, как очень причудливый дом (подобный перевернутой пирамиде) с ядром, живущим на первом этаже, и различными комнатами на верхних этажах, занимаемых электронами:

  • на первом этаже есть только 1 комната (1s);
  • на втором комнат уже 4 (2s, 2р х, 2р у и 2p z);
  • на третьем этаже расположено 9 комнат (одна 3s, три 3р и пять 3d-орбиталей) и так далее.

Но комнаты не очень большие. Каждая из них может содержать только 2 электрона.

Удобный способ показать атомные орбитали, в которых находятся данные частицы - это нарисовать «квантовые ячейки».

Квантовые ячейки

Атомные орбитали могут быть представлены в виде квадратов с электронами в них, изображенными в виде стрелок. Часто стрелки, направленные вверх и вниз, используются, чтобы показать, что эти частицы отличаются друг от друга.

Необходимость наличия разных электронов в атоме является следствием квантовой теории. Если они находятся на разных орбиталях - это прекрасно, но если они расположились на одной, то между ними должно существовать какой-то тонкое различие. Квантовая теория наделяет частицы свойством, которое носит название «спин» - именно его и обозначает направление стрелок.

1s-орбиталь с двумя электронами изображается в виде квадрата с двумя стрелками, направленными вверх и вниз, но ее также можно записать еще быстрее как 1s 2 . Это читается как «один s два», а не как «один s в квадрате». Не следует путать числа в этих обозначениях. Первое обозначает энергетический уровень, а второе - количество частиц на орбитали.

Гибридизация

В химии гибридизация является концепцией смешивания атомных орбиталей в новые гибридные, способные спаривать электроны с формированием химических связей. Sp-гибридизация объясняет химические связи таких соединений, как алкины. В этой модели атомные орбитали углерода 2s и 2p смешиваются, образуя две sp-орбитали. Ацетилен C 2 H 2 состоит из sp-sp-переплетения двух атомов углерода с образованием σ-связи и двух дополнительных π-связей.

Атомные орбитали углерода в предельных углеводородах имеют одинаковые гибридные sp 3 -орбитали, имеющие форму гантели, одна часть которой намного больше другой.

Sp 2 -гибридизация подобна предыдущим и образована смешением одной s и двух p-орбиталей. Например, в молекуле этилена образуются три sp 2 - и одна p-орбиталь.

Атомные орбитали: принцип заполнения

Представляя себе переходы от одного атома к другому в периодической таблице химических элементов, можно установить электронную структуру следующего атома путем размещения дополнительной частицы в следующую доступную орбиталь.

Электроны, прежде чем заполнить более высокие энергетические уровни, занимают более низкие, расположенные ближе к ядру. Там, где есть выбор, они заполняют орбитали по отдельности.

Такой порядок заполнения известен под названием правила Хунда. Оно применяется только тогда, когда атомные орбитали обладают равными энергиями, а также помогает минимизировать отталкивание между электронами, что делает атом более стабильным.

Следует обратить внимание на то, что у s-орбитали энергия всегда немного меньше, чем у р на том же энергетическом уровне, поэтому первые всегда заполняются раньше последних.

Что действительно странно, так это положение 3d-орбиталей. Они находятся на более высоком уровне, чем 4s, и поэтому 4s-орбитали заполняются первыми, а затем уже все 3d- и 4p-орбитали.

Такая же путаница происходит и на более высоких уровнях с большим количеством переплетений между ними. Поэтому, например, атомные орбитали 4f не заполняются, пока не будут заняты все места на 6s.

Знание порядка заполнения имеет центральное значение для понимания того, как описывать электронные структуры.

В связи с тем, что при описании элементов их подразделяют на группы с разными орбиталями, очень кратко напомним сущность этого понятия.

Согласно модели атома Бора, электроны вращаются вокруг ядра по круговым орбиталям (оболочкам ). Каждая оболочка имеет строго определенный энергетический уровень и характеризуется некоторым квантовым числом. В природе возможны только определенные энергии электрона, то есть дискретные (квантованные) энергии орбиталей («разрешенные»). Теория Бора приписывает электронным оболочкам К, L, М, N и далее в порядке латинского алфавита, в соответствии с повышающимся энергетическим уровнем оболочек, главное квантовое число п , равное 1, 2, 3, 4 и т.д. В последующем оказалось, что электронные оболочки расщеплены на подоболочки, и каждой свойствен определенный квантовый энергетический уровень, характеризующийся орбитальным квантовым числом l .

Согласно принципу неопределенности Гейзенберга, точно определить местонахождение электрона в любой определенный момент времени невозможно. Однако можно указать вероятность этого. Область пространства, в которой вероятность нахождения электрона наиболее высока, называется орбиталью . Электроны могут занимать 4 орбитали разных типов, которые называются s- (sharp — резкая), р- (principal — главная), d- (diffuse — диффузная) и f- (fundamental — базовая) орбитали. Раньше этими буквами обозначали спектральные линии водорода, но в настоящее время их используют только в качестве символов, без расшифровки.

Орбитали можно представить в виде трехмерных поверхностей. Обычно области пространства, ограниченные этими поверхностями, выбирают так, чтобы вероятность обнаружения внутри них электрона составляла 95%. Схематическое изображение орбиталей представлено на рис. 1.

Рис. 1.

s-Орбиталь имеет сферическую форму, р-орбиталь — форму гантели, d-opбиталь — форму двух гантелей, перекрещивающихся в двух узловых взаимно перпендикулярных плоскостях, s-подоболочка состоит из одной s-орбитали, р-подоболочка — из 3 р-орбиталей, d-подоболочка — из 5 d-орбиталей.

Если не прикладывать магнитное поле, все орбитали одной подоболочки будут иметь одинаковую энергию; их в этом случае называют вырожденными . Однако во внешнем магнитном поле подоболочки расщепляются (эффект Зеемана ). Этот эффект возможен для всех орбиталей, кроме s-орбитали. Он характеризуется магнитным квантовым числом т . Эффект Зеемана используют в современных атомно-абсорбционных спектрофотометрах(ААСФ) для увеличения их чувствительности и снижения предела обнаружения при элементных анализах.

Для биологии и медицины существенно, что орбитали одной симметрии, то есть с одинаковыми числами l и т , но с разным значением главного квантового числа (например, орбитали 1s, 2s, 3s, 4s), различаются по своему относительному размеру. Объем внутреннего пространства электронных орбита-лей больше у атомов с большим значением п . Увеличение объема орбитали сопровождается ее разрыхлением. При комплексообразоваиии размер атома играет важную роль, поскольку определяет структуру координационных соединений. В табл. 1 приведено соотношение количества электронов и главного квантового числа.

Таблица 1. Количество электронов при разных значениях квантового числа п

Помимо трех названных квантовых чисел, характеризующих свойства электронов каждого атома, имеется еще одно — спиновое квантовое число s , характеризующее не только электроны, но и ядра атомов.

Медицинская бионеорганика. Г.К. Барашков

ОРБИТАЛЬ - область наиболее вероятного местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь).

К настоящему моменту описано пять типов орбиталей: s, p, d, f и g.
Названия первых трех сложились исторически, далее был выбран алфавитный принцип. Формы орбиталей вычислены методами квантовой химии.

s-Орбитали - имеют сферическую форму и одинаковую электронную плотность в направлении каждой оси трехмерных координат
s- орбиталь - орбиталь сфера

Каждая р-орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р-орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:
p- орбиталь - орбиталь гантель

d- орбиталь - орбиталь сложной формы

Энергия электронных уровней


Квантовые числа электронов

Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел:

n - энергетический уровень электрона (удаленность уровня от ядра)
l - по какого вида орбитали он движется (s,p,d...)
m- магнитного (на какой из p (из трех возможных), d (из 5-ти возможных) и т.д.
s - спинового (движение электрона вокруг собственной оси).

Принципы заполнения орбиталей

1. В атоме не может быть двух электронов, у которых значения всех квантовых чисел (n, l, m, s) были бы одинаковы, т.е. на каждой орбитали может находиться не более двух электронов (c противоположными спинами) (принцип Паули).

2. В основном состоянии каждый электрон располагается так, чтобы его энергия была минимальной.
Энергия орбиталей возрастает в ряду:
1S < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d » 4f < 6p < 7s.
Нет никакой необходимости запоминать эту последовательность. Ее можно извлечь из Периодической таблицы Д.И.Менделеева

3. Электроны предпочитают расселяться на одинаковых по энергии орбиталях (например, на трех p-орбиталях) сначала по одиночке, и лишь когда в каждой такой орбитали уже находится по одному электрону, начинается заполнение этих орбиталей вторыми электронами. Когда орбиталь заселяется двумя электронами, такие электроны называют спаренными .(правило Хунда)

Полная электронная формула элемента

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимальной энергии. Это значит, что сначала заполняются подуровни, для которых:

1. Число n минимально
2. Внутри уровня сначала заполняется s- подуровень, затем p- и лишь затем d- (l минимально)
3. Один подуровень содержит наибольшее число неспаренных электронов.
4. При заполнении электронных атомных орбиталей выполняется принцип Паули. Его следствием является, что энергетическому уровню с номером n может принадлежать не более чем 2n2 электронов, расположенных на n2 подуровнях.

Электронная формула элемента с порядковым номером 7 (это элемент азот, имеющий символ “N”) выглядит так.