Краткие содержания

Симметрия в пространстве. Правильные многогранники. Элементы симметрии правильных многогранников. Полярные и неполярные оси симметрии. Текстовая расшифровка урока

Геометрия прекрасна тем, что, в отличие от алгебры, где не всегда понятно, что и зачем считаешь, дает наглядность объекта. Этот удивительный мир различных тел украшают собой правильные многогранники.

Общие сведения о правильных многогранниках

По мнению многих, правильные многогранники, или как их еще называют Платоновы тела, обладают неповторимыми свойствами. С этими объектами связано несколько научных гипотез. Когда начинаешь изучать данные геометрические тела, понимаешь, что практически ничего не знаешь о таком понятии, как правильные многогранники. Презентация этих объектов в школе не всегда проходит интересно, поэтому многие даже и не помнят, как они называются. В памяти большинства людей остается только куб. Ни одни тела в геометрии не обладают таким совершенством, как правильные многогранники. Все названия этих геометрических тел произошли из Древней Греции. Они означают количество граней: тетраэдр - четырехгранный, гексаэдр - шестигранный, октаэдр - восьмигранный, додекаэдр - двенадцатигранный, икосаэдр - двадцатигранный. Все эти геометрические тела занимали важнейшее место в концепции Платона о мироздании. Четыре из них олицетворяли стихии или сущности: тетраэдр - огонь, икосаэдр - воду, куб - землю, октаэдр - воздух. Додекаэдр воплощал все сущее. Он считался главным, поскольку был символом мироздания.

Обобщение понятия многогранника

Многогранником является совокупность конечного числа многоугольников такая, что:

  • каждая из сторон любого из многоугольников является одновременно и стороной только одного другого многоугольника по той же стороне;
  • от каждого из многоугольников можно дойти до других переходя по смежным с ним многоугольникам.

Многоугольники, составляющие многогранник, представляют собой его грани, а их стороны - ребра. Вершинами многогранников являются вершины многоугольников. Если под понятием многоугольник понимают плоские замкнутые ломаные, то приходят к одному определению многогранника. В том случае, когда под этим понятием подразумевают часть плоскости, что ограничена ломаными линиями, то следует понимать поверхность, состоящую из многоугольных кусочков. называют тело, лежащее по одну сторону плоскости, прилегающей к его грани.

Другое определение многогранника и его элементов

Многогранником называют поверхность, состоящую из многоугольников, которая ограничивает геометрическое тело. Они бывают:

  • невыпуклыми;
  • выпуклыми (правильные и неправильные).

Правильный многогранник - это выпуклый многогранник с максимальной симметрией. Элементы правильных многогранников:

  • тетраэдр: 6 ребер, 4 грани, 5 вершин;
  • гексаэдр (куб): 12, 6, 8;
  • додекаэдр: 30, 12, 20;
  • октаэдр: 12, 8, 6;
  • икосаэдр: 30, 20, 12.

Теорема Эйлера

Она устанавливает связь между числом ребер, вершин и граней, топологически эквивалентных сфере. Складывая количество вершин и граней (В + Г) у различных правильных многогранников и сравнивая их с количеством ребер, можно установить одну закономерность: сумма количества граней и вершин равняется числу ребер (Р), увеличенному на 2. Можно вывести простую формулу:

  • В + Г = Р + 2.

Эта формула верна для всех выпуклых многогранников.

Основные определения

Понятие правильного многогранника невозможно описать одним предложением. Оно более многозначное и объемное. Чтобы тело было признано таковым, необходимо, чтобы оно отвечало ряду определений. Так, геометрическое тело будет являться правильным многогранником при выполнении таких условий:

  • оно выпуклое;
  • одинаковое количество ребер сходится в каждой из его вершин;
  • все грани его - правильные многоугольники, равные друг другу;
  • все его равны.

Свойства правильных многогранников

Существует 5 разных типов правильных многогранников:

  1. Куб (гексаэдр) - у него плоский угол при вершине составляет 90°. Он имеет 3-гранный угол. Сумма плоских углов у вершины составляет 270°.
  2. Тетраэдр - плоский угол при вершине - 60°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 180°.
  3. Октаэдр - плоский угол при вершине - 60°. Он имеет 4-гранный угол. Сумма плоских углов у вершины - 240°.
  4. Додекаэдр - плоский угол при вершине 108°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 324°.
  5. Икосаэдр - у него плоский угол при вершине - 60°. Он имеет 5-гранный угол. Сумма плоских углов у вершины составляет 300°.

Площадь поверхности этих геометрических тел (S) вычисляется, как площадь правильного многоугольника, умноженная на количество его граней (G):

  • S = (a: 2) х 2G ctg π/p.

Объем правильного многогранника

Эта величина вычисляется путем умножения объема правильной пирамиды, в основании которой находится правильный многоугольник, на число граней, а высота ее является радиусом вписанной сферы (r):

  • V = 1: 3rS.

Объемы правильных многогранников

Как и любое другое геометрическое тело, правильные многогранники имеют различные объемы. Ниже представлены формулы, по которым можно их вычислить:

  • тетраэдр: α х 3√2: 12;
  • октаэдр: α х 3√2: 3;
  • икосаэдр; α х 3;
  • гексаэдр (куб): 5 х α х 3 х (3 + √5) : 12;
  • додекаэдр: α х 3 (15 + 7√5) : 4.

Гексаэдр и октаэдр являются дуальными геометрическими телами. Иными словами, они могут получиться друг из друга в том случае, если центр тяжести грани одного принимается за вершину другого, и наоборот. Также дуальными являются икосаэдр и додекаэдр. Сам себе дуален только тетраэдр. По способу Евклида можно получить додекаэдр из гексаэдра с помощью построения «крыш» на гранях куба. Вершинами тетраэдра будут любые 4 вершины куба, не смежные попарно по ребру. Из гексаэдра (куба) можно получить и другие правильные многогранники. Несмотря на то что есть бесчисленное множество, правильных многогранников существует всего 5.

Радиусы правильных многоугольников

С каждым из этих геометрических тел связаны 3 концентрические сферы:

  • описанная, проходящая через его вершины;
  • вписанная, касающаяся каждой его грани в центре ее;
  • срединная, касающаяся всех ребер в середине.

Радиус сферы описанной рассчитывается по такой формуле:

  • R = a: 2 х tg π/g х tg θ: 2.

Радиус сферы вписанной вычисляется по формуле:

  • R = a: 2 х ctg π/p х tg θ: 2,

где θ - двухгранный угол, который находится между смежными гранями.

Радиус сферы срединной можно вычислить по следующей формуле:

  • ρ = a cos π/p: 2 sin π/h,

где h величина = 4,6 ,6,10 или 10. Отношение описанных и вписанных радиусов симметрично относительно p и q. Оно рассчитывается по формуле:

  • R/r = tg π/p х tg π/q.

Симметрия многогранников

Симметрия правильных многогранников вызывает основной интерес к этим геометрическим телам. Под ней понимают такое движение тела в пространстве, которое оставляет одно и то же количество вершин, граней и ребер. Другими словами, под действием преобразования симметрии ребро, вершина, грань или сохраняет свое первоначальное положение, или перемещается в исходное положение другого ребра, другой вершины или грани.

Элементы симметрии правильных многогранников свойственны всем видам таких геометрических тел. Здесь речь ведется о тождественном преобразовании, которое оставляет любую из точек в исходном положении. Так, при повороте многоугольной призмы можно получить несколько симметрий. Любая из них может быть представлена как произведение отражений. Симметрию, которая является произведением четного количества отражений, называют прямой. Если же она является произведением нечетного количества отражений, то ее называют обратной. Таким образом, все повороты вокруг прямой представляют собой прямую симметрию. Любое отражение многогранника - это обратная симметрия.

Чтобы лучше разобраться в элементах симметрии правильных многогранников, можно взять пример тетраэдра. Любая прямая, которая будет проходить через одну из вершин и центр этой геометрической фигуры, будет проходить и через центр грани, противоположной ей. Каждый из поворотов на 120 и 240° вокруг прямой принадлежит к множественному числу симметрий тетраэдра. Поскольку у него по 4 вершины и грани, то получается всего восемь прямых симметрий. Любая из прямых, проходящих через середину ребра и центр этого тела, проходит через середину его противоположного ребра. Любой поворот на 180°, называемый полуоборотом, вокруг прямой является симметрией. Поскольку у тетраэдра есть три пары ребер, то получится еще три прямые симметрии. Исходя из вышеизложенного, можно сделать вывод, что общее число прямых симметрий, и в том числе тождественное преобразование, будет доходить до двенадцати. Других прямых симметрий у тетраэдра не существует, но при этом у него есть 12 обратных симметрий. Следовательно, тетраэдр характеризуется всего 24 симметриями. Для наглядности можно построить модель правильного тетраэдра из картона и убедиться, что это геометрическое тело действительно имеет всего 24 симметрии.

Додекаэдр и икосаэдр - наиболее близкие к сфере тела. Икосаэдр обладает наибольшим числом граней, наибольшим и плотнее всего может прижаться к вписанной сфере. Додекаэдр обладает наименьшим угловым дефектом, наибольшим телесным углом при вершине. Он может максимально заполнить свою описанную сферу.

Развертки многогранников

Правильные которых мы все склеивали в детстве, имеют много понятий. Если есть совокупность многоугольников, каждая сторона которых отождествлена с только одной стороной многогранника, то отождествление сторон должно соответствовать двум условиям:

  • от каждого многоугольника можно перейти по многоугольникам, имеющим отождествленную сторону;
  • отождествляемые стороны должны иметь одинаковую длину.

Именно совокупность многоугольников, которые удовлетворяют эти условия, и называется разверткой многогранника. Каждое из этих тел имеет их несколько. Так, например, у куба их насчитывается 11 штук.

Слайд 2

Симметрия относительно точки Симметрия относительно прямой А А1 О Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА1. Точка О считается симметричной самой себе. А А1 a Точки А и А1 называются симметричными относительно прямой (ось симметрии), если прямая проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка прямой считается симметричной самой себе. a a a

Слайд 3

Симметрия относительно плоскости А Точки А и А1 называются симметричными относительно плоскости (плоскость симметрии), если плоскость проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка плоскости считается симметричной самой себе. А1 О

Слайд 4

Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией. Фигура может иметь один или несколько центров симметрии (осей симметрии, плоскостей симметрии). О А Центр симметрии О А Плоскость симметрии О А a А1 Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Центр, ось, плоскость симметрии фигуры. А1 Ось симметрии А1

Слайд 5

С симметрией мы часто встречаемся в архитектуре.

Слайд 6

Почти все кристаллы, встречающиеся в природе, имеют ось или плоскость симметрии. В геометрии центр, оси и плоскости симметрии многогранника называются элементами симметрииэтого многогранника. Апатит Золото

Слайд 7

Кальцит (двойник) Поваренная соль Лед

Слайд 8

Альмандин Ставролит (двойник)

Слайд 9

Правильный тетраэдр составлен их четырех равносторонних треугольников и в каждой вершине сходятся 3 ребра. 4 грани, 4 вершины и 6 ребер. Сумма плоских углов при каждой вершине равна 1800 Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходится равное число ребер. В каждом правильном многограннике сумма числа и вершин равна числу рёбер,увеличенному на 2. грани вершины ребра Г + В = Р + 2 60+ 60 + 60

Слайд 10

Мы различаем правильный тетраэдр и правильную пирамиду. В отличие от правильного тетраэдра, все ребра которого равны, в правильной треугольной пирамиде боковые ребра равны друг другу, но они могут быть не равны ребрам основания пирамиды. «тетра» - 4 Названия многогранников пришли из Древней Греции и в них указывается число граней.

Слайд 11

Правильный тетраэдр не имеет центра симметрии. Осей симметрии – 3. Плоскостей симметрии – 6. Прямая, проходящая через середины двух противоположных ребер, является его осью симметрии. Плоскость, проходящая через ребро перпендикулярно к противоположному ребру, - ось симметрии. Элементы симметрии тетраэдра.

Слайд 12

Куб составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 2700. 6 граней, 8 вершин и 12 ребер «гекса» - 6 Куб, гексаэдр.

Слайд 13

Куб имеет 9 плоскостей симметрии.

Слайд 14

Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 2400. «окта» - 8 Октаэдр имеет 8 граней, 6 вершин и 12 ребер

Слайд 15

Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти правильных треугольников. Следовательно, сумма плоских углов при каждой вершине равна 3000. «икоса» - 20 Икосаэдр имеет 20 граней, 12 вершин и 30 ребер

Слайд 16

Правильный додекаэдр составлен из двенадцати правильных шестиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 3240. «додека» - 12 Додекаэдр имеет 12 граней, 20 вершин и 30 ребер.

Слайд 17

Первым свойства правильных многогранников описал древнегреческий ученый Платон. Именно поэтому правильные многогранники называют также телами Платона. Платон 428 – 348 г. до н.э. Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников.

Слайд 18

огонь воздух вода земля Правильные многогранники в философской картине мира Платона. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух.

Слайд 19

вселенная Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим.

Слайд 20

Большой интерес к формам правильных многогранников проявляли скульпторы, архитекторы, художники. Их поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадор Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.

Слайд 21

Архимед 287 – 212 гг. до н.э. Это многогранники, которые получаются из платоновых тел в результате их усечения. усечённый тетраэдр, усечённый гексаэдр (куб), усечённый октаэдр, усечённый додекаэдр, усечённый икосаэдр. Архимед описал полуправильные многогранники

Слайд 22

Усеченный тетраэдр Выполняя простейшие сечения, мы можем получить необычные многогранники. Усеченный тетраэдр получится, если у тетраэдра срезать его четыре вершины.

Слайд 23

Усеченный куб Срезав вершины получим новые грани – треугольники. А из граней куба получатся грани – восьмиугольники. Усеченный куб получится, если у куба срезать все его восемь вершин.




Осевая симметрия Две точки А и А 1 называются симметричными относительно прямой а (оси симметрии), если прямая а проходит через середину отрезка АА 1 и перпендикулярна к этому отрезку. Две точки А и А 1 называются симметричными относительно прямой а (оси симметрии), если прямая а проходит через середину отрезка АА 1 и перпендикулярна к этому отрезку.


Центральная симметрия Две точки А и А 1 называются симметричными относительно точки О, если О – середина отрезка АА 1. Точка О считается симметричной самой себе. Две точки А и А 1 называются симметричными относительно точки О, если О – середина отрезка АА 1. Точка О считается симметричной самой себе.




Симметрия относительно плоскости Точки А и А 1 называются симметричными относительно плоскости α(плоскость симметрии), если плоскость α проходит через середину отрезка АА 1 и перпендикулярна к этому отрезку. Каждая точка плоскости α считается симметричной самой себе Точки А и А 1 называются симметричными относительно плоскости α(плоскость симметрии), если плоскость α проходит через середину отрезка АА 1 и перпендикулярна к этому отрезку. Каждая точка плоскости α считается симметричной самой себе


Определение правильного многогранника Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер. Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.




Правильный ОКТАЭДР Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине 240º Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине 240º


Правильный икосаэдр Составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300º Составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300º


Куб (кексаэдр) Составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270º Составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270º


Правильный додекаэдр Составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324º Составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324º







Таблица 1 Правильный многогранник Число граней вершин рёбер Тетраэдр 446 Куб 6812 Октаэдр 8612 Додекаэдр Икосаэдр




Таблица 2 Правильный многогранник Число граней и вершин (Г + В) рёбер(Р) Тетраэдр = 8 6 Куб = Октаэдр = Додекаэдр = Икосаэдр = 32 30



25






Внеаудиторная самостоятельная деятельность « На отлично» -, 2 модели правильных многогранников « На отлично» -, 2 модели правильных многогранников « На хорошо» -, 2 модели правильных многогранников « На хорошо» -, 2 модели правильных многогранников « На удовлетворительно» -, 1 модель правильного многогранника « На удовлетворительно» -, 1 модель правильного многогранника

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Наше знакомство с многогранниками продолжается.

Вспомним, что многогранник называется правильным, если выполнены следующие условия:

1.многогранник выпуклый;

2. все его грани являются равными правильными многоугольниками;

3. в каждой его вершине сходится одинаковое число граней;

4. все его двугранные углы равны.

На прошлых занятиях вы узнали об единственности существования пяти видов правильных многогранников:

тетраэдра, октаэдра, икосаэдра, гексаэдра(куба) и додекаэдра.

Сегодня мы рассмотрим элементы симметрии изученных правильных многогранников.

Правильный тетраэдр не имеет центра симметрии.

Его осью симметрии является прямая, проходящая через середины противоположных рёбер.

Плоскостью симметрии является плоскость, проходящая через любое ребро перпендикулярно противоположному ребру.

Правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

Куб обладает одним центром симметрии- это точка пересечения его диагоналей.

Осями симметрии являются прямые проходящие через центры противоположных граней и середины двух противоположных рёбер, не принадлежащих одной грани.

Куб имеет девять осей симметрии, которые проходят через центр симметрии.

Плоскость, проходящая через любые две оси симметрии, является плоскостью симметрии.

Куб имеет девять плоскостей симметрии.

Правильный октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии: три оси симметрии проходят через противоположные вершины, шесть - через середины ребер.

Центр симметрии октаэдра - точка пересечения его осей симметрии.

Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости.

Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Правильный икосаэдр имеет 12 вершин. Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии: Через первую пару противоположных вершин проходят пять плоскостей симметрии (каждая их них проходит через ребро, содержащее вершину, перпендикулярно противоположному углу).

Для третьей пары получим — 3 новых плоскости, а для четвертой — две плоскости и для пятой пары только одна новая плоскость.

Через шестую пару вершин не пройдет ни одной новой плоскости симметрии.

Правильный додекаэдр состоит из двенадцати правильных пятиугольников. Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии: плоскости симметрии проходят через ребро, содержащее вершину, перпендикулярно противоположному ребру. Поэтому через первую пару противоположных пятиугольников проходит 5 плоскостей, через вторую пару — 4, через третью — 3, четвертую — 2, пятую — 1.

Решим несколько заданий, применяя полученные знания.

Доказать, что в правильном тетраэдре отрезки, соединяющие центры его граней, равны.

Так как все грани правильного тетраэдра равны и любая из них может считаться основанием, а три другие- боковыми гранями, то достаточно будет доказать равенство отрезков ОМ и ON.

Доказательство:

1.Дополнительное построение: проведём прямую DN до пересечения со стороной АС, получим точку F;

проведём прямую DM до пересечения со стороной АВ, получим точку Е.

Затем соединим вершину А с точкой F;

вершину С с точкой Е.

2.Рассмотрим треугольники ДЕО и ДОФ они

прямоугольные, т.к. ДО высота тетраэдра, тогда они равны по гипотенузе и катету: ДО-общая, ДЕ=ДФ(высоты равных граней тетраэдра)).

Из равенства данных треугольников следует, что OE=OF, ME=NF(середины равных сторон),

угол DEO равен углу DFO.

3. из выше доказанного следует что треугольники ОЕМ и ОФН равны по двум сторонам и углу между ними (см пн. 2).

А из равенства этих треугольников следует, что ОМ = ON.

Что и требовалось доказать.

Существует ли четырёхугольная пирамида, у которой противоположные грани перпендикулярны к основанию?

Докажем, что такой пирамиды не существует методом от противного.

Доказательство:

1. Пусть ребро РА1 перпендикулярно основанию пирамиды и ребро РА2 так же перпендикулярно основанию.

2.Тогда по теореме(две прямые, перпендикулярные к третьей, параллельны), мы получим что ребро РА1 параллельно ребру РА2.

3.Но пирамида имеет общую точку для всех боковых рёбер(а значит и граней)- вершину пирамиды.

Мы получили противоречие, таким образом не существует четырёхугольной пирамиды, противоположные грани которой перпендикулярны к основанию.