Краткие содержания

Основные физико-механические характеристики материалов. Глава xvii. механические свойства и частотные характеристики тела человека Механические параметры человека определение

Ерёменко Марина Юрьевна

В работе «Исследование механических параметров человека» определяются экспериментально и исследуются некоторые механические параметры человека, выясняется зависимость определенных практическим путем механических параметров от индивидуальных особенностей человека, устанавливается значение этих параметров для жизнедеятельности человека.

Объяснение отдельных процессов, происходящих в живых организмах, в том числе в организме человека, на основе физических законов поможет установить причинно-следственные связи в живой и неживой природе, раскрыть единство окружающего мира, показать единство законов природы и применимость законов физики и к живым организмам. Кроме того, исследование проявлений законов физики в организме человека позволяет лучше понять процессы, происходящие в организме человека, выяснить причины изменения состояния человека, характеристики, от которых оно зависит.

Скачать:

Предварительный просмотр:

Конкурс научных проектов школьников

в рамках краевой научно-практической конференции «Эврика»

Малой академии наук учащихся Кубани

Исследование механических параметров человека.

Секция: «Физика»

Ерёменко Марина Юрьевна, 11класс,

МОУ СОШ №5 МО Кореновский район,

Ст. Платнировская.

Научный руководитель:

Коломиец Наталия Леонидовна,

Учитель физики МОУ СОШ №5

МО Кореновский район,

Ст. Платнировская.

г. Кореновск

2009

Работу выполнила: ученица

11 кл. МОУ СОШ №5

МО Кореновский район

Ерёменко Марина Юрьевна

  1. Введение ………………………………………………………………………………....2
  2. Плотность тела человека………………………………………………………… ...…...3
  1. Теоретическая часть……………………………………………………………..3
  2. Практическая часть…………………………………………………………..…..3
  1. Определение плотности тел нескольких

человек и сравнение полученных результатов…………………….............3

  1. Скорость реакции человека………………………………………………….………….4
  1. Теоретическая часть……………………………………………………………..4
  2. Практическая часть………………………………………………………………5
  1. Определение времени реакции человека…………………………………..5
  2. Сравнение скорости реакции двух человек………………………….…….6
  3. Сравнение времени реакции водителей……………………………….….7
  1. Жизненная ёмкость лёгких человека…………………………………………….……..8
  1. Теоретическая часть……………………………………………………………..8
  2. Практическая часть……………………………………………….………...…..10
  1. Определение жизненной емкости легких теоретическим методом…..…10
  2. Определение жизненной емкости легких

практическим способом при помощи шарика……………………..……..10

  1. Заключение………………………………………………………………………...……11

Список используемой литературы…………………………………………………..…….13

Приложения………………………………………………………………………………....14

«Исследование механических параметров человека»

Работу выполнила: ученица

11 кл. МОУ СОШ №5

МО Кореновский район

Ерёменко Марина Юрьевна

  1. Введение.

В современном мире все чаще и чаще проявляется повышенный интерес к изучению физики человека. Это связанно с бурным развитием таких наук как медицина, биофизика, психология и др.

На школьных уроках законы физики рассматриваются в основном на неживых объектах. Но исследование проявлений законов физики в организме человека играет, безусловно, важную роль. Объяснение отдельных процессов, происходящих в живых организмах, на основе физических законов поможет установить причинно-следственные связи в живой и не живой природе, раскрыть единство окружающего мира, показать единство законов природы и применимость законов физики и к живым организмам.

Тема данной работы «Исследование механических параметров человека».

Объект исследования: Законы физики в организме человека.

Предмет исследования: Механические параметры человека: объем и плотность тела, время реакции человека, жизненная емкость легких.

Цель данной работы: определить некоторые механические параметры человека, выяснить зависимость определенных практическим путем механических параметров от индивидуальных особенностей человека (возраст, профессия, образ жизни, самочувствие и т. п.), установить значение этих параметров для жизнедеятельности человека.

Источниковой базой для проведения исследования является:

Теоретический материал о проявлении законов физики в организме человека;

Результаты практических работ по определению некоторых механических параметров организма человека.

В процессе исследования поставлены следующие задачи :

Изучить и проанализировать теоретический материал о проявлении законов физики в организме человека;

Провести практические работы по определению некоторых механических параметров организма человека;

Проанализировать и обработать результаты практических измерений, необходимых для определения механических параметров человека;

Обобщить результаты исследования и сделать выводы о зависимости механических параметров человека от его индивидуальных особенностей.

В работе использовались следующие научные методы исследования:

Анализ и обработка теоретического материала о применении законов физики к организму человека (применение законов механики для определения механических параметров человека);

Постановка опытов и проведение практических измерений для определения механических параметров человека;

Анализ и обработка результатов измерений, полученных опытным путем;

Обобщение результатов исследования и выводы.

«Исследование механических параметров человека»

Работу выполнила: ученица

11 кл. МОУ СОШ №5

МО Кореновский район

Ерёменко Марина Юрьевна

  1. Плотность тела человека.
  1. Теоретическая часть.

Понятие «Плотность» имеет очень широкое применение во всех областях физики. Плотность - это физическая величина, определяемая для однородного вещества массой его единичного объёма .

Теперь о человеке. Известно, что в целом плотность тела человека очень близка к плотности воды, так как человек на 60-90 % состоит из неё. * (* - ссылка на литературу.)

Средняя плотность тела человека в разных источниках составляет от 870 до 1120 кг/м 3

Точной цифры нет, потому что плотность каждого человека различна и зависит от особенностей индивидуального строения, а ещё от объема воздуха в легких.

Также считается, что полный человек имеет меньшую плотность, мускулистый – большую; так как удельная плотность жира 0. 918 г/см 3 , а плотность мышц - 1.049 г/см 3

Чаще всего средняя плотность тела человека принимается за 1036 кг/м 3 .

  1. Практическая часть.
  1. Определение плотности тел нескольких человек и сравнение полученных результатов.

Производим измерения длины (a) и ширины (b) ванны. После чего ванна заполняется водой. Ставиться метка, обозначающая уровень воды в ванной. Человек погружался в воду с головой. Ассистент ставит метку, помечая, таким образом, новый уровень воды в ванной. Измеряет высоту подъема воды (h). Вычисляем объем вытесненной воды, а, следовательно, и объем тела человека (V).

V= a b h

Вычисляем плотность человека по формуле:

,

где m - его масса, V – объем, полученный экспериментальным путем.

Форма ванны не представляет собой параллелепипед, но так как формы разных моделей ванн сходны, то погрешности измерения будут приблизительно равны, а значит, на чистоте эксперимента эти погрешности отражаться не будут.

Плотность тела зависит от пола (Средняя плотность тела парней выше, чем у девушек), от образа жизни (Плотность тела спортсменов выше. Следует отметить, что просматривается зависимость плотности тела человека от выбранного вида спорта.) (см. Приложение № 1, Таблица №2.) .

«Исследование механических параметров человека»

Работу выполнила: ученица

11 кл. МОУ СОШ №5

МО Кореновский район

Ерёменко Марина Юрьевна

  1. Скорость реакции человека.
  1. Теоретическая часть.

Скорость реакции является одним из основных качеств живого организма. Очень важно быстро реагировать на внешние раздражающие воздействия, потому что среди них могут быть опасные или даже смертельные.

От начала действия раздражителя до момента реакции всегда проходит определенное время, после чего включаются мышечные механизмы ответного действия, быстрота которых уже зависит от скорости движений тела. Время задержки определяется скоростью обмена веществ и является индивидуальной особенностью каждого организма. Оно не поддается тренировке, потому что невозможно увеличить скорость передачи нервных импульсов.

Скорость реакции человека определяется работой нервной системы и скоростью работы мышц.

У человека среднее время реакции на визуальный сигнал составляет 0,1-0,3 секунды. (см. Приложение № 2.).

Время реакции - важнейшая характеристика организма человека. Как ни странно, лидерские качества человека тоже зависят от времени реакции. А также, одним из самых важных качеств водителя является его время реакции на изменение дорожной обстановки. Временем реакции называется промежуток времени от момента появления зрительного или слухового сигнала об изменившейся обстановке до соответствующего ответного действия водителя. Например, время до нажатия на тормозную педаль или поворота рулевого колеса от момента появления сигнала. Реакция у различных людей неодинакова. Например, время реакции является одной из важнейших характеристик водителей, у большинства водителей время реакции лежит в пределах от 0,5 до 2,0 с.

Экспертиза ГИБДД и МВД использует более точные формулы и методики для определения времени реакции водителя. Но чаще всего при анализе ДТП экспертам важнее знать время начала торможения или тормозной путь, в этом случае

время реакции водителя по стандарту принято считать 0.8 с.

Разумеется, всегда желательно, чтобы время реакции было как можно меньше (что соответствует большей скорости реакции), так как торможение автомобиля фактически начинается только по истечении этого времени.

Если, например, автомобиль движется со скоростью 90 км/ч, то за 1 сек он проходит 25 м. Следовательно, если время реакции водителя равно 1 с, то на протяжении 25 м тормоза автомобиля даже не будут приведены в действие! Таким образом, "цена" всего лишь одной десятой доли секунды в этом примере 2,5 м движения автомобиля. (см. Приложение № 3.), что может стоить жизни перебегающему дорогу человеку, видящему автомобиль на достаточном по его мнению расстоянии.

  1. Практическая часть.
  1. Определение скорости реакции человека.

Берется деревянная линейка 50 см в длину, на ней ставиться засечка (посередине). На стене делается отметка.

Ассистент прижимает вертикально расположенную линейку к стене так, чтобы засечка на ней совпадала с отметкой на стене.

Затем, отвлекая внимание участника эксперимента, отпускает линейку в свободное падение. Участник должен остановить падение линейки, так быстро, как сможет.

Ассистент отмечает новое положение засечки линейки и производит замер её полета (h), т.е. расстояние между отметками на стене.

Скорость реакции вычисляется по формуле: t= 2 hg ,

где g - ускорение свободного падения, равное 9,8 м/с., t –скорость реакции, с, h - расстояние между отметками на стене (см. Приложение № 4.).

Анализ полученных результатов:

Знак « - » обозначает, что участник опыта не успел остановить линейку до того как она коснулась пола. Количество участников с замедленной реакцией оказалось равно 70%.

  1. Сравнение скорости реакции двух человек.

Сравнить скорость реакции двух человек можно и более простым способом.

Первый партнер становится напротив и располагает открытую ладонь так, чтобы второму было удобно по ней бить своей ладонью. Второй партнер бьет по ладони первого в произвольные моменты времени. Задача первого - убрать ладонь (один балл), задача второго – попасть (один балл), в случае неудачи того или другого – 0 баллов. Ведется счёт (наибольшее число очков – лучшая скорость реакции). Затем партнеры меняются. (см. Приложение № 5.)

Анализ полученных результатов:

Скорость реакции человека (см. Приложение №5) зависит от индивидуальных особенностей партнеров.

У одних участников опыта (Витя) скорость реакции не зависит от особенностей источника сигнала (индивидуальных особенностей партнера); у других (Марина, Вадик, Кирилл) скорость реакции зависит от особенностей источника сигнала; у третьих (Саша) скорость реакции всегда меньше независимо от особенностей источника сигнала (всегда меньше, чем у партнера).

Таким образом, по результатам опыта участник Витя - обладает максимальной скоростью реакции. Марина, Вадик, Кирилл – обладают хорошей скоростью реакции, но она зависит от особенностей источника сигнала, а значит не во всех случаях от этих участников можно ожидать должной скорости реакции (Например, Витя отреагирует мгновенно торможением и на красный сигнал светофора, и на перебегающего неожиданно улицу человека. Марина, Вадик, Кирилл – отреагировав мгновенно на красный сигнал светофора, могут не сразу отреагировать на перебегающего улицу человека.)

Данным способом можно определить максимальную, среднюю, минимальную скорость реакции, не измеряя отдельно скорость реакции каждого участника опыта, а сравнив полученные результаты.

  1. Время реакции водителей.

Ассистенты договариваются с водителем о скорости движения транспортного средства (водитель выбирает удобную для него скорость в соответствии с личным транспортным средством) и о ключевом слове, обозначающим остановку (например, слово «Стоп»). Один ассистент договаривается с другим о месте, в котором водитель должен начать торможение (были выбраны три пункта - пересечение улиц Некрасова и Третьякова, Хлеборобской и Третьякова, Маркова и Третьякова.). Водителю не сообщается это место. Первый ассистент садится в машину с водителем и от точки начала эксперимента (пересечения улиц Кучерявого и Третьякова) начинает движение с водителем по прямой (по одной улице). (см. Приложение № 6.) Набрав определенную скорость (обговоренную ранее), водитель должен постараться двигаться равномерно. Доехав до места торможения, первый ассистент произносит ключевое слово. Водитель должен среагировать и начать торможение. После полной остановки транспортного средства второй ассистент, наблюдавший за торможением, измеряет тормозной путь. Примерное время реакции водителя определяем по таблице (см. Приложение № 3.). Данный опыт повторяем 3 раза для каждого водителя, определяя после эксперимента среднее время реакции.

Главная задача опытов - измерить тормозной путь и вычислить скорость реакции водителя по специальной таблице. Но при этом не должна была создаваться помеха уличному движению. Из-за этой проблемы пришлось подбирать время проведения опытов. (В основном это было ранее утро, когда движение в выбранном районе отсутствует). Еще одна проблема была в том, что все опыты по разным обстоятельствам нельзя было провести в один день, а погодные условия могли повлиять на состояние покрытия дороги и, следовательно, на точность опытов. Учитывая это, все опыты проводились при сходных погодных условиях (покрытие дороги должно быть сухим). Измерения проводились по три раза, в таблицу вносилось среднеарифметическое значение трех результатов.

Чистота измерений в экспериментах осложнялась тем, что каждый водитель участвовал в опыте на своем транспортном средстве (разные технические характеристики и возможности). Это обстоятельство нельзя было изменить, так как каждый водитель привык к вождению именно своего транспортного средства и переход на другое мог внести еще более существенную разницу в условия проведения опыта для каждого водителя (см. Приложение № 7., Таблица №1.)

Эти же опыты проводились после изменения состояния водителя (см. Приложение № 7, Таблица №2.)

Анализ полученных результатов:

Скорость реакции не зависит от стажа вождения, от вида транспортного средства, от возраста водителя. Предполагаю, что она определяется индивидуальными особенностями организма человека (Скорость реакции разная у всех людей с рождения – определяется особенностями нервной системы человека, его эмоциональными и психическими характеристиками). Но опыты показали, что при плохом самочувствии или сильной усталости скорость реакции ухудшается.

В двух разных опытах, связанных с определением скорости реакции, принимал участие Вадик Я.. Результаты опытов оказались сходны, а значит, эти методы можно считать эффективными.

Из проделанных опытов видно, что время реакции участвовавших в эксперименте водителей не совпадает с эталонным временем, принимаемым экспертами ГИБДД равным 0,8 с. Таким образом, участники эксперимента могут являться, особенно при неблагоприятных условиях на дорогах, потенциальной угрозой совершения ДТП.

«Исследование механических параметров человека»

Работу выполнила: ученица

11 кл. МОУ СОШ №5

МО Кореновский район

Ерёменко Марина Юрьевна

  1. Жизненная ёмкость лёгких человека.
  1. Теоретическая часть.

Лёгкие у человека - парный орган дыхания. Лёгкие заложены в грудной полости , прилегая справа и слева к сердцу, имеют форму полуконуса, основание которого расположено на диафрагме , а верхушка выступает на 1-3 см выше ключицы. Правое лёгкое состоит из 3, а левое из 2 долей. Скелет лёгкого образуют древовидно разветвляющиеся бронхи. Каждое лёгкое покрыто серозной оболочной - легочной плеврой и лежит в плевральном мешке. Внутренняя поверхность грудной полости покрыта пристеночной плеврой. С внутренней (сердечной) поверхности в лёгких имеется углубление - ворота лёгких. В них входят бронхи, легочная артерия, и выходят две легочных вены. Легочная артерия ветвится параллельно ветвлению бронхов. При вдохе давление в легком ниже атмосферного, а при выдохе - выше, что дает возможность воздуху поступать внутрь легкого. (см. Приложение № 8.)

Процесс внешнего дыхания обусловлен изменением объема воздуха в легких в течение фаз вдоха и выдоха дыхательного цикла. При спокойном дыхании соотношение длительности вдоха к выдоху в дыхательном цикле равняется в среднем 1:1,3. Внешнее дыхание человека характеризуется частотой и глубиной дыхательных движений.

Частота дыхания человека измеряется количеством дыхательных циклов в течение 1 мин и ее величина в покое у взрослого человека варьирует от 12 до 20 в 1 мин. Этот показатель внешнего дыхания возрастает при физической работе, повышении температуры окружающей среды, а также изменяется с возрастом. Например, у новорожденных частота дыхания равна 60-70 в 1 мин, а у людей в возрасте 25-30 лет - в среднем 16 в 1 мин.

Глубина дыхания определяется по объему вдыхаемого и выдыхаемого воздуха в течение одного дыхательного цикла. Произведение частоты дыхательных движений на их глубину характеризует основную величину внешнего дыхания - вентиляцию легких. Количественной мерой вентиляции легких является минутный объем дыхания - это объем воздуха, который человек вдыхает и выдыхает за 1 мин.

Величина минутного объема дыхания человека в покое варьирует в пределах 6-8 л. При физической работе у человека минутный объем дыхания может возрастать в 7-10 раз.

Жизненная емкость легких (ЖЕЛ) – это показатель внешнего дыхания, представляющий собой объем воздуха, выходящего из дыхательных путей при максимальном выдохе, произведенном после максимального вдоха. (см. Приложение № 9.) Полная ёмкость лёгких примерно равна 5000 см³, обычный вдох составляет 500 см³, жизненная (при максимальном вдохе и выдохе) - приблизительно 3500-4500 см³.

В зависимости от его модификации возможно определение этого показателя тремя методами: ЖЕЛ вдоха, ЖЕЛ выдоха и двухстадийное определение ЖЕЛ

Для определения ЖЕЛ вдоха (метод 1) после нескольких спокойных дыхательных циклов человека инструктируют выдохнуть весь возможный объем воздуха из легких. При этом задействуется резервный объем выдоха. Сразу же вслед за этим его просят из положения полного выдоха как можно более глубоко вдохнуть, до ощущения максимального наполнения легких воздухом, тем самым задействовав резервный объем вдоха.

Для определения ЖЕЛ выдоха (метод 2) человек сначала делает максимально полный вдох из положения спокойного выдоха, а затем из положения полного вдоха максимально полно завершает выдох.

Двухстадийное определение ЖЕЛ (метод 3) - после спокойного вдоха человек делает максимально полный выдох, затем возвращается к обычному спокойному дыханию и лишь после нескольких дыхательных движений делает максимально полный вдох из положения спокойного выдоха.

  1. Практическая часть.
  1. Определение жизненной емкости легких теоретическим методом.

Теоретическое значение ЖЕЛ можно вычислить по формуле :

Для юношей - ЖЕЛ = [рост (м) 5,2 – возраст (лет) 0,022] – 4,2

Для девушек - ЖЕЛ = [рост (м) 4,1 – возраст (лет) 0,018]– 3,7

Норма ЖЕЛ: для юношей 2,8 – 3,8 л

Для девушек 2,5 - 2,8 л

  1. Определение жизненной емкости легких практическим способом при помощи шарика.

Человек делает глубокий вдох через нос и максимальный выдох в шарик. Не отнимая шарик ото рта, повторяем эти действия 3 раз. Измеряется диаметр шарика. Объем вычисляем по формуле:

V = πd36

Где d – найденный диаметр шарика.

Разделив полученный объём шара на 3, получаем ЖЕЛ. (см. Приложение № 10.)

Анализ полученных результатов двух опытов:

Значения ЖЕЛ, определенные практическим путём при помощи шарика и с помощью формул, разработанных специалистами-биологами, приблизительно совпадают. Таким образом, с помощью шарика можно определить достаточно точно значение ЖЕЛ.

Значения ЖЕЛ не у всех участников соответствуют установленным нормам. Считаю, что данным участникам эксперимента необходимо обратиться к специалистам, т. к. отклонение значения ЖЕЛ от нормы свидетельствует о возможно неправильном развитии грудной клетки.

«Исследование механических параметров человека»

Работу выполнила: ученица

11 кл. МОУ СОШ №5

МО Кореновский район

Ерёменко Марина Юрьевна

  1. Заключение.

В данной исследовательской работе опытным путем были определены некоторые механические параметры человека: плотность тела; скорость реакции человека, в том числе и время реакции водителей при торможении транспортного средства; жизненная емкость легких человека.

В результате опытов было выяснено, что плотность тела человека определяется не только природой (зависимость от пола человека), но также зависит и от самого человека, от образа его жизни: питания, режима дня, занятия спортом. Следует отметить, что меньшая плотность тела человека по сравнению со сверстниками свидетельствует о физической слабости человека, о слабых мышцах (плотность жировой ткани, намного меньше мышечной), о возможности непереносимости им тяжелых физических нагрузок.

При измерении времени и скорости реакции участников эксперимента было выяснено, что у многих участников скорость реакции очень замедленная (см. Приложение №4). У некоторых участников эксперимента скорость реакции зависела от особенностей источника сигнала, у некоторых – нет (см. Приложение №5). По результатам опытов можно сделать вывод, что скорость реакции разная у всех людей с рождения – определяется особенностями нервной системы, эмоциональными и психическими характеристиками человека. Однако опыты показали, что при плохом самочувствии или сильной усталости скорость реакции ухудшается.

Многие профессии требуют усиленного внимания и хорошей скорости реакции, поэтому при выборе профессии и приеме на работу эти характеристики человека являются немаловажными.

Измерения ЖЕЛ участников эксперимента показали, что некоторым участникам эксперимента, у которых наблюдалось отклонение от нормы, возможно необходимо обследовать свой организм у специалистов.

Человек – существо многогранное: он покорил высочайшие горные вершины, опустился в самые глубокие точки Мирового океана, побывал на Луне, расщепил атомное ядро. Но чаще всего мы не задумываемся, а что же мы представляем собой, что мы можем сделать, какими возможностями и ресурсами обладаем? От ответов на эти вопросы зависит выбор жизненных целей человека, его образа жизни, выбор профессии. Поэтому знание особенностей своего организма с точки зрения законов физики, безусловно, важно и необходимо.

«Исследование механических параметров человека»

Работу выполнила: ученица

11 кл. МОУ СОШ №5

МО Кореновский район

Ерёменко Марина Юрьевна

Список используемой литературы

1. Ц.Б.Кац «Биофизика на уроках физики», Просвещение, Москва, 1988

2. А.Н.Ремизов, А.Г.Максина «Медицинская и биологическая физика», Дрофа, Москва, 2003

3. М.В.Волькенштейн «Биофизика», Наука, Москва, 1988

4. А.Б.Рубин «Биофизика» Высшая школа, Москва, 1987

5. К.Ю.Богданов «Физик в гостях у биолога», Наука, Москва, 1986

6. В.Р.Ильченко «Перекрестки физики, химии, биологии», Просвещение, Москва, 1986

7. А.Г.Хрипкова «Физиология человека», Просвещение, Москва, 1971

8. Б.Р.Иваницкий «Мир глазами биофизика», Москва, 1985

9. Дж.Мэрион. «Общая физика с биологическими примерами», Москва, 1986

10. А.В.Хуторской «Увлекательная физика», Москва, 2000

Приложения

Приложение № 1.

Таблица 1. Плотности тел людей, участвующих в эксперименте.

Данные

Измерения

Имя

Возраст,

лет

Рост, см

Вес, кг

а, м

b, м

h, м

Плотность тела, кг/м 3

Никита

1.14

0.58

1058

Кирилл

0.35

0.11

1039

Вадик

0.55

0.08

Витя

0.07

1000

Среднее значение плотности тела юношей

1002

Марина

0.08

1013

Наташа

0.35

0.09

Яна

0.35

Катя

0.07

1031

Лика

1.35

0.45

0.11

Среднее значение плотности тела девушек

Таблица 2. Сравнение плотностей тел людей с учетом отношения к спорту.

Данные

Имя

Возраст,

лет

Рост, см

Вес, кг

Отношение к спорту (положительное или отрицательное)

Предпочи-таемый вид

Спорта

Плотность тела, кг/м 3

Плотность тела больше:

Никита

Бокс

1058

Кирилл

Футбол

1039

Витя

1000

Вадик

Катя

Тхеквандо

1031

Марина

Гимнастика

1013

Лика

Яна

Приложение № 2.

Таблица. Время реакции человека на разные виды раздражающих сигналов.

Виды раздражающих сигналов

Время, по истечении которого органы ощущения человека отвечают на различные раздражающие сигналы, с.

Осязательные

0,09 - 0,22

Звуковые

0,12 - 0,18

Болевые

0,13 - 0,89

Световые

0,15 - 0,22

Температурные

0,3 - 1,6

Вкусовые

На соленое

0,31

На сладкое

0,45

На горькое

0,12

Приложение № 3.

Таблица. Зависимость тормозного пути (м) от времени реакции водителя (с) и скорости движения автомобиля (км/ч). (Таблица разработана специалистами по изучению эмоционального и психического состояния человека, взята из сети Интернет)

Время реакции водителя,

Скорость

автомобиля,

км/ч

11.1

13.9

20.8

27.8

13.3

16.7

25.0

33,3

15.6

19.4

29.2

38.9

11.1

17.8

22.2

33.3

44.4

12.5

20.0

25.0

37.5

50.0

13.9

22.2

27.8

41.7

55.5

Приложение № 4.

Таблица. Определение времени реакции разных людей.

Имя

h, см

Примерное время реакции, с

Аня

Вадик П.

Вадик Я.

Лена

Максим

Даша

Саша А.

Саша П.

Катя

Юля

Яна

Вадик

Вадик

Саша

Саша

Кирилл

Кирилл

Марина

Приложение № 6.

Схема улиц в районе проведения опытов, связанных с определением скорости реакции водителей. (Синим цветом обозначена точка начала движения, красным - обговоренная точка начала торможения. Каждый водитель трижды стартовал, и в каждом случае были использованы одна и та же точка начала движения и те же точки начала торможения.)

Приложение № 7.

Таблица 1.Определение времени реакции водителей.

ВАЗ-21099

Suzuki

Владимир Н.

SCANIA

1.05

Mitsubishi

Владимир Д.

ВАЗ-2114

Таблица 2. Измерение времени реакции водителей

при плохом самочувствии или сильной усталости.

Приложение № 8.

Схема лёгких человека . 1-Трахея

2-Лёгочная артерия

3-Лёгочная вена

4-Альвеолярный ход

5-Альвеолы

6-Сердечная вырезка левого лёгкого

7-Бронхиолы

8-Третичные бронхи

9-Вторичные бронхи

10-Главные бронхи

Приложение № 9.

Жизненная ёмкость легких.

Приложение № 10.

Таблица. Вычисление теоретического значения жизненной емкости легких, сравнение его с практическим и нормальным значением. 2.8 – 3.8

3.65

Вадик

1.74

2.8 – 3.8

4.47

Никита

1.82

2.8 – 3.8

4.89

4.77

4.83

Кирилл

2.8 – 3.8

4.31

4.25

Яна

1.55

2.5 – 2.8

Лика

1.74

2.5 – 2.8

3.18

Марина

1.67

2.5 – 2.8

2.86

2.72

Наташа

2.5 – 2.8

2.57

Исследуя движения человека, измеряют:

1.количественные показатели механического состояния тела

2.двигательной функции тела

3.характер самих движений.

Регистрируют биомеханические характеристики тела: размеры, пропорции, распределение масс, подвижность в суставах и др., движений всего тела и его частей (звеньев).

Биомеханические характеристики - это меры механического состояния биосистемы и его изменения (поведения).

Количественные характеристики измеряются, или вычисляются; они имеют численное значение и выражают связи одной меры с другой (скорость - пример связи пройденного пути со временем, затраченным на него). Изучая количественные характеристики, дают определение (что это такое) и устанавливают способ измерения (чем измеряется).

Качественные характеристики описываются обычно словесно, без точной количественной меры (например, напряженно, свободно, плавно, рывком).

КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Кинематика движений человека определяет геометрию (пространственную форму) движений и их изменения во времени (характер) без учета масс и действующих сил. Она дает в целом только внешнюю картину движений. Причины же возникновения и изменения движений (их механизм) раскрывает уже динамика.

Кинематические характеристики тела человека и его движений - это меры положения и движения человека в пространстве и во времени: пространственные, временные и пространственно-временные.

Кинематические характеристики дают возможность сравнивать размеры тела и его звеньев, а также кинематические особенности движений у разных спортсменов. От учета этих характеристик во многом зависит индивидуализация техники спортсменов, поиск оптимальных именно для них особенностей движений.

Системы отсчета расстояния и времени

Движения человека и спортивных снарядов можно измерить только сравнивая их положения с положением выбранного для сравнения тела (тело отсчета), т. е. все движения рассматриваются как относительные.

Система отсчета (расстояния ) - условно выбранное твердое тело, по отношению к которому определяют положение других тел в разные моменты времени.

В мире не существует абсолютно неподвижных тел, все тела движутся. Но одни из них движутся так, что изменения их скорости (ускорения) несущественны для решения данной задачи и ими можно пренебречь, - это инерциальные системы отсчета. Такие тела - Земля и тела, связанные с нею неподвижно (дорожка, лыжня, гимнастический снаряд). В подобной системе покоящиеся тела не испытывают действия сил; значит, в ней ни одно движение не начинается без действия силы.

Другие тела движутся с ускорениями, которые существенно влияют на решение данной задачи, - это неинерциальные системы отсчета (скользящая лыжа, раскачивающиеся кольца) 1 . В таких случаях способы расчета и объяснения особенностей движений уже иные, что надо обязательно учитывать.

С телом отсчета связывают начало и направление измерения расстояния и устанавливают единицы отсчета. Для точного определения спортивного результата правила соревнований предусматривают, по какой точке (пункт отсчета) ведется отсчет (по уровню лыжных креплений, по выступающей точке грудной клетки спринтера, по заднему краю следа приземляющегося прыгуна и т. п.).

Движущееся тело рассматривают либо как материальную точку, положение которой определяют, либо на нем выделяют пункты отсчета (определенная точка на теле человека). В случае вращательного движения выбирают линию отсчета. Для описания (задания)

движения применяют естественный, векторный и координатный способы.

При естественном способе положение точки - дуговую координату л - отсчитывают от начала отсчета 0, выбранного на заранее известной траектории (рис. I , а). При векторном способе положения точки определяют радиус-вектором г (рис. 1, б), проведенным из центра 0 данной системы координат к интересующей точке (А).

Рис. 1.

Система отсчета расстояний:

а - естественная, 6 - векторная, в и г - прямоугольных координат: в - на плоскости, г - В пространстве

При способе прямоугольных координат (на плоскости и в пространстве) точку пересечения взаимно перпендикулярных координатных осей О (начало координат) принимают за начало отсчета (рис. 1, в, г). Чтобы определить положение некоторой точки А (пункт отсчета) относительно начала отсчета, находят ее проекции (А„ , А у , А 7 ) на оси координат. Расстояния от начала координат до проекций этих точек на осях координат (координаты в пространстве: ОА К - абсцисса, О/4 У - ордината и ОА 7 -аппликата) определяют положение точки А в данной системе отсчета 0 ху7 . Когда точка А перемещается в пространстве, то изменяются численные значения координат.

Устанавливают единицы измерения расстояния - линейные и угловые. В международной системе единиц (СИ) принята основная.

линейная единица - метр (м), кратная ей - километр (1 км= 1000 м), дольные - сантиметр (1 см = 0,01 м), миллиметр (1 мм = 0,001 м) и др 1 . Из угловых единиц применяются: а) градус, минута, секунда - при измерении углов (окружность = 360°, градус = 60" , минута = 60"); б) оборот - при приближенном подсчете поворотов вокруг оси (оборот = 360°, пол-оборота = 180° и т.д.); в) радиан (для расчетов по формулам) - угол между двумя радиусами круга, вырезающими на окружности дугу, равную по длине радиусу (радиан =57° 17 44",8"; 1° = 0,01745 рад.).

Системы отсчета времени

В систему отсчета времени входят определенное начало и единицы отсчета.

За начало отсчета времени принимают: а) полночь - во всех учреждениях, на транспорте, на предприятиях связи и т. п.; б) полночь и полдень - в обычных житейских условиях и в) судейское время («секундомеры на ноль») - в условиях соревнований. В биомеханике за начало отсчета времени обычно принимается либо момент начала всего движения или его части, либо момент начала наблюдения за движением. В течение одного наблюдения пользуются только одной системой отсчета времени.

За единицу отсчета времени принимают секунду (с; 60с=1 мин; 60 мин = 1 час), а также доли секунды - десятая, сотая, тысячная (миллисекунда). Направление течения времени в действительности - от прошлого к будущему. Исследуя движение, можно отсчитывать время и в обратном направлении - к прошлому (за 0,02 с до удара; 0,05 с до отрыва ноги от опоры и т. д.).

Пространственные характеристики

Пространственные характеристики позволяют определять положения, например исходное для движения и конечное (по координатам), и движения (по траекториям).

Движения человека можно изучать рассматривая его тело (в зависимости от поставленных задач) как материальную точку, как одно твердое тело или как систему тел.

Тело человека рассматривают как материальную т о ч -к у, когда перемещение тела намного больше, чем его размеры (если не исследуют движения частей тела и его вращение).

Тело человека приравнивают к твердому телу, когда можно не принимать во внимание взаимные перемещения его звеньев и деформации тканей, когда важно учитывать лишь его размеры, расположение в пространстве и ориентацию (в частности, при изучении условий равновесия, вращения тела в постоянной позе).

Тело человека изучают как систему тел, когда важны еще

и особенности движений звеньев тела, влияющие на выполнение двигательного действия.

Поэтому, определяя основные пространственные характеристики движений человека (координаты и траектории), заранее уточняют, к какому материальному объекту (точке, телу, системе тел) приравнивают в данном случае тело человека.

Координаты точки, тела и системы тел

Координаты точки - это пространственная мера местоположения точки относительно системы отсчета. Местоположение точки определяют измеряя, например, ее линейные координаты ух, л- у, г 2 ; формула размерности" : [л]= Ь.

По координатам определяют, где находится изучаемая точка (например, пункт отсчета на теле человека) относительно начала отсчета. Как известно, положение точки на линии определяет одна координата, на плоскости - две, в пространстве - три координаты. Положение твердого тела в пространстве можно определить по координатам трех его точек (не лежащих на одной прямой). Можно также определить местоположение одной из точек тела (по ее линейным координатам) и ориентацию тела относительно системы отсчета (по угловым координатам).

Положение системы тел (звеньев тела человека), которая может изменять свою конфигурацию (взаимное расположение звеньев), определяют по положению каждого звена в пространстве (рис. 2, а). Удобно использовать при этом угловые координаты (рис. 2,6), например суставные углы, и по ним, устанавливать позу тела как взаимное, расположение его звеньев. Практически нередко сочетают: 1) определение " местоположения какой-либо точки (например, общего центра масс тела или точки опо-)ы); 2) определение позы (взаимного расположения звеньев), 3) опре-;еление ориентации тела (по линии отсчета, проведенной в теле).

Изучая движение, нужно определить: 1) исходное положение, из оторого движение начинается 2 ; 2) конечное положение, в котором вижение заканчивается; 3) ряд мгновенных (непрерывно сменяющихся) ромежуточных положений, которые принимает тело при движении.

Кинокадры какого-либо упражнения показывают как раз такие положения. В механике описать движение (найти закон движения) - значит определить положение любой точки системы в любой момент времени. Иначе говоря, определить в любой момент времени координаты пунктов или линий отсчета, отмеченных на теле, по которым изучают его движение в пространстве.

Траектория точки

Траектория точки - это пространственная характеристика движения: геометрическое место положений движущейся точки в рассматриваемой системе отсчета. На траектории определяют ее длину, кривизну и ориентацию в пространстве, а также перемещение точки.

Траектория - это непрерывная линия, воображаемый след движущейся точки 1: она дает пространственный рисунок движения точки (рис. 3). Расстояние по траектории показывает, каков путь точки 2: = Ь-

В прямолинейном движении (направление его не изменяется) (рис. 4) путь точки при движении в одну сторону равен расстоянию от начального положения до конечного. В криволинейном движении (направление его изменяется) путь точки равен расстоянию по траектории в направлении движения от начального положения до конечного.

Кривизна траектории (к) показывает, какова форма движения точки в пространстве. Чтобы определить кривизну траектории, измеряют радиус кривизны (К). Кривизна - величина, обратная радиусу:

Если траектория является дугой окружности, то ее радиус кривизны постоянный. С увеличением кривизны ее радиус уменьшается, и наоборот, с уменьшением - увеличивается.

Ориентация траектории в пространстве при одной и той же ее форме может быть разная. Ориентацию для прямолинейной траектории определяют по координатам точек начального и конечного положений; для криволинейной траектории - по координатам этих двух точек и третьей точки, не лежащей с ними на одной прямой линии.

Перемещение точки показывает, в каком направлении и на какое расстояние сместилась точка. Перемещение (линейное) находят по разности координат точки в моменты начала и окончания движения (в одной итой же системе отсчета оасстояния):

Перемещение определяет размах и направление движения. В случае, когда в результате движения точка вернулась в исходное положение,

перемещение, естественно, равно нулю. Перемещение - это не само движение, а лишь его окончательный результат, расстояние по прямой и ее направление от начального до конечного положения.

Рассматривают элементарное перемещение (ей) точки - из данного положения в положение, бесконечно близкое к нему. Геометрическая сумма элементарных перемещений равна конечному перемещению из начального положения в конечное. На криволинейной траектории элементарное перемещение считают равным пути.

Перемещение тела при поступательном и вращательном движении измеряется различно. Перемещение тела линейное (в поступательном его движении) можно определить по линейному перемещению любой его точки. Ведь в поступательном движении прямая, соединяющая две любые точки тела, перемещаясь (прямолинейно либо криволинейно), остается параллельной своему начальному положению. Все точки тела движутся одинаково: по подобным траекториям, с одинаковыми скоростями и ускорениями. Достаточно из координаты конечного положения любой точки тела вычесть соответствующую координату ее начального положения, чтобы определить перемещение всего тела.

Перемещение тела угловое (во вращательном его движении) определяют по углу поворота. При вращательном движении тела в нем имеется линия, все точки которой остаются во время всего движения неподвижными (лежат на оси). Остальные же точки тела движутся по дугам окружностей, центры которых лежат на этой неподвижной линии - оси вращения (рис. 4, в). Рассматривают также элементарное угловое перемещение (с/ф) тела из данного углового положения в положение, бесконечно близкое к нему.

Любое движение тела в пространстве можно представить как геометрическую сумму его поступательного и вращательного (относительно любого полюса, в частности его центра масс) движений.

Перемещение системы тел (биомеханической системы), изменяющей свою конфигурацию, определить намного сложнее. В самых упрощенных случаях движение ее рассматривают как движение одной материальной точки - обычно общего центра масс (ОЦМ). Тогда можно проследить за перемещением всего тела человека «в целом», оценить в известной мере общий результат его двигательной деятельности. Но останется неизвестным, в результате каких именно движений достигнуто перемещение ОЦМ. Иногда перемещение тела человека представляют в виде перемещения условно связанной с ним линии (линия отсчета).

Изучение движений звеньев тела человека позволяет более подробно рассмотреть перемещение его тела. В некоторых случаях несколько подвижных частей (например, все кости стопы, кисти или предплечья, даже туловища) рассматриваются как одно звено - тогда уже можно в общих чертах уловить особенности движений, хотя взаимное движение многих звеньев не учитывается и их деформациями пренебрегают. Однако получить полную картину перемещений всех основных элементов тела (включая и внутренние органы, и жидкие ткани) при существующих методах исследования пока еще невозможно. В любом научном исследовании приходится прибегать к более или менее значительному упрощению.

В машинах, характеризующихся определенностью движений, имеется вполне определенный закон движений. В биомеханических системах, характеризующихся неопределенностью движений в сочленениях, стараются добиваться требуемой определенности, но возможности найти закон движения всех звеньев тела в целом очень невелики. Они несколько больше в видах спорта, где техническое мастерство проявляется (и в значительной мере) именно в точном воспроизведении заранее заданных, детально определенных движений (например, в гимнастике, фигурном катании на коньках).

Временные характеристики

Временные характеристики раскрывают движение во времени: когда оно началось и закончилось (момент времени), как долго длилось (длительность движения), как часто выполнялось движение (темп), как они были построены во времени (ритм). Вместе с пространственно-временными характеристиками они определяют характер движений человека.

Определяя, где была точка в пространстве, необходимо определить, когда она там была.

Момент времени

Момент времени - это временная мера положения точки тела и системы. Момент времени (г) определяют промежутком времени до него от начала отсчета..

Момент времени определяют не только для начала и окончания движения, но и для других важных мгновенных положений. В первую очередь это моменты существенного изменения движения: заканчивается одна часть (фаза) движения и начинается следующая (например, отрыв стопы от опоры в беге - это момент окончания фазы отталкивания и начала фазы полета). По моментам времени определяют длительность движения.

Длительность движения

Длительность движения - это его временная мера, которая измеряется разностью моментов времени окончания и начала движения:

Длительность движения представляет собой промежуток времени между двумя ограничивающими его моментами времени. Сами моменты (как границы между двумя смежными промежутками времени) длительности не имеют. Ясно, что, измеряя длительность, пользуются одной и той же системой отсчета времени. Узнав расстояние, пройденное точкой, и длительность ее движения, можно определить ее скорость. Зная длительность движений, определяют также их темп и ритм.

Темп движений

В повторных движениях одинаковой длительности темп характеризует их протекание во времени.

Темп движений " - это временная мера их повторности. Он измеряется количеством движений, повторяющихся в единицу времени (частота движений):

Темп - величина, обратная длительности движений. Чем больше длительность каждого движения, тем меньше темп, и наоборот. В повторяющихся (циклических) движениях темп может служить показателем совершенства техники. Например, частота движений у лыжников, пловцов, гребцов высокой квалификации (при более высокой скорости передвижения) больше, чем у менее подготовленных. Известно, что с утомлением темп движений изменяется: он может повышаться (например, при укорочении шагов в беге) или понижаться (например, при неспособности поддерживать его в лыжном ходе).

Ритм движений

Ритм движений (временной) - это временная мера соотношения частей движений. Он определяется по соотношению длительности частей движения:

Ритм движений характеризует, например, отношение времени опоры к времени полета в беге или времени амортизации (сгибания колена) к времени отталкивания (выпрямления ноги) при опоре. Примером соотношения длительности и частей движения может служить ритм скользящего шага на лыжах (соотношение длительности пяти фаз шага). С изменением темпа шагов изменяется и их ритм (рис. 5). Кроме временных можно определить еще пространственные показатели ритма (например, отношение длины выпада в шаге на лыжах к длине скольжения).

Чтобы определить ритм (временной), выделяют фазы, которые различаются по задаче движения, по его направлению, скорости, ускорению и другим характеристикам. Ритм отражает прилагаемые усилия, зависит от их величины, времени приложения и других особенностей движений. Поэтому по ритму движений можно в известной мере судить об их совершенстве. В ритме особенно важны акценты - большие усилия и ускорения - их размещение во времени. При овладении упражнениями иногда лучше сначала задать ритм, чем подробно описывать детали движений; это помогает быстрее понять особенности изучаемого упражнения, его построение во времени.

В каждом движении есть различающиеся части, например подготовительные и исполнительные (основные) движения, разгон и торможение. Значит, ритм можно определить в каждом упражнении. Так называемые «неритмичные» движения - это не вообще лишенные рит-

ма движения, а движения с отклонениями от заданного рационального ритма. Иначе говоря, неритмичные движения - это движения без определенного постоянного ритма или с неправильным, нерациональным ритмом.

Пространственно-временные характеристики

По пространственно-временным характеристикам определяют, как изменяются положения и движения человека во времени, как быстро человек изменяет свои положения (скорость) и движения (ускорение).

Скорость точки и тела

Скорость точки - это пространственно-временная мера движения точки (быстроты изменения ее положения). Скорость равна первой производной по времени от расстояния в рассматриваемой системе отсчета:

Скорость точки определяется по изменению ее координат во времени. Скорость - величина векторная, она характеризует быстроту движения и его направление. Так как скорость движений человека чаще всего не постоянная, а переменная (движение неравномерное и криволинейное), для разбора упражнений определяют мгновенные скорости.

Мгновенная скорость - это скорость в данный момент времени или в данной точке траектории, как бы скорость равномерного движения на очень малом участке траектории около данной точки траектории. Мгновенную скорость можно себе представить как такую, которую сохранило бы тело с того момента, когда все силы перестали на него действовать. Средняя же скорость - это такая скорость, с которой точка в равномерном движении за то же время прошла бы весь рассматриваемый путь. Средняя скорость позволяет сравнивать неравномерные движения.

Скорость точки (линейная) в прямолинейном движении направлена по траектории, в криволинейном - по касательной к траектории в каждой рассматриваемой ее точке.

Скорость тела определяют по скорости его точек. При поступательном движении тела линейные скорости всех его точек одинаковы по величине и направлению. При вращательном движении определяют угловую скорость тела как меру быстроты изменения его углового положения. Она равна по величине первой производной по времени от углового перемещения:

Чем больше расстояние от точки тела до оси вращения (т. е. чем больше радиус), тем больше линейная скорость точки. Скорость вращательного движения твердого тела (в радианах) равна отношению линейной скорости каждой точки к ее радиусу (при постоянной оси вращения). Угловая скорость (со) для всех точек тела, кроме лежащих на оси, одинакова:

Значит, линейная скорость любой точки вращающегося тела, не лежащей на оси, равна его угловой скорости, умноженной на радиус вращения этой точки (расстояние от нее до оси вращения). Скорости сложного движения твердого тела можно определить по линейной скорости любого полюса и угловой скорости вращения тела относительно этого полюса (например, вокруг оси, проходящей через центр масс - ЦМ).

Скорость системы тел, изменяющей свою конфигурацию, нельзя определить таким же образом, как угловую скорость твердого тела. В этом случае определяют линейную скорость ОЦМ системы. Часто определяют линейные скорости точек звеньев тела (проекций осей суставов на поверхность тела). Кроме того, при изменениях позы определяют угловые скорости звеньев тела относительно суставных осей; эти скорости обычно изменяются по ходу движедия. Для биомеханического обоснования техники нужно в каждом случае выбрать, какие скорости каких звеньев и точек следует определить.

1 Надо всегда указывать, скорость какого объекта определяется (например, скорость бегуна), а не «скорость движения».

Ускорение точки и тела

Ускорение точки - это пространственно-временная мера изменения движения точки (быстрота изменения движения - по величине и направлению скорости). Ускорение точки равно первой производной по времени от скорости этой точки в рассматриваемой системе отсчета:

Ускорение точки определяется по изменению ее скорости во времени. Ускорение - величина векторная, характеризующая быстроту изменения скорости по ее величине и направлению в данный момент (мгновенное ускорение) 1 .

Касательное ускорение будет положительным, когда скорость точки увеличивается, и отрицательным, когда она уменьшается. Если касательное ускорение равно нулю, то скорость по величине постоянная. Если нормальное ускорение равно нулю, то направление скорости постоянное.

Угловое ускорение тела определяется как мера быстроты изменения его угловой скорости. Оно равно первой производной по времени от угловой скорости тела:

Различают ускорение тела линейное (в поступательном.движении) и угловое (во вращательном движении). Отношение линейного ускорения каждой точки вращающегося тела к ее радиусу равно угловому ускорению (е) в радианах в секунду в квадрате. Значит, линейное ускорение любой точки вращающегося тела равно по величине его угловому ускорению, умноженному на радиус вращения этой точки:

Ускорение системытел* изменяющей свою конфигурацию, определяется еще сложнее, чем скорость. Ускорение служит хорошим показателем качества приложенных усилий (рис. 6).

" Среднее ускорение за время движения, особенно в тех случаях, когда оно меняет знак, обычно не определяют, поскольку оно не характеризует достаточно подробности (детали) движения.

ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Все движения человека и движимых им тел под действием сил изменяются по величине и направлению скорости. Чтобы раскрыть механизм движений (причины их возникновения и ход их изменений), исследуют динамические характеристики. К ним относятся инерционные характеристики (особенности тела человека и движимых им тел), силовые (особенности взаимодействия звеньев тела и других тел) и энергетические (состояния и изменения работоспособности биомеханических систем).

Инерционные характеристики

Свойство инертности тел раскрывается в первом законе Ньютона: «Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы не изменят это состояние». Иначе говоря, всякое тело сохраняет скорость, пока ее не изменят силы.

Понятие об инертности

Любые тела сохраняют скорость неизменной при отсутствии внешних воздействий одинаково. Это свойство, не имеющее меры, и предлагается называть инерцией 1 . Разные тела изменяют скорость под действием сил по-разному. Это их свойство, следовательно, имеет меру: его называют инертностью. Именно инертность и представляет интерес, когда надо оценить, как изменяется скорость.

Инертность - свойство физических тел, проявляющееся в постепенном изменении скорости с течением времени под действием сил.

Сохранение скорости неизменной (движение как бы по инерции) в реальных условиях возможно только тогда, когда все внешние силы, приложенные к телу, взаимно уравновешены. В остальных случаях неуравновешенные внешние силы изменяют скорость тела в соответствии с мерой его инертности.

Масса тела

Масса тела - это мера инертности тела при поступательном движении. Она измеряется отношением величины приложенной силы к вызываемому ею ускорении.:

Измерение массы тела здесь основано на втором законе Ньютона: «Изменение движения прямо пропорционально извне действующей силе и происходит по тому направлению, по которому эта сила приложена».

Масса тела зависит от количества вещества тела и характеризует его свойство - как именно приложенная сила может изменить его движение. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с большей массой 1 .

При исследовании движений часто бывает необходимо учитывать не только величину массы, но и, как говорится, ее распределение в теле 2 . На распределение материальных точек в теле указывает местоположение центра масс тела.

В абсолютно твердом теле имеются три точки, положения которых совпадают: центр масс, центр инерции и центр тяжести. Однако это совершенно различные понятия. В ЦМ пересекаются направления сил, любая из которых вызывает поступательное движение тела. Материальные точки, имеющие массы, расположены равномерно относительно линии действия таких сил, и поэтому вращательного движения не возникает. Следует учитывать, что если материальные точки тела, обладающие массами, отдалять от этой линии в противоположные стороны на равные расстояния, то положение центра масс от этого не изменится. Следовательно, понятие «центр масс» не полностью отражает распределение материальных точек в теле. Понятия о центре инерции (как точке приложения равнодействующей всех фиктивных сил инерции) и центре тяжести (как точке приложения равнодействующей всех сил тяжести) будут рассмотрены позже.

Момент инерции тела

Момент инерции тела - это мера инертности тела при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс всех материальных точек тела на квадраты их расстояний.

В деформирующейся системе тел, когда ее части отдаляются от оси вращения, момент инерции системы увеличивается. Инерционное сопротивление увеличивается с отдалением частей тела от оси вращения пропорционально квадрату расстояния. Поскольку материальные точки в теле расположены на разных расстояниях от оси вращения, для ряда задач удобно вводить понятие «радиус инерции».

Радиус инерции тела - это сравнительная мера инертности данного тела относительно его разных осей. Он измеряется корнем квадратным из отношения момента инерции (относительно данной оси) к массе тела:

" Масса, измеренная таким образом, называется инертной, измеренная путем взвешивания - тяжелой. Они количественно равны одна другой и отличаются только способами их определения.

2 Так как масса тела не само вещество, а его свойство, то, строго говоря, она не перемещается и не распределяется; перемещаются тела, обладающие массой; распределяются частицы (материальные точки) тела, обладающие массой.

Найдя опытным путем момент инерции тела, можно рассчитать радиус инерции, величина которого характеризует распределение материальных точек в теле относительно данной оси. Если мысленно расположить все материальные точки тела на одинаковых расстояниях от оси, получится полый цилиндр. Радиус такого цилиндра, момент инерции которого равен моменту инерции изучаемого тела, равен радиусу инерции. Он позволяет сравнивать различные распределения масс тела относительно разных осей вращения. Это удобно, когда рассматривают инертность одного тела относительно разных осей.

Знать о моменте инерции очень важно для понимания движения, хотя точное количественное определение этой величины в конкретных случаях нередко затруднено.

Силовые характеристики

Известно, что движение тела может происходить как под действием приложенной к нему движущей силы, так и без движущей силы (по инерции), когда приложена только тормозящая сила. Движущие силы приложены не всегда; без тормозящих же сил движения не бывает.


Элективный курс

«Физика человека»

Пояснительная записка 2

Основное содержание курса 3-4

Тематическое планирование курса 5

Список литературы 6

Пояснительная записка

В курсе физики, изучаемом в современной школе, практически не уделяется внимания на физические параметры, характеризующие человека. Однако в связи с изучением вопросов психологии в школе, моделировании процессов, происходящих в живых организмах, в технике, развитием такой науки как бионика у учащихся всё чаще проявляется повышенный интерес к изучению физики человека.

В ходе изучения данного курса учащиеся не только удовлетворят свои образовательные потребности, но и получат навыки исследовательской деятельности, познакомятся с методами исследования в физике и биологии, получат краткие данные о медицинской и биологической аппаратуре. Навыки, полученные при работе с измерительными приборами, выполнение практических работ и постановка эксперимента пригодятся в дальнейшей научно-технической деятельности. Объяснение отдельных процессов, происходящих в живых организмах, на основе физических законов поможет им установить причинно-следственные связи, существующие в живой и неживой природе, сформирует интерес не только к физике, но и биологии.

Программа курса носит практико-ориентированный характер с элементами научно-исследовательской деятельности.

Изучение элективного курса рассчитано на 17 часов, из них на изучение теоретических вопросов 7,3 ч. (43%), практических занятий (решение задач, выполнение лабораторных работ) -9,7 ч. (57%)

Основные цели курса:

Показать учащимся единство законов природы, применимость законов физики к живому организму, перспективное развитие науки и техники, а также показать в каких сферах профессиональной деятельности им пригодятся полученные на спецкурсе знания.

Создать условия для формирования и развития интеллектуальных и практических умений у учащихся в области физического эксперимента.

Развивать познавательную активность и самостоятельность, стремление к саморазвитию и самосовершенствованию.

Задачи курса:

Способствовать формированию познавательного интереса к физике, развитию творческих способностей у учащихся.

Развивать интеллектуальную компетентность учащихся.

Формировать навыки выполнения практических работ, ведения исследовательской деятельности.

Совершенствовать навыки работы со справочной и научно популярной литературой.

По окончании изучения курса учащиеся должны знать:

Какие физические законы можно использовать при объяснении процессов, происходящих в организме человека.

Особенности своего организма с точки зрения законов физики. уметь:

Работать с различными источниками информации.

Наблюдать и изучать явления, описывать результаты наблюдений.

Моделировать явления, отбирать нужные приборы, выполнять измерения, представлять результаты измерений в виде таблиц, графиков, ставить исследовательские задачи.

ОСНОВНОЕ СОДЕРЖАНИЕ КУРСА

Содержание курса качественно отличается от базового курса физики. На уроках законы физики рассматриваются в основном на неживых объектах. Однако очень важно, чтобы у учащихся постепенно складывались убеждения в том, что, причинно-следственная связь явлений имеет всеобщий характер и что, все явления, происходящие в окружающем нас мире, взаимосвязаны. В курсе рассматриваются вопросы, направленные на развитие интереса к физике, к экспериментальной деятельности, формирование умений работать со справочной литературой. По окончании изучения курса учащиеся составляют "Физический паспорт человека".

Механические параметры человека 9ч.

Физика. Человек. Окружающая среда. Линейные размеры различных частей тела человека, их масса. Плотности жидкостей и твердых тканей, из которых состоит человек. Сила давления и давление в живых организмах.

Скорости проведения нервных импульсов. Законы движения крови в организме человека. Естественная защита организма от ускорения.

Проявление силы трения в организме человека, естественная смазка.

Сохранение равновесия живыми организмами. Центр тяжести тела человека. Рычаги в теле человека. Ходьба человека. Виды суставов. Деформация костей, сухожилий, мышц. Прочность биологических материалов. Строение костей с точки зрения возможности наибольшей деформации.

Тело человека в гравитационном поле Земли. Условия длительного существования человека на космической станции. Меры защиты летчиков и космонавтов от ускорения. Невесомость и перегрузки.

Работа и мощность, развиваемая человеком в разных видах деятельности. «Энергетика» и развитие человека. Применение закона сохранения энергии к некоторым видам движения человека.

Лабораторные работы.

1. Определение объема и плотности своего тела.

2. Определить среднюю скорость движения.

3. Определение времени реакции человека.

4. Градуировка динамометра и определение становой силы человека.

5. Определение коэффициентов трения подошв обуви человека о различные поверхности.

6. Определение мощности, развиваемой человеком.

Колебания и волны в живых организмах 2ч.

Колебания и человек. Происхождение биоритмов. Сердце и звуки, сопровождающие работу сердца и легких, их запись. Стетоскоп и фонендоскоп. Выстукивание - как один из способов определения размеров внутренних органов и их состояния. Радиоволны и человек.

Звук как средство восприятия и передачи информации. Орган слуха. Ультразвук и инфразвук. Область слышимости звука. Голосовой аппарат человека. Характеристики голоса человека. Слуховой аппарат.

Лабораторная работа.

7. Изучение свойств уха.

Тепловые явления 2 ч.

Терморегуляция человеческого организма. Роль атмосферного давления в жизни человека. Осмотическое давление. Изменение кровяного давления в капиллярах. Влажность. Органы дыхания.

Тепловые процессы в теле человека. Человек как тепловой двигатель. Энтропия и организм человека. Второе начало термодинамики и способность к самоорганизации.

Лабораторная работа.

8. Определение дыхательного объема легких человека.

9. Определение давления крови человека.

Электричество и магнетизм 2ч.

Электрические свойства тела человека. Биоэлектричество. Бактерии - первые электрики Земли. Фоторецепторы, электрорецепторы, биоэлектричество сна. Электрическое сопротивление органов человека постоянному и переменному току. Магнитное поле и живые организмы.

Лабораторная работа.

10. Определение сопротивления тканей человека постоянному и переменному электрическому току.

Оптические параметры человека 1ч.

Строение глаза человека. Сила аккомодации глаза. Оптическая сила. Дефекты зрения и способы их исправления. Особенности зрения человека. Разрешающая способность глаза человека. Как получается, что мы видим. Граммофонная пластинка и глаз. Для чего нам два глаза. Спектральная и энергетическая чувствительность глаза.

Лабораторная работа.

11. Наблюдение некоторых психофизиологических особенностей зрения человека.

12. Определение характеристических параметров зрения человека.

Система аттестации учащихся . После окончания изучения курса зачет ставится при выполнении следующих условий:

1. Активное участие в подготовке и проведении семинаров, конференций, выпуске газет, изготовлении моделей.

2. Выполнение не менее половины лабораторных работ.

3. Выполнение не менее одного экспериментального задания исследовательского или конструкторского характера.

4. Составление "Физического паспорта человека".

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ КУРСА

Тема занятия

Количество часов

всего

теория

практика

МЕХАНИЧЕСКИЕ ПАРАМЕТРЫ ЧЕЛОВЕКА (9 Ч)

Физика. Человек. Окружающая среда.

Кинематика и тело человека.

Законы Ньютона в жизни человека.

Человек в условиях невесомости и

перегрузок

Прямохождение и опорно-двигательная система человека.

Проявление силы трения в организме человека.

Работа и мощность, развиваемая человеком в разных видах деятельности.

Статика в теле человека.

Давление и тело человека.

КОЛЕБАНИЯ И ВОЛНЫ В ЖИВЫХ ОРГАНИЗМАХ (2 ч)

Колебания и человек.

ТЕПЛОВЫЕ ЯВЛЕНИЯ (1 Ч)

Тепловые процессы в теле человека.

Второе начало термодинамики.

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ. (2 Ч)

Электрические свойства тела человека

Магнитное поле и живые организмы.

ОПТИЧЕСКИЕ ПАРАМЕТРЫ ЧЕЛОВЕКА (1 Ч)

Глаз и зрение

Конференция.

Итого:

СПИСОК ЛИТЕРАТУРЫ

1. Агаджанян Н.А. Ритм жизни и здоровье. - М.: Знание, 1975.

2. Безденежных Е.А., Брикман И.С. Физика в живой природе и медицине. - Киев, 1976.

3. Богданов К.Ю. Физик в гостях у биолога. - М., 1986.

5. Беркинблит М.Б. и др. Электричество в живых организмах. - М.: Наука, 1988.

6. Боярова О. и др. С головы и до пят. - М.: Детская литература, 1967.

7. Булат В.А. Оптические явления в природе. - М.: Просвещение, 1974.

8. Гальперштейн Л. Здравствуй физика! - М.: Просвещение, 1973.

9. Газенко О.Г., Безопасность и надежность человека в космических полетах.// Наука и жизнь. -1984 №3.

10. Енохович А.С. Справочник по физике. - М.: Просвещение, 1991.

11. Елькин В.И. Необычные учебные материалы по физике. - М.: Школа-Пресс, 2001.

12.. Ильченко В.Р. Перекрестки физики, химии биологии. - М.: Просвещение, 1986.

13. Кац Ц.Б. Биофизика на уроках физики. - М.: Просвещение, 1988.

14. Ланина И.Я. Внеклассная работа по физике. - М.: Просвещение, 1977.

15. Ланина И.Я. Не уроком единым. - М.: Просвещение, 1991.

16. Манойлов В.Е. Электричество и человек. -Л: Энергоатомиздат, 1988.

17. Мэрион Дж.Б. Общая физика с биологическими примерами. - М., 1986.

18. Популярная медицинская энциклопедия. - М., 1979.

19. Рыдник В.И. О современной акустике. - М.: Просвещение, 1979.

20. Сергеев Б.А. Занимательная физиология.- М.: Просвещение, 1977.

21. Силин А.А. Трение и мы. - М., 1987.

22. Синичкин В.П. Синичкина О.П, Внеклассная работа по физике. - Саратов: Лицей, 2002.

23. Суорц Кл.Э. Необыкновенная физика обыкновенных явлений, - М., 1986.

24. Хуторской А.В., Хуторская Л.Н. Увлекательная физика. - М.: АРКТИ, 2000.

25. Хрипкова А.Г. Физиология человека. - М.: Просвещение, 1971.

26. Я познаю мир: Детская энциклопедия: Физика. - М.: АСТ, 1998.

27. Мир физики. Занимательные рассказы о законах физики. С.Петербург «МиМ-Экспресс».1995

28. О.П. Спиридонов. СВЕТ. Физика, информация, жизнь. М. «Просвещение». 1993

В курсе физики, изучаемом в современной школе, практически не уделяется внимания на физические параметры, характеризующие человека. Однако в связи с изучением вопросов психологии в школе, моделировании процессов, происходящих в живых организмах, в технике, развитием такой науки как бионика у учащихся всё чаще проявляется повышенный интерес к изучению физики человека.

В ходе изучения данного курса учащиеся не только удовлетворят свои образовательные потребности, но и получат навыки исследовательской деятельности, познакомятся с методами исследования в физике и биологии, получат краткие данные о медицинской и биологической аппаратуре. Навыки, полученные при работе с измерительными приборами, выполнение практических работ и постановка эксперимента пригодятся в дальнейшей научно-технической деятельности. Объяснение отдельных процессов, происходящих в живых организмах, на основе физических законов поможет им установить причинно-следственные связи, существующие в живой и неживой природе, сформирует интерес не только к физике, но и биологии.

Программа курса носит практико-ориентированный характер с элементами научно-исследовательской деятельности. Данный элективный курс может быть использован для преподавания в классах с биолого-химическим или медицинским профилями.

Изучение элективного курса рассчитано на 17 часов, из них на изучение теоретических вопросов 7,3 ч. (43%), практических занятий (решение задач, выполнение лабораторных работ) –9,7 ч. (57%)

Основные цели курса:

  • Показать учащимся единство законов природы, применимость законов физики к живому организму, перспективное развитие науки и техники, а также показать в каких сферах профессиональной деятельности им пригодятся полученные на спецкурсе знания.
  • Создать условия для формирования и развития интеллектуальных и практических умений у учащихся в области физического эксперимента.
  • Развивать познавательную активность и самостоятельность, стремление к саморазвитию и самосовершенствованию.

Задачи курса:

  • Способствовать формированию познавательного интереса к физике, развитию творческих способностей у учащихся.
  • Развивать интеллектуальную компетентность учащихся.
  • Формировать навыки выполнения практических работ, ведения исследовательской деятельности.
  • Совершенствовать навыки работы со справочной и научно популярной литературой.

По окончании изучения курса учащиеся должны

  • знать:
    • какие физические законы можно использовать при объяснении процессов, происходящих в организме человека;
    • особенности своего организма с точки зрения законов физики.
  • уметь:
    • работать с различными источниками информации;
    • наблюдать и изучать явления, описывать результаты наблюдений;
    • моделировать явления, отбирать нужные приборы, выполнять измерения, представлять результаты измерений в виде таблиц, графиков, ставить исследовательские задачи.

Основное содержание курса

Содержание курса качественно отличается от базового курса физики. На уроках законы физики рассматриваются в основном на неживых объектах. Однако очень важно, чтобы у учащихся постепенно складывались убеждения в том, что, причинно-следственная связь явлений имеет всеобщий характер и что, все явления, происходящие в окружающем нас мире, взаимосвязаны. В курсе рассматриваются вопросы, направленные на развитие интереса к физике, к экспериментальной деятельности, формирование умений работать со справочной литературой. По окончании изучения курса учащиеся составляют “Физический паспорт человека”.

Механические параметры человека – 10 ч.

Физика. Человек. Биофизические исследования в физике. Линейные размеры различных частей тела человека, их масса. Плотности жидкостей и твердых тканей, из которых состоит человек.
Кинематические величины и тело человека.
Движение тела в поле силы тяжести. Свободное падение. Время реакции человека. Движение тела, брошенного под углом к горизонту.
Первый закон Ньютона. Инерция в живой природе. Второй закон Ньютона. Определение силы человека. Динамика мышечной ткани. Третий закон Ньютона.
Тело человека в гравитационном поле земли. Условия длительного существования человека на космической станции. Меры защиты летчиков и космонавтов от ускорения. Невесомость и перегрузки.
Прямохождение и опорно-двигательная система человека. Ходьба человека. Виды суставов. Деформация костей, сухожилий, мышц. Прочность биологических материалов. Строение костей с точки зрения возможности наибольшей деформации.
Проявление силы трения в организме человека, естественная смазка. Тормозной путь.
Давление. Атмосфера и человек. Дыхание. Давление жидкости. Давление крови. Законы движения крови в организме человека.
Сохранение равновесия живыми организмами. Центр тяжести тела человека. Рычаги в теле человека.
Работа и мощность, развиваемая человеком в разных видах деятельности. «Энергетика» и развитие человека. Применение закона сохранения энергии к некоторым видам движения человека.
Роль атмосферного давления в жизни человека. Осмотическое давление. Изменение кровяного давления в капиллярах. Органы дыхания.
Лабораторные работы.

  • Проведение антропологических измерений
  • Определить среднюю скорость движения.
  • Определение времени реакции человека.
  • Градуировка динамометра и определение становой силы человека.
  • Определение коэффициентов трения подошв обуви человека о различные поверхности.
  • Определение мощности, развиваемой человеком.

Колебания и волны в живых организмах – 2 ч.

Колебания и человек. Происхождение биоритмов. Сердце и звуки, сопровождающие работу сердца и легких, их запись.
Звук как средство восприятия и передачи информации. Орган слуха. Ультразвук и инфразвук. Область слышимости звука. Голосовой аппарат человека. Характеристики голоса человека.
Лабораторная работа.

  • Определение дыхательного объема легких человека.
  • Проведение инструментальных измерений и функциональных проб.
  • Подсчет пульса до и после дозированной нагрузки.
  • Изучение свойств уха.

Тепловые явления – 1 ч.

Терморегуляция человеческого организма. Влажность. Органы дыхания. Тепловые процессы в теле человека. Человек как тепловой двигатель. Лабораторная работа.

  • Подсчет энергетических затрат и определение калорийности рациона

Электричество и магнетизм – 2 ч.

Электрические свойства тела человека. Биоэлектричество. Бактерии – первые электрики Земли. Фоторецепторы, электрорецепторы, биоэлектричество сна. Электрическое сопротивление органов человека постоянному и переменному току.
Человек в мире электромагнитных излучений.
Лабораторная работа.

  • Определение сопротивления тканей человека постоянному и переменному электрическому току.

Оптические параметры человека – 1 ч.

Строение глаза человека. Сила аккомодации глаза. Оптическая сила. Дефекты зрения и способы их исправления. Особенности зрения человека. Разрешающая способность глаза человека. Как получается, что мы видим. Для чего нам два глаза. Спектральная и энергетическая чувствительность глаза.
Лабораторная работа.

  • Наблюдение некоторых психофизиологических особенностей зрения человека.
  • Определение характеристических параметров зрения человека.
  • Определение спектральных границ чувствительности человеческого глаза.

Система аттестации учащихся. После окончания изучения курса зачет ставится при выполнении следующих условий:

  • Активное участие в подготовке и проведении семинаров, конференций, выпуске газет, изготовлении моделей.
  • Выполнение не менее половины лабораторных работ.
  • Выполнение не менее одного экспериментального задания исследовательского или конструкторского характера.
  • Составление “Физического паспорта человека”.

Тематическое планирование курса

№ п/п

Тема занятия

Количество часов

всего

теория

практика

Механические параметры человека (10 ч)

1. Физика. Человек. Окружающая среда.
2. Кинематика и тело человека.
3. Движение тела в поле силы тяжести.
4. Законы Ньютона в жизни человека.
5. Гравитация и человек.
6. Прямохождение и опорно-двигательная система человека.
7. Проявление силы трения в организме человека.
8. Работа и мощность, развиваемая человеком в разных видах деятельности.
9. Статика в теле человека.
10. Давление и тело человека.

Колебания и волны в живых организмах (2 ч)

11. Колебания и человек.
12. Звук.

Тепловые явления (1 ч)

13. Тепловые процессы в теле человека.

Электричество и магнетизм. (2 ч)

14. Электрические свойства тела человека
15. Человек в мире электромагнитных излучений.

Оптические параметры человека (1 ч)

16. Глаз и зрение
17. Конференция.
Итого:

Для практических расчетов и теоретических исследований систем виброзащиты оператора используют динамические модели тела человека в виде аналитических соотношений (например, частотных характеристик) или в виде эквивалентных механических систем (как правило, с несколькими степенями свободы).

При экспериментальных исследованиях и испытаниях систем «человек-машина» в экстремальных условиях применяют специальные имитаторы (антропоморфные манекены), заменяющие человека-испытателя в опасных для него условиях.

Расчетные динамические модели, а также антропоморфные манекены должны быть эквивалентными телу человека по следующим основным показателям: а) геометрическим размерам и формам, б) распределению масс частей тела (в частности, по расположению центров масс частей тела, значениям этих масс и моментов инерции), в) видам соединений отдельных звеньев, г) упругим и демпфирующим свойствам

На рис. 1, а представлена примерная схема конструкции типичного манекена, а на рис. 1,б - усредненные антропометрические данные тела человека.

Усредненные инерционные характеристики отдельных частей (сегментов) тела человека приведены на рис. 2, Значения масс даны в процентах от общей массы человека; значения моментов инерции относительно осей, проходящих через центр масс сегмента, расположение центра масс указано в процентах от длины сегмента.

Положение общего центра масс зависит от позы, принимаемой человеком (рис. 3).

Соединения между отдельными звеньями тела человека (или эквивалентного манекена) представляют собой кинематические пары, обладающие различными степенями подвижности (в ограниченных пределах), Идеализированные схемы соединений Звеньев тела приведены в табл, 1.

(см. скан)

(кликните для просмотра скана)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

(см. скан)

Наибольшие значения углов поворота некоторых частей тела, обусловленных подвижностью соответствующих суставов, даны в табл. 2.

Нужные для построения моделей тела человека основные физико-механические параметры , характеризующие упругодемпфирующие свойства тканей человека, триведены в табл, 3 (средние значения).

Рис. 3. Положение центра масс тела сидящего человека

(см. скан)

Зависимости напряжений от относительных деформаций для биологических тканей имеют нелинейный характер; в табл. 4 приведены эти зависимости, полученные для образцов мягких и костных тканей человека .

Характеристики крутильной жесткости элементов скелета человека приведены в табл. 5 в виде крутящего момента приложенного к торцовым сечениям элемента, в зависимости от угла взаимного поворота сечений .