Лето

Биологическая роль водородной связи кратко. Водородная связь, ее биологическая роль. Комплексные соединения. Теория Вернера. Роль в живом организме

1) ориентационные (полярные молекулы вследствие электростатического взаимодействия разноименных концов диполей ориентируются с пространстве так, что отрицательные концы диполей одних молекул повернуты к положительным концам диполей других молекул)

2) индукционные (наблюдаются также и у веществ с полярными молекулами, но при этом оно обычно значительно слабее ориентационного. Полярная молекула может увеличивать полярность соседней молекулы. Иными словами, под влиянием диполя одной молекулы может увеличиваться диполь другой молекулы, а неполярная молекула может стать полярной)

3) дисперсионные (эти силы взаимодействуют между любыми атомами и молекулами независимо от их строения. Они вызываются мгновенными дипольными моментами, согласованно возникающими в большой группе атомов)

35. Водородная связь, ее биологическая роль.

36. Комплексные соединения. Теория Вернера. Роль в живом организме.

37. Диссоциация комплексных соединений. Константа нестойкости комплексных ионов.

38. Химическая связь в комплексных соединениях (примеры).

В кристаллических комплексных соединениях с заряженными комплексами связь между комплексом и внешнесферными ионами ионная , связи между остальными частицами внешней сферы –межмолекулярные (в том числе и водородные). В большинстве комплексных частиц между центральным атомом и лигандами связиковалентные . Все они или их часть образованы по донорно-акцепторному механизму (как следствие – с изменением формальных зарядов). В наименее прочных комплексах (например, в аквакомплексах щелочных и щелочноземельных элементов, а также аммония) лиганды удерживаются электростатическим притяжением. Связь в комплексных частицах часто называют донорно-акцепторной или координационной связью.

39. Окислительно-восстановительные реакции. Виды окислительно-восстановительных реакций.

Виды окислительно-восстановительных реакций:

1) Межмолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

Н 2 S + Cl 2 → S + 2HCl

2) Внутримолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H 2 O → 2H 2 + O 2

3) Диспропорционирование (самоокисление-самовосстановление) - реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl 2 + H 2 O → HClO + HCl

4) Репропорционирование - реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления, например:

NH 4 NO 3 → N 2 O + 2H 2 O

40. Важнейшие окислители и восстановители. Окислительно-восстановительная двойственность.

Восстановители

Окислители

Галогены

Перманганат калия(KMnO 4)

Манганат калия (K 2 MnO 4)

Окись углерода (II) (CO)

Оксид марганца (IV) (MnO 2)

Сероводород (H 2 S)

Дихромат калия (K 2 Cr 2 O 7)

Оксид серы (IV) (SO 2)

Хромат калия (K 2 CrO 4)

Сернистая кислота H 2 SO 3 и ее соли

Азотная кислота (HNO 3)

Галогеноводородные кислоты и их соли

Серная кислота (H 2 SO 4) конц.

Катионы металлов в низших степенях окисления: SnCl 2 , FeCl 2 , MnSO 4 , Cr 2 (SO 4) 3

Оксид меди(II) (CuO)

Азотистая кислота HNO 2

Оксид свинца(IV) (PbO 2)

Аммиак NH 3

Оксид серебра (Ag 2 O)

Гидразин NH 2 NH 2

Пероксид водорода (H 2 O 2)

Оксид азота(II) (NO)

Хлорид железа(III) (FeCl 3)

Катод при электролизе

Бертоллетова соль (KClO 3)

Химические связи в молекулах обычно очень прочны, их энергия находится в пределах 100-150 кДж/моль. Кроме этого существуют так называемые водородные связи, прочность которых составляет 10-40 кДж/моль. Длина этих связей соответственно 270-230 пм. Водородной связью между атомами Эа и Эв называют взаимодействие, осуществляемое атомом водорода, соединенным с Эа или Эв химической связью.

Изображение водородной связи в общем случае имеет вид: Эа-Н…Эв. Очевидно, что во­дородная связь трех­центровая, так как в ее образовании принимают участие три атома. Для воз­никновения такой связи необходимо, чтобы атомы Эа иЭв обладали большой электроотрицательностью. Это атомы наи­более отрицательных элементов: азота (ОЭО = 3,0), кислорода (ОЭО = 3,5), фтора (ОЭО = 4,0) и хлора (ОЭО =3,0). Водо­родная связь образуется в результате комбинации ls-AO водо­рода и двух 2р-АО атомов Эа и Эв. 2р-орбитали ориентированы вдоль одной прямой. Поэтому водородная связь линейная. Водородную связь называют: 1) внутримолекулярной, если атомы Эа и Эв, соединенные этой связью, принадлежат одной и той же молекуле; 2) межмолекулярной, если атомы Эа и Эв в разных молекулах. Внутримолекулярные водородные связи играют важнейшую биологическую роль, так как определяют, например, спиральную структуру полимерных молекул белков. В белках - это связи N-Н…0 между аминокислотными остатками. Не менее важны межмолекулярные водородные связи. С их помощью соединены цепи нуклеиновых кислот, образующих двой­ную спираль. Здесь имеются два типа связей между нуклеино­выми основаниями N-H…N и N-Н…0. Средняя кинетическая энергия теплового движения молекул имеет значение порядка 3/2RT. При температуре человеческого тела 37 °С (310 К) это составляет около 4 кДж/моль. Прочность водородных связей находится в пределах 10-40 кДж/моль. Поэтому они достаточно прочны, чтобы выдерживать постоянные удары окружающих молекул и обеспечивать постоянство формы полимерных биологических структур. Вместе с тем при ударах активных молекул водородные связи периодически разрываются, затем вновь восстанавливаются, обеспечивая протекание раз­личных процессов жизнедеятельности. Рассмотренные примеры наглядно иллюстрируют более ши­рокий круг применения метода МО ЛКАО, чем метода ВС. Тем не менее метод ВС может успешно использоваться для прогно­зирования свойств и строения многих веществ и в том числе комплексных соединений.

Вопрос 37. Современное содержание понятия «комплексные соединения» (КС). Структура КС: центральный атом, лиганды, комплексный ион, внутренняя и внешняя сфера, координационное число центрального атома, дентатность лигандов.

Комплексные соединения - наиболее обширный и разнообразный класс соединений. В живых организмах присутствуют комплексные соединения биогенных металлов с белками, аминокислотами, порфиринами, нуклеиновыми кислотами, углеводами, макроциклическими соединениями. Важнейшие процессы жизнедеятельности протекают с участием комплексных соединений. Некоторые из них (гемоглобин, хлорофилл, гемоцианин, витамин В12 и др.) играют значительную роль в биохимических процессах. Многие лекарственные препараты содержат комплексы металлов. Например, инсулин (комплекс цинка), витамин В12 (комплекс кобальта), платинол (комплекс платины) и т.д. Комплексными соединениями называются соединения, существующие как в кристаллическом состоянии, так и в растворе, особенностью которых является наличие центрального атома, окруженного лигандами. Комплексные соединения можно рассматривать как сложные соединения высшего порядка, состоящие из простых молекул способных к самостоятельному существованию в растворе. Строение комплексных соединений, или просто комплексов, раскрыл швейцарский уче­ный А. Вернер в 1893 г. Многие положения его теории легли в основу современных представлений о структуре комплексов. В молекулах комплексных соединений выделяют центральный атом или ион М и непосредственно связанных с ним n-молекул (или ионов) L, называемых лигандами. Центральный атом с окружающими его лигандами образуют внутреннюю сферу комплекса MLn. В зависимости от соотношения суммарного заряда лигандов и комплексообразователя внутренняя сфера может иметь положительный заряд, например, 3+, либо отрицательный, например, 3-, или нулевой заряд, например, как для 0. Помимо лигандов в состав комплекса могут входить m других частиц X, непосредственно не связанных с центральным атомом. Частицы X образуют внешнюю сферу комплекса, они нейтрализуют заряд внутренней сферы, но не связаны с комплексообразователем ковалентно. Общая запись формулы комплексного соединения имеет вид: Xm, где М - центральный атом; L - лиганд; X - внешнесферная частица (молекула или ион); в квадратные скобки за­ключены частицы внутренней сферы. Комплексные со­единения часто называют координационными. Число п лигандов соответственно называется координационным числом, а внутрен­няя сфера - координационной. Центральный атом (комплексообразователь) – атом или ион, который занимает центральное положение в комплексном соединении. Центральный атом координирует лиганды, геометрически пра­вильно располагая их в пространстве. Роль комплексообразователя чаще всего выполняют частицы, имеющие свободные орбитали и достаточно большой положительный заряд ядра, а следовательно могут быть акцепторами электронов. Это катионы переходных элементов. Наиболее сильные комплексообразователи – элементы IВ и VIIIВ групп. Редко в качестве комплексообразователей выступают нейтральные атомы d–элементов и атомы неметаллов в различной степени окисления-. Число свободных атомных орбиталей, предоставляемых комплексообразователем, определяет его координационное число. Величина координационного числа зависит от многих факторов, но обычно она равна удвоенному заряду иона комплексообразователя. Наиболее прочные комплексы образуют d-элементы. Для жизне­деятельности человека особенно важны комплексные соединения Мп, Fe, Со, Си, Zn, Мо. Амфотерные p-элементы Al, Sn, Pb также обра­зуют различные комплексы. Биоген­ные s-элементы Na, К, Са, Mg могут образовывать непрочные комплекс­ные соединения с лигандами определенной структуры. Чаще всего комплексообразователем служит атом элемента в положительной степени окисления. Отрицательные условные ионы (т.е. атомы в отрицательной степени окисления) играют роль комплексообразователей сравнительно редко. Это, например, атом азота(-III) в катионе аммония + и т.п. Атом-комплексообразователь может обладать нулевой степенью окисления. Так, карбонильные комплексы никеля и железа, имеющие состав и , содержат атомы никеля(0) и железа(0). В комплексном ионе или нейтральном комплексе вокруг комплексообразователя координируются ионы, атомы или простые молекулы (L). Все эти частицы (ионы или молекулы), имеющие химические связи с комплексообразователем, называются лигандами (лиганды являются донорами электронных пар). В комплексных ионах 2- и 4- лигандами являются ионы Cl- и CN-, а в нейтральном комплексе лиганды – молекулы NH3 и ионы NCS-. Лиганды, как правило, не связаны друг с другом, и между ними действуют силы отталкивания. В отдельных случаях наблюдается межмолекулярное взаимодействие лигандов с образованием водородных связей. Лигандами могут быть различные неорганические и органические ионы и молекулы. Важнейшими лигандами являются ионы CN-, F- , Cl-, Br-, I-, NO2-, OH-, SO3S2-, C2O42-, CO32-, молекулы H2O, NH3, CO, карбамида (NH2)2CO. Важнейшей характеристикой комплексообразователя является количество химических связей, которые он образует с лигандами, или координационное число (КЧ). Эта характеристика комплексообразователя определяется главным образом строением его электронной оболочки и обусловливается валентными возможностями центрального атома или условного иона-комплексообразователя. Когда комплексообразователь координирует монодентатные лиганды, то координационное число равно числу присоединяемых лигандов. А число присоединяемых к комплексообразователю полидентатных лигандов всегда меньше значения координационного числа. Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температуры, природы растворителя, концентрации комплексообразователя и лигандов и др.), при которых протекает реакция комплексообразования. Значение КЧ может меняться в различных комплексных соединениях от 2 до 8 и даже выше. Наиболее распространенными координационными числами являются 4 и 6. Элементы-комплексообразователи со степенью окисления +II (ZnII, PtII, PdII, CuII и др.) часто образуют комплексы, в которых проявляют координационное число 4, такие как 2+, 2-, 0. В аквакомплексах координационное число комплексообразователя в степени окисления +II чаще всего равно 6: 2+. Элементы-комплексообразователи, обладающие степенью окисления +III и +IV (PtIV, AlIII, CoIII, CrIII, FeIII), имеют в комплексах, как правило, КЧ 6. Например, 3+, 3-. Известны комплексообразователи, которые обладают практически постоянным координационным числом в комплексах разных типов. Таковы кобальт(III), хром(III) или платина(IV) с КЧ 6 и бор(III), платина(II), палладий(II), золото(III) с КЧ 4. Тем не менее большинство комплексообразователей имеет переменное координационное число. Например, для алюминия(III) возможны КЧ 4 и КЧ 6 в комплексах- и -. Чаще всего лиганд бывает связан с комплексообразователем через один из своих атомов одной двухцентровой химической связью. Такого рода лиганды получили название монодентатных . К числу монодентатных лигандов относятся все галогенид-ионы, цианид-ион, аммиак, вода и другие. Некоторые распространенные лиганды типа молекул воды H2O, гидроксид-иона OH-, тиоцианат-иона NCS-, амид-иона NH2-, монооксида углерода CO в комплексах преимущественно монодентатны, хотя в отдельных случаях (в мостиковых структурах) становятся бидентатными . Существует целый ряд лигандов, которые в комплексах являются практически всегда бидентатными. Это этилендиамин, карбонат-ион, оксалат-ион и т.п. Каждая молекула или ион бидентатного лиганда образует с комплексообразователем две химические связи в соответствии с особенностями своего строения:

Комплексные соединения. Теория Вернера. Роль в живом организме.

Диссоциация комплексных соединений. Константа нестойкости комплексных ионов.


Химическая связь в комплексных соединениях (примеры).

В кристаллических комплексных соединениях с заряженными комплексами связь между комплексом и внешнесферными ионами ионная , связи между остальными частицами внешней сферы – межмолекулярные (в том числе и водородные). В большинстве комплексных частиц между центральным атомом и лигандами связи ковалентные . Все они или их часть образованы по донорно-акцепторному механизму (как следствие – с изменением формальных зарядов). В наименее прочных комплексах (например, в аквакомплексах щелочных и щелочноземельных элементов, а также аммония) лиганды удерживаются электростатическим притяжением. Связь в комплексных частицах часто называют донорно-акцепторной или координационной связью.

Окислительно-восстановительные реакции. Виды окислительно-восстановительных реакций.

Виды окислительно-восстановительных реакций:

1) Межмолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

Н 2 S + Cl 2 → S + 2HCl

2) Внутримолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H 2 O → 2H 2 + O 2

3) Диспропорционирование (самоокисление-самовосстановление) - реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl 2 + H 2 O → HClO + HCl

4) Репропорционирование - реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления, например:

NH 4 NO 3 → N 2 O + 2H 2 O

Важнейшие окислители и восстановители. Окислительно-восстановительная двойственность.

Восстановители Окислители
Металлы Галогены
Водород Перманганат калия(KMnO 4)
Уголь Манганат калия (K 2 MnO 4)
Окись углерода (II) (CO) Оксид марганца (IV) (MnO 2)
Сероводород (H 2 S) Дихромат калия (K 2 Cr 2 O 7)
Оксид серы (IV) (SO 2) Хромат калия (K 2 CrO 4)
Сернистая кислота H 2 SO 3 и ее соли Азотная кислота (HNO 3)
Галогеноводородные кислоты и их соли Серная кислота (H 2 SO 4) конц.
Катионы металлов в низших степенях окисления: SnCl 2 , FeCl 2 , MnSO 4 , Cr 2 (SO 4) 3 Оксид меди(II) (CuO)
Азотистая кислота HNO 2 Оксид свинца(IV) (PbO 2)
Аммиак NH 3 Оксид серебра (Ag 2 O)
Гидразин NH 2 NH 2 Пероксид водорода (H 2 O 2)
Оксид азота(II) (NO) Хлорид железа(III) (FeCl 3)
Катод при электролизе Бертоллетова соль (KClO 3)
Металлы Анод при электролизе

Водородные связи –специфическая связь, которая создается атомом Н, который находится в группах ОН, NH, FH, ClH и иногда SH, причем Н связывает эти группы с валентно насыщенными атомами N2, O2 и F.


Водородные связи определяют структуру и свойства воды, как самого главного и основного растворителя в биосистемах. Водородные связи участвуют в формировании макромолекул, биополимеров, а так же связях с малыми молекулами.


Uвод = 4-29 кДж/моль


Основной вклад в водородные связи вносят электростатические взаимодействия, но они не сводятся к ним. Протон движется вдоль прямой, соединяющей электроотрицательные атомы и испытывает различное влияние со стороны этих атомов.

Этот график – частный случай, связь между N-H...N и N...H-N. R – расстояние между взаимодействующими частицами. 2 минимума свободной энергии располагаются возле первого или второго взаимодействующего атома N.


  • Водородные связи –специфическая связь , которая создается атомом Н, который находится в группах ОН, NH, FH, ClH и иногда SH, причем Н связывает эти группы с валентно насыщенными атомами N2, O2 и F.


  • Водородная связь и ее роль в биологических системах . Водородные связи –специфическая связь , которая создается атомом Н, который находится в группа.


  • Водородная связь и ее роль в биологических системах .
    Она построена в виде сети из белковых фибриллярных молекул, среди которых существенную роль играет альфа-актинин.


  • Водородная связь и ее роль в биологических системах . Водородные связи –специфическая связь


  • Водородная связь и ее роль в биологических системах . Водородные связи –специфическая связь , которая создается атомом Н, который находится в группах ОН, ... подробнее ».


  • Водородная связь и ее роль в биологических системах . Водородные связи –специфическая связь , которая создается атомом Н, который находится в группах ОН, ... подробнее ».


  • Роль в биологических системах .
    водородная связь Химические связи


  • 2) межмолекулярной, если атомы ЭА и ЭВ находятся в разных молекулах. Внутримолекулярные водородные связи играют важ–нейшую биологическую роль , так как определяют, на–пример, спиральную структуру полимерных молекул белков.


  • Челночные механизмы переноса водорода . Главная роль ЦТК - образование большого количества АТФ.
    В этой транспортной системе водород от цитоплазматического НАД передается на митохондриальный НАД, поэтому в митохондриях образуется 3 молекулы АТФ и...


  • Роль диффузии в процессах переноса веществ в биологических системах .
    Межмолекулярная и внутримолекулярная водородная связь Химические связи в молекулах обычно очень про... подробнее ».

Найдено похожих страниц:10


Водородные связи характерны не только для воды. Они легко образуются между любым электроотрицательным атомом (обычно кислородом или азотом) и атомом водорода, ковалентно связанным с другим электроотрицательным атомом в той же или другой молекуле (рис. 4-3). Атомы водорода, соединенные ковалентной связью с сильно электроотрицательными атомами, такими, как кислород, всегда несут частичные положительные заряды и потому способны к образованию водородных связей, тогда как атомы водорода, ковалентно связанные с атомами углерода, которые не обладают электроотрицательностью, не несут частичного положительного заряда и, следовательно, не способны образовывать водородные связи. Именно это различие служит причиной того, что бутиловый спирт в молекуле которого один из атомов водорода связан с кислородом и может, таким образом, образовать водородную связь с другой молекулой бутилового спирта, обладает сравнительно высокой температурой кипения (+117° С). Наоборот, бутан который не способен образовывать межмолекулярные водородные связи, поскольку все атомы водорода в его молекулах связаны с углеродом, имеет низкую температуру кипения (- 0,5° С).

Некоторые примеры биологически важных водородных связей показаны на рис. 4-4.

Рис. 4-3. Водородные связи. В связях этого типа атом водорода неравномерно распределен между двумя электроотрицательными атомами. А с которым водород связан ковалентно, служит донором водорода, а электроотрицательный атом другой молекулы акцептором. В биологических системах электроотрицательными атомами, участвующими в образовании водородных связей, являются кислород и азот; атомы углерода принимают участие в образовании водородных связей только в редких случаях. Расстояние между двумя электроотрицательными агомами, соединенными водородной связью, варьирует от 0,26 до 0,31 нм. Ниже показаны обычные типы водородных связей.

Одна из характерных особенностей водородных связей состоит в том, что они обладают наибольшей прочностью в тех случаях, когда взаимная ориентация связанных между собой молекул обеспечивает максимальную энергию электростатического взаимодействия (рис. 4-5). Другими словами, водородная связь характеризуется определенной направленностью и вследствие этого способна удерживать обе связанные с ее помощью молекулы или группы в определенной взаимной ориентации. Ниже мы увидим, что именно это свойство водородных связей способствует стабилизации строго определенных пространственных структур, характерных для молекул белков и нуклеиновых кислот, содержащих большое число внутримолекулярных водородных связей (гл. 7, 8 и 27).