Краткие содержания

На единичной окружности отмечены точки. Урок "определение синуса и косинуса на единичной окружности". Числа не кратные π на числовой окружности

При изучении тригонометрии в школе каждый ученик сталкивается с весьма интересным понятием «числовая окружность». От умения школьного учителя объяснить, что это такое, и для чего она нужна, зависит, насколько хорошо ученик пойдём тригонометрию впоследствии. К сожалению, далеко не каждый учитель может доступно объяснить этот материал. В результате многие ученики путаются даже с тем, как отмечать точки на числовой окружности . Если вы дочитаете эту статью до конца, то научитесь делать это без проблем.

Итак, приступим. Нарисуем окружность, радиус которой равен 1. Самую «правую» точку этой окружности обозначим буквой O :

Поздравляю, вы только что нарисовали единичную окружность. Поскольку радиус этой окружности равен 1, то её длина равна .

Каждому действительному числу можно поставить в соответствие длину траектории вдоль числовой окружности от точки O . За положительное направление принимается направление движения против часовой стрелки. За отрицательное – по часовой стрелке:

Расположение точек на числовой окружности

Как мы уже отмечали, длина числовой окружности (единичной окружности) равна . Где тогда будет располагаться на этой окружности число ? Очевидно, от точки O против часовой стрелки нужно пройти половину длины окружности, и мы окажемся в нужной точке. Обозначим её буквой B :

Обратите внимание, что в ту же точку можно было бы попасть, пройдя полуокружность в отрицательном направлении. Тогда бы мы отложили на единичной окружности число . То есть числам и соответствует одна и та же точка.

Причём этой же точке соответствуют также числа , , , и, вообще, бесконечное множество чисел, которые можно записать в виде , где , то есть принадлежит множеству целых чисел. Всё это потому, что из точки B можно совершить «кругосветное» путешествие в любую сторону (добавить или вычесть длину окружности ) и попасть в ту же самую точку. Получаем важный вывод, который нужно понять и запомнить.

Каждому числу соответствует единственная точка на числовой окружности. Но каждой точке на числовой окружности соответствует бесконечно много чисел.

Разобьем теперь верхнюю полуокружность числовой окружности на дуги равной длины точкой C . Легко видеть, что длина дуги OC равна . Отложим теперь от точки C дугу той же длины в направлении против часовой стрелки. В результате попадём в точку B . Результат вполне ожидаемый, поскольку . Отложим эту дугу в том же направлении ещё раз, но теперь уже от точки B . В результате попадём в точку D , которая будет уже соответствовать числу :

Заметим опять, что эта точка соответствует не только числу , но и, например, числу , потому что в эту точку можно попасть, отложив от точки O четверть окружности в направлении движения часовой стрелки (в отрицательном направлении).

И, вообще, отметим снова, что этой точке соответствует бесконечно много чисел, которые можно записать в виде . Но их также можно записать в виде . Или, если хотите, в виде . Все эти записи абсолютно равнозначны, и они могут быть получены одна из другой.

Разобьём теперь дугу на OC пополам точкой M . Сообразите теперь, чему равна длина дуги OM ? Правильно, вдвое меньше дуги OC . То есть . Каким числам соответствует точка M на числовой окружности? Уверен, что теперь вы сообразите, что эти числа можно записать в виде .

Но можно и иначе. Давайте в представленной формуле возьмём . Тогда получим, что . То есть эти числа можно записать в виде . Этот же результат можно было получить, используя числовую окружность. Как я уже говорил, оба записи равнозначны, и они могут быть получены одна из другой.

Теперь вы легко можете привести пример чисел, которым соответствуют точки N , P и K на числовой окружности. Например, числам , и :

Часто именно минимальные положительные числа и берут для обозначения соответствующих точек на числовой окружности. Хотя это совсем не обязательно, и точке N , как вы уже знаете, соответствует бесконечное множество других чисел. В том числе, например, число .

Если разбить дугу OC на три равные дуги точками S и L , так что точка S будет лежать между точками O и L , то длина дуги OS будет равна , а длина дуги OL будет равна . Используя знания, которые вы получили в предыдущей части урока, вы без труда сообразите, как получились остальные точки на числовой окружности:

Числа не кратные π на числовой окружности

Зададимся теперь вопросом, где на числовой прямой отметить точку, соответствующую числу 1? Чтобы это сделать, надо от самой «правой» точки единичной окружности O отложить дугу, длина которой была бы равна 1. Указать место искомой точки мы можем лишь приблизительно. Поступим следующим образом.

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям - 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей - π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей - π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого - это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x 2 + y 2 = 1 2 . Поскольку x = y, а 1 2 = 1, то уравнение упрощается до x 2 + x 2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M 1 (π/4) = M 1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M 2 ((3π)/4) = M 2 (-√2/2; √2/2)
M 3 ((5π)/4) = M 3 (-√2/2; -√2/2)
M 4 ((7π)/4) = M 4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x 2 + (½) 2 = 1 2
x 2 = 1 - ¼ = ¾
x = √3/2

Таким образом T 1 (π/6) = T 1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T 2 (π/3) = T 2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T 3 ((2π)/3) = T 3 (-½; √3/2)
T 4 ((5π)/6) = T 4 (-√3/2; ½)
T 5 ((7π)/6) = T 5 (-√3/2; -½)
T 6 ((4π)/3) = T 6 (-½; -√3/2)
T 7 ((5π)/3) = T 7 (½; -√3/2)
T 8 ((11π)/6) = T 8 (√3/2; -½)

На тригонометрическом круге помимо углов в градусы мы наблюдаем .

Подробнее про радианы:

Радиан определяется как угловая величина дуги, длина которой равна её радиусу. Соответственно, так как длина окружности равна , то очевидно, что в окружности укладывается радиан, то есть

1 рад ≈ 57,295779513° ≈ 57°17′44,806″ ≈ 206265″.

Все знают, что радиан – это

Так вот, например, , а . Так, мы научились переводить радианы в углы .

Теперь наоборот, давайте переводить градусы в радианы .

Допустим, нам надо перевести в радианы. Нам поможет . Поступаем следующим образом:

Так как, радиан, то заполним таблицу:

Тренируемся находить значения синуса и косинуса по кругу

Давайте еще уточним следующее.

Ну хорошо, если нас просят вычислить, скажем, , – здесь обычно путаницы не возникает – все начинают первым делом искать на круге.

А если просят вычислить, например, … Многие, вдруг, начинают не понимают где искать этот ноль… Частенько ищут его в начале координат. Почему?

1) Давайте договоримся раз и навсегда! То, что стоит после или – это аргумент=угол, а углы у нас располагаются на круге, не ищите их на осяx! (Просто отдельные точки попадают и на круг, и на ось…) А сами значения синусов и косинусов – ищем на осях!

2) И еще! Если мы от точки «старт» отправляемся против часовой стрелки (основное направление обхода тригонометрического круга), то мы откладываем положительные значения углов , значения углов растут при движении в этом направлении.

Если же мы от точки «старт» отправляемся по часовой стрелке, то мы откладываем отрицательные значения углов.

Пример 1.

Найти значение .

Решение:

Находим на круге . Проецируем точку на ось синусов (то есть проводим перпендикуляр из точки к оси синусов (оу)).

Приходим в 0. Значит, .

Пример 2.

Найти значение .

Решение:

Находим на круге (проходим против часовой стрелки и еще ). Проецируем точку на ось синусов (а она уже лежит на оси синусов).

Попадаем в -1 по оси синусов.

Заметим, за точкой «скрываются» такие точки, как (мы могли бы пойти в точку, помеченную как , по часовой стрелке, а значит появляется знак минус), и бесконечно много других.

Можно привести такую аналогию:

Представим тригонометрический круг как беговую дорожку стадиона.


Вы ведь можете оказаться в точке «Флажок», отправляюсь со старта против часовой стрелки, пробежав, допустим, 300 м. Или пробежав, скажем, 100м по часовой стрелке (считаем длину дорожки 400 м).

А также вы можете оказаться в точке «Флажок» (после «старт»), пробежав, скажем, 700 м, 1100 м, 1500 м и т. д. против часовой стрелки. Вы можете оказаться в точке «Флажок», пробежав 500 м или 900 м и т. д. по часовой стрелке от «старт».

Разверните мысленно беговую дорожку стадиона в числовую прямую. Представьте, где на этой прямой будут, например, значения 300, 700, 1100, 1500 и т.д. Мы увидим точки на числовой прямой, равноотстоящие друг от друга. Свернем обратно в круг. Точки «cлепятся» в одну.

Так и с тригонометрическим кругом. За каждой точкой скрыто бесконечно много других.

Скажем, углы , , , и т.д. изображаются одной точкой. И значения синуса, косинуса в них, конечно же, совпадают. (Вы заметили, что мы прибавляли/вычитали или ? Это период для функции синус и косинус.)

Пример 3.

Найти значение .

Решение:

Переведем для простоты в градусы

(позже, когда вы привыкнете к тригонометрическому кругу, вам не потребуется переводить радианы в градусы):

Двигаться будем по часовой стрелки от точки Пройдем полкруга () и еще

Понимаем, что значение синуса совпадает со значением синуса и равняется

Заметим, если б мы взяли, например, или и т.д., то мы получили бы все тоже значение синуса.

Пример 4.

Найти значение .

Решение:

Все же, не будем переводить радианы в градусы, как в предыдущем примере.

То есть нам надо пройти против часовой стрелки полкруга и еще четверть полкруга и спроецировать полученную точку на ось косинусов (горизонтальная ось).

Пример 5.

Найти значение .

Решение:

Как отложить на тригонометрическом круге ?


Если мы пройдем или , да хоть , мы все равно окажемся в точке, которую мы обозначили как «старт». Поэтому, можно сразу пройти в точку на круге

Пример 6.

Найти значение .

Решение:

Мы окажемся в точке ( приведет нас все равно в точку ноль). Проецируем точку круга на ось косинусов (смотри тригонометрический круг), попадаем в . То есть .

Тригонометрический круг – у вас в руках

Вы же уже поняли, что главное – запомнить значения тригонометрических функций первой четверти. В остальных четвертях все аналогично, нужно лишь следить за знаками. А «цепочку-лесенку» значений тригонометрических функций, вы, надеюсь уже не забудете.

Как находить значения тангенса и котангенса основных углов .

После чего, познакомившись с основными значениями тангенса и котангенса, вы можете пройти

На пустой шаблон круга. Тренируйтесь!

(10-й класс)

Цель. Показать учащимся приём построения “табличных” и связанных с ними углов без транспортира. Научить записывать значения углов, соответствующих указанным точкам единичной окружности.

Оборудование.

  1. Модель единичной окружности (плакат).
  2. Плакат единичной окружности, где показаны приёмы построения “табличных” углов.
  3. Карточки самостоятельных работ.
  4. Карточки с домашними заданиями.
  5. Карточки – “считалочки”.
  6. Геометрические инструменты.
  7. Фломастеры, цветной мел.
  8. Кодоскоп.

I. Организационный момент.

Постановка цели, мотивация учения.

Чтобы лучше понять и запомнить расположение точек на единичной окружности, мы познакомимся с приёмами построения “табличных” (30°, 45°, 60°) и связанных с ними углов без транспортира. Это позволит в дальнейшем не только легче освоить радианную меру угла, но и быстрее находить значения тригонометрических функций, хорошо решать простейшие тригонометрические уравнения, неравенства, системы.

II. Новый материал.

(фронтальная форма учебной работы)

1.1. Начертите на определённых листах и на доске координатную плоскость и окружность с центром в начале координат радиусом равным 1.

1.2. Определение единичной окружности (учащиеся)

1.3. Понятие узловых точек (пересечения единичной окружности и осей координат)

2.1. Отметим угловые точки на единичной окружности и запишем соответствующие им углы (0°, 90°, 180°, 360°)

(учащиеся работают у доски и на своих моделях единичной окружности).

Положительные углы против хода часовой стрелки (одним цветом).

Отрицательные углы – по часовой стрелке (другим цветом).

Все углы записываем внутри окружности.

3.1. Как построить точки, соответствующие углам 45°, 135°, 225°, 315°?

(делением пополам координатных углов).

3.2. Учащиеся предлагают свои варианты. Затем на отдельно приготовленном плакате рассказывают приём построение точек, соответствующие углам 45°, 135°, 225°, 315°.

3.3. Данный приём применяется к единичной окружности на доске и к своим моделям. Отмечают точки, соответствующие углам 45°, 135°, 225°, 315°.

4.1. Как построить точки соответствующие углам 30°, 150°, 210°, 330°?

(делением пополам вертикальных радиусов).

4.2. Учащиеся предлагают свои варианты. Затем по готовому плакату объясняют построение данных углов.

4.3. На демонстрационной модели и своих моделях единичных окружностей отмечают точки, соответствующие углам 30°, 150°, 210°, 330°.

5.1. Как построить точки соответствующие углам 60°, 120°, 240°, 300°?

(делением пополам горизонтальных радиусов).

5.2. Учащиеся предлагают свои варианты. Затем по готовому плакату объясняют приём построения данных углов

5.3. Учащиеся отмечают данные углы на демонстрационной модели и на своих моделях, используя предложенный приём.

6.1. Выразим в радианной мере величины углов

6.2. Около каждой из отмеченных точек единичной окружности запишем им соответствующие углы в радианах. (Вычисления на доске. Пример.)

(неотрицательные числа пишем одним цветом, а отрицательные другим).

7.1. Запоминанию данных углов помогает “Считалка”.

(карточки со “ Считалками” разложены на ученических столах перед началом урока).

а) “Ра пи на два” (/2)

“Два пи на два” ()

“Три пи на два” (3/2)

б) “Раз пи на четыре” (/4)

“Два пи на четыре” (2/4)

“Три пи на четыре” (3/4)

8. Запись углов, соответствующих одной точке единичной окружности

Пусть на окружности дана точка Р, которая получается повтором точки Р 0 на угол .

При обходе окружности на целое число оборотов мы попадаем на исходную точку Р. Значит, точке Р наравне с числом соответствует любое число вида +2п , п ЄZ.

На единичной окружности отмечены точки, соответствующие углам, запишите все такие углы, используя градусную меру и радианную.

0 =45 0 , любой другой угол отличается от угла 0 на 360 0 п , п ЄZ.

Запишем: =45 0 +360 0 п, п Є Z;

III. Проверка усвоения изученного.

(самостоятельная работа)

Для всех учащихся карточки с заданиями самостоятельной работы (записываем только ответы).

Самостоятельная работа.

1.На единичной окружности отмечены точки, соответствующие углам и , заключённым в промежутке от 0 0 до 360 0 . Выразите углы и в градусах.

2. На единичной окружности отмечены точки, соответствующие углам и , заключённым в промежутке от 0 до 2 радиан. Выразите углы и , в радианах

3.На единичной окружности отмечены точки, соответствующие углам и , заключённым в промежутке от 0 до 2 радиан. Выразите и в радианах.

4. На единичной окружности отмечены точки, соответствующие углам и . Запишите все углы и , используя градусную меру.

Видеоурок «Определение синуса и косинуса на единичной окружности» представляет наглядный материал для урока по соответствующей теме. В ходе урока рассматриваются понятия синуса и косинуса для чисел, соответствующих точкам единичной окружности, описывается множество примеров, формирующих умение решать задания, где используется данная интерпретация понятий. Удобное и понятное иллюстрирований решений, подробно описанный ход рассуждений помогают быстрее достичь целей обучения, повысить эффективность урока.

Видеоурок начинается с представления темы. В начале демонстрации дается определение синуса и косинуса числа. На экране демонстрируется единичная окружность с центром в начале координат, отмечаются точки пересечения единичной окружности с осями координат А, В, С, D. В рамке выделено определение, в котором указано, что если точке М, принадлежащей единичной окружности, соответствует некоторое число t, то абсцисса этой точки является косинусом числа t и обозначается cos t, ордината точки является синусом и обозначается sin t. Озвучивание определения сопровождается изображением на единичной окружности точки М, указанием ее абсциссы и ординаты. Представляется краткая запись с помощью обозначений, что для М(t)=M(x;y), х= cos t, у= sin t. Указываются ограничения, накладываемые на значение косинуса и синуса числа. Согласно рассмотренным данным, -1<=cos t<=1 и -1<= sin t<=1.

Также по рисунку легко отследить, как изменяется знак функции в зависимости от того, в какой четверти располагается точка. На экране составляется таблица, в которой для каждой функции указывается ее знак в зависимости от четверти. Знак cos t - плюс в первой и четвертой четвертях и минус во второй и третьей четвертях. Знак sin t - плюс в первой и второй четвертях, минус в третьей и четвертой четвертях.

Ученикам напоминается уравнение единичной окружности х 2 +у 2 =1. Отмечается, что после подстановки вместо координат соответствующих функций, получим cos 2 t+ sin 2 t=1 - основное тригонометрическое тождество. Пользуясь способом нахождения sin t и cos t с помощью единичной окружности, заполняется таблица основных значений синуса и косинуса для чисел от 0 до 2π с шагом π/4 и для чисел от π/6 до 11π/6 с шагом π/6. На экране демонстрируются эти таблицы. С помощью их и рисунка учитель может проверить, как усвоен материал и насколько ученикам понятно происхождение значений sin t и cos t.

Рассматривается пример, в котором вычисляется sin t и cos t для t=41π/4. Решение иллюстрируется рисунком, на котором изображена единичная окружность с центром в начале координат. На ней отмечается точка 41π/4. Замечено, что данная точка совпадает с положением точки π/4. Это доказывается с помощью представления данной дроби в виде смешанной 41π/4=π/4+2π·5. Пользуясь таблицей значений косинуса, получаем значения cos π/4=√2/2 и sinπ/4=√2/2. Из полученных сведений следует, что cos 41π/4=√2/2 и sin 41π/4=√2/2.

В втором примере необходимо вычислить sin t и cos t для t=-25π/3. На экране изображается единичная окружность с отмеченной на ней точкой t=-25π/3. Сначала для решения задания число -25π/3 представляется в виде смешанной дроби, чтобы обнаружить, какому табличному значению будет соответствовать его sin t и cos t. После преобразования получаем -25π/3=-π/3+2π·(-4). Очевидно, t=-25π/3 совпадет на окружности с точкой -π/3 или 5π/3. Из таблицы выбираем соответствующие значения синуса и косинуса cos 5π/3=1/2 и sin 5π/3=-√3/2. Эти значения будут верными и для рассматриваемого числа cos (-25π/3)=1/2 и sin (-25π/3)=-√3/2. Задача решена.

Аналогично решается и пример 3, в котором необходимо вычислить sin t и cos t для t=37π. Чтобы решить пример, число 37π раскладывается, вычленяя π и 2π. В таком представлении получается 37π=π+2π·18. На единичной окружности, которая изображена рядом с решением, отмечается данная точка на пересечении отрицательной части оси ординат и единичной окружности - точка π. Очевидно, что значения синуса и косинуса числа совпадут с табличными значениями π. Из таблицы находим значения sin π=-1 и cos π=0. Соответственно, эти же значения являются искомыми, то есть sin 37π=-1 и cos 37π=0.

В примере 4 требуется вычислить sin t и cos t при t=-12π. Представляем число в виде -12π=0+2π·(-6). Соответственно, точка -12π совпадает с точкой 0. Значения косинуса и синуса этой точки sin 0=1 и cos 0=0. Эти значения и являются искомыми sin (-12π)=1 и cos (-12π)=0.

В пятом примере нужно решить уравнение sin t=√3/2. В решении уравнения используется понятие синуса числа. Так как он представляет ординату точки М(t), то необходимо отыскать точку с ординатой √3/2. На рисунке, сопровождающем решение, видно, что ординате √3/2 соответствуют две точки - первая π/3 и вторая 2π/3. Учитывая периодичность функции, отмечаем, что t=π/3+2πk и t= 2π/3+2πk для целого k.

В примере 6 решается уравнение с косинусом - cos t=-1/2. В поиске решений уравнения находим на единичной окружности точки с абсциссой 2π/3. На экране демонстрируется рисунок, на котором отмечается абсцисса -1/2. Ей соответствуют две точки на окружности - 2π/3 и -2π/3. Учитывая периодичность функций, найденное решение записывается в виде t=2π/3+2πk и t=-2π/3+2πk, где k- целое число.

В примере 7 решается уравнение sin t-1=0. Чтобы найти решение, уравнение преобразуется к виду sin t=1. Синусу 1 соответствует число π/2. Учитывая периодичность функции, найденное решение записывается в виде t=π/2+2πk, где k - целое. Аналогично в примере 8 решается уравнение cos t+1=0. Преобразуем уравнение к виду cos t=-1. Точка, абсцисса которой равна -1, соответствует числу π. Эта точка отмечена на единичной окружности, изображенной рядом с текстовым решением. Соответственно, решением данного уравнения является число t=π+2πk, где k - целое число. Не более сложным является решение уравнения cos t+1=1 в примере 9. Преобразовав уравнение, получаем cos t=0. На единичной окружности, изображенной рядом с решением, отмечаем точки -π/2 и -3π/2, в которых косинус принимает значение 0. Очевидно, решением данного уравнение будет ряд значений t=π/2+πk, где k - целое число.

В примере 10 сравниваются значения sin 2 и cos 3. Чтобы решение было наглядным, демонстрируется рисунок, где отмечены точки 2 и 3. Зная, что π/2≈1,57, оцениваем удаленность точек от нее. На рисунке отмечается, что точка 2 удалена от π/2 на 0,43, в то время как 3 удалена на 1,43, поэтому точка 2 имеет большую абсциссу, чем точка 3. Это значит, что sin 2>cos 3.

Пример 11 описывает вычисление выражения sin 5π/4. Так как 5π/4 - это π/4+π, то, используя формулы приведения, выражение можно преобразовать в вид - sin π/4. Из таблицы выбираем его значение - sin π/4=-√2/2. Аналогично в примере 12 находится значение выражения cos7π/6. Преобразуя его к виду cos(π/6+π), получаем выражение - cos π/6. Табличное значение - cos π/6=-√3/2. Это значение и будет решением.

Далее предлагается запомнить важные равенства, которые помогают в решении задач - это sin(-t)= -sin t и cos (-t)=cos t. Фактически данное выражение отображает четность косинуса и нечетность синуса. На изображении единичной окружности рядом с равенствами можно увидеть, как на координатной плоскости работают данные равенства. Также представляются два равенства, отображающие периодичность функций, важные для решения задач sin(t+2πk)= sin t и cos (t+2πk)=cos t. Демонстрируются равенства, отображающие симметричное расположение точек на единичной окружности sin(t+π)= -sin t и cos (t+π)=-cos t. Рядом с равенствами строится изоражение, на котором отображается расположение этих точек на единичной окружности. И последние представленные равенства sin(t+π/2)= cos t и cos (t+π/2)=- sin t.

Видеоурок «Определение синуса и косинуса на единичной окружности» рекомендуется применять на традиционном школьном уроке математик для повышения его эффективности, обеспечения наглядности объяснения учителя. С этой же целью материал может использоваться в ходе дистанционного обучения. Пособие также может быть полезно для формирования соответствующих навыков решения заданий у учеников при самостоятельном освоении материала.

ТЕКСТОВАЯ РАСШИФРОВКА:

«Определение синуса и косинуса на единичной окружности».

Дадим определение синуса и косинуса числа

ОПРЕДЕЛЕНИЕ: если точка М числовой единичной окружности соответствует числу t(тэ), то абсциссу точки М называют косинусом числа t(тэ) и обозначают cost, а ординату точки М называют синусом числа t(тэ) и обозначают sint(рис).

Значит, если М(t) = М (x ,y)(эм от тэ равно эм с координатами икс и игрек), то x = cost, y= sint (икс равен косинус тэ, игрек равен синус тэ).Следовательно, -1≤ cost ≤ 1, -1≤ sint ≤1(косинус тэ больше либо равно минус один, но меньше либо равно один; синус тэ больше либо равно минус один, но меньше либо равно один).Зная, что каждая точка числовой окружности имеет в системе xOy свои координаты, можно составить таблицу значении синуса и косинуса по четвертям окружности, где значение косинуса положительно в первой и четвертой четвертях и, соответственно, отрицательно во второй и третьей четвертях.

Значение синуса положительно в первой и второй четвертях и, соответственно, отрицательно в третьей и четвертой четвертях. (показать на чертеже)

Так как уравнение числовой окружности имеет вид х 2 + у 2 = 1(икс квадрат плюс игрек квадрат равно одному), то получаем равенство:

(косинус квадрат тэ плюс синус квадрат тэ равно единице).

Опираясь на таблицы, которые мы составляли при определении координат точек числовой окружности, составим таблицы для координат точек числовой окружности для значений cost и sint .

Рассмотрим примеры.

ПРИМЕР 1. Вычислить cos t и sin t, если t = (тэ равно сорок один пи на четыре).

Решение. Числу t = соответствует та же точка числовой окружности, что и числу, так как = ∙π = (10 +) ∙π = + 2π ∙ 5(сорок один пи на четыре равно сумме пи на четыре и произведения два пи на пять). А для точки t = по таблице значение косинусов 1 имеем cos = и sin =. Следовательно,

ПРИМЕР 2. Вычислить cos t и sin t, если t = (тэ равно минус двадцать пять пи на три).

РЕШЕНИЕ: Числу t = соответствует та же точка числовой окружности, что и числу, так как = ∙ π = - (8 +)∙π = + 2π ∙ (- 4) (минус двадцать пять пи на три равно сумме минус пи на три и произведению двух пи на минус четыре). А числу соответствует на числовой окружности та же точка, что и числу. А для точки t = по таблице 2 имеем cos = и sin = .Следовательно, cos () = и sin () =.

ПРИМЕР 3. Вычислить cos t и sin t, если t = 37π; (тэ равно тридцать семь пи).

РЕШЕНИЕ: 37π = 36π + π = π + 2π ∙ 18.Значит, числу 37π соответствует та же точка числовой окружности, что и числу π. А для точки t = π по таблице 1 имеем cos π = -1, sin π=0.Значит, cos37π = -1, sin37π=0.

ПРИМЕР 4. Вычислить cos t и sin t, если t = -12π (равно минус двенадцать пи).

РЕШЕНИЕ: - 12π = 0 + 2π ∙ (- 6), то есть числу - 12π соответствует та же точка числовой окружности, что и числу ноль. А для точки t = 0 по таблице 1 имеем cos 0 = 1, sin 0 =0.Значит, cos(-12π) =1, sin(-12π) =0.

ПРИМЕР 5. Решить уравнение sin t = .

Решение. Учитывая, что sin t - это ордината точки М(t) (эм от тэ) числовой окружности, найдем на числовой окружности точки с ординатой и запишем каким числам t они соответствуют. Одна точка соответствует числу, а значит, и любому числу вида + 2πk. Вторая точка соответствует числу, а значит, и любому числу вида + 2πk. Ответ: t = + 2πk,где kϵZ (ка принадлежит зэт),t = + 2πk,где kϵZ (ка принадлежит зэт).

ПРИМЕР 6. Решить уравнение cos t = .

Решение. Учитывая, что cos t - это абсцисса точки М(t) (эм от тэ) числовой окружности, найдем на числовой окружности точки с абсциссой и запишем каким числам t они соответствуют. Одна точка соответствует числу,а значит и любому числу вида + 2πk. А вторая точка соответствует числу или, а значит, и любому числу вида + 2πk или + 2πk.

Ответ: t = + 2πk, t=+ 2πk (или ± + 2πk(плюс минус два пи на три плюс два пи ка) , где kϵZ (ка принадлежит зэт).

ПРИМЕР 7.Решить уравнение cos t = .

Решение. Аналогично предыдущему примеру, на числовой окружности нужно найти точки c абсциссой и записать, каким числам t они соответствуют.

По рисунку видно, что абсциссу имеют две точки Е и S, а каким числам они соответствуют мы пока не сможем сказать. К этому вопросу вернемся позже.

ПРИМЕР 8.Решить уравнение sin t = - 0,3.

Решение. На числовой окружности найдем точки с ординатой - 0,3 и запишем, каким числам t они соответствуют.

Ординату - 0,3 имеют две точки P и H, а каким числам они соответствуют мы пока не сможем сказать. К этому вопросу так же вернемся позже.

ПРИМЕР 9.Решить уравнение sin t -1 =0

Решение. Перенесем минус единицу в правую часть уравнения, получим синус тэ равно одному (sin t =1). На числовой окружности нам нужно найти точку, у которой ордината равна один. Эта точка соответствует числу, а значит всем числам вида + 2πk(пи на два плюс два пи ка).

Ответ: t = + 2πk, kϵZ(ка принадлежит зэт).

ПРИМЕР 10.Решить уравнение cos t + 1 = 0.

Перенесем единицу в правую часть уравнения, получим косинус тэ равно минус один(cos t = - 1).Абсциссу минус один имеет точка числовой окружности, которая соответствует числу π, а это значит, и все числам вида π+2πk. Ответ: t = π+ 2πk, kϵZ.

ПРИМЕР 11. Решить уравнение cos t + 1 = 1.

Перенесем единицу в правую часть уравнения, получим косинус тэ равно нулю(cos t = 0).Абсциссу ноль имеют точки В и D (рис 1), которые соответствуют числам, и т. д. Эти числа можно записать так + πk. Ответ: t = + πk, kϵZ.

ПРИМЕР 12. Какое из двух чисел больше, cos 2 или cos 3? (косинус двух или косинус трех)

Решение. Переформулируем вопрос по-другому: на числовой окружности отмечены точки 2 и 3. У какой из них абсцисса больше?

На числовой окружности отметим точки 2 и 3. Вспомним, что.Значит, точка 2 удалена от по окружности примерно на 0,43(нуль целых сорок три сотых) (2 -≈ 2 - 1,57 = 0,43), а точка 3 на 1,43 (одну целую сорок три сотых). Следовательно, точка 2 находится ближе к точке, чем точка 3, поэтому у нее абсцисса больше (мы учли, что абсциссы обе отрицательные).

Ответ: cos 2 > cos 3.

ПРИМЕР 13. Вычислить sin (синус пять пи на четыре)

Решение. sin(+ π) = - sin = (синус пять пи на четыре равно сумме пи на четыре и пи равно минус синус пи на четыре равно минус корень из двух на два).

ПРИМЕР 14. Вычислить cos (косинус семь пи на шесть).

cos(+ π) = - cos =. (представили семь пи на шесть как сумму пи на шесть и пи и применили третье равенство).

Для синуса и косинуса получим некоторые важные формулы.

1. Для любого значения t справедливы равенства

sin (-t) = -sin t

cos (-t) = cos t

Синус от минус тэ равно минус синус тэ

Косинус от мину тэ равно косинусу тэ.

По рисунку видно, что у точек Е и L, симметричных относительно оси абсцисс, одна и та же абсцисса, это значит

cos(-t) = cost, но равны по модулю и противоположные по знаку ординаты (это значит sin(- t) = - sint.

2. Для любого значения t справедливы равенства

sin (t+2πk) = sin t

cos (t+2πk) = cos t

Синус от тэ плюс два пи ка равно синусу тэ

Косинус от тэ плюс два пи ка равно косинусу тэ

Это верно, так как числам t и t+2πk соответствует одна и та же точка.

3. Для любого значения t справедливы равенства

sin (t+π) = -sin t

cos (t+π) = -cos t

Синус от тэ плюс пи равно минус синусу тэ

косинус от тэ плюс пи равно минус косинусу тэ

Пусть числу t соответствует точка E числовой окружности, тогда числу t+π соответствует точка L, которая симметрична точке E относительно начала координат. По рисунку видно, что у этих точек абсциссы и ординаты равны по модулю и противоположны по знаку. Это значит,

cos(t +π)= - cost;

sin(t +π)= - sint.

4. Для любого значения t справедливы равенства

sin (t+) = cos t

cos (t+) = -sin t

Синус тэ плюс пи на два равно косинусу тэ

Косинус тэ плюс пи на два равно минус синусу тэ.