Лето

Показатели регрессионной статистики. Основы анализа данных. Множественная и нелинейная

Современная политическая наука исходит из положения о взаимосвязи всех явлений и процессов в обществе. Невозможно понимание событий и процессов, прогнозирование и управление явлениями политической жизни без изучения связей и зависимостей, существующих в политической сфере жизнедеятельности общества. Одна из наиболее распространенных задач политического исследования состоит в изучении связи между некоторыми наблюдаемыми переменными. Помогает решить эту задачу целый класс статистических приемов анализа, объединенных общим названием «регрессионный анализ» (или, как его еще называют, «корреляционно-регрессионный анализ»). Однако если корреляционный анализ позволяет оценить силу связи между двумя переменными, то с помощью регрессионного анализа можно определить вид этой связи, прогнозировать зависимость значения какой-либо переменной от значения другой переменной.

Для начала вспомним, что такое корреляция. Корреляционным называют важнейший частный случай статистической связи, состоящий в том, что равным значениям одной переменной соответствуют различные средние значения другой. С изменением значения признака х закономерным образом изменяется среднее значение признака у, в то время как в каждом отдельном случае значение признака у (с различными вероятностями) может принимать множество различных значений.

Появление в статистике термина «корреляция» (а политология привлекает для решения своих задач достижения статистики, которая, таким образом, является смежной политологии дисциплиной) связано с именем английского биолога и статистика Френсиса Галь- тона, предложившего в XIX в. теоретические основы корреляционно- регрессионного анализа. Термин «корреляция» в науке был известен и ранее. В частности, в палеонтологии еще в XVIII в. его применил французский ученый Жорж Кювье. Он ввел так называемый закон корреляции, при помощи которого по найденным в ходе раскопок останкам животных можно было восстановить их облик.

Известна история, связанная с именем этого ученого и его законом корреляции. Так, в дни университетского праздника студенты, решившие подшутить над известным профессором, натянули на одного студента козлиную шкуру с рогами и копытами. Тот залез в окно спальни Кювье и закричал: «Я тебя съем». Профессор проснулся, посмотрел на силуэт и ответил: «Если у тебя есть рога и копыта, то ты - травоядное животное и съесть меня не можешь. А за незнание закона корреляции получишь двойку». Повернулся на другой бок и уснул. Шутка шуткой, но на этом примере мы наблюдаем частный случай применения множественного корреляционно-регрессионного анализа. Здесь профессор, исходя из знания значений двух наблюдаемых признаков (наличие рогов и копыт), на основании закона корреляции вывел среднее значение третьего признака (класс, к которому относится данное животное - травоядное). В данном случае речь не идет о конкретном значении этой переменной (т.е. данное животное могло принимать различные значения по номинальной шкале - это мог быть и козел, и баран, и бык...).

Теперь перейдем к термину «регрессия». Собственно говоря, он не связан со смыслом тех статистических задач, которые решаются при помощи этого метода. Объяснение термину можно дать только исходя из знания истории развития методов изучения связей между признаками. Одним из первых примеров исследований такого рода была работа статистиков Ф. Гальтона и К. Пирсона, пытавшихся обнаружить закономерность между ростом отцов и их детей по двум наблюдаемым признакам (где X- рост отцов и У- рост детей). В ходе своего исследования они подтвердили начальную гипотезу о том, что в среднем у высоких отцов вырастают в среднем высокие дети. Этот же принцип действует в отношении низких отцов и детей. Однако если бы ученые на этом остановились, то их труды никогда не упоминались бы в учебниках по статистике. Исследователи обнаружили еще одну закономерность в рамках уже упоминавшейся подтвержденной гипотезы. Они доказали, что у очень высоких отцов рождаются в среднем высокие дети, но не сильно отличающиеся ростом от детей, чьи отцы хоть и выше среднего, но не сильно отличаются от средневысокого роста. То же и у отцов с очень маленьким ростом (отклоняющимся от средних показателей низкорослой группы) - их дети в среднем не отличались по росту от сверстников, чьи отцы были просто невысокими. Функцию, описывающую эту закономерность, они и назвали функцией регрессии. После этого исследования все уравнения, описывающие подобные функции и построенные сходным образом, стали именовать уравнениями регрессии.

Регрессионный анализ - один из методов многомерного статистического анализа данных, объединяющий совокупность статистических приемов, предназначенных для изучения или моделирования связей между одной зависимой и несколькими (или одной) независимыми переменными. Зависимая переменная по принятой в статистике традиции называется откликом и обозначается как V Независимые переменные называются предикторами и обозначаются как X. В ходе анализа некоторые переменные окажутся слабо связанными с откликом и будут в конечном счете исключены из анализа. Оставшиеся переменные, связанные с зависимой, могут именоваться еще факторами.

Регрессионный анализ дает возможность предсказать значения одной или нескольких переменных в зависимости от другой переменной (например, склонность к неконвенциональному политическому поведению в зависимости от уровня образования) или нескольких переменных. Рассчитывается он на PC. Для составления регрессионного уравнения, позволяющего измерить степень зависимости контролируемого признака от факторных, необходимо привлечь профессиональных математиков-программистов. Регрессионный анализ может оказать неоценимую услугу при построении прогностических моделей развития политической ситуации, оценке причин социальной напряженности, при проведении теоретических экспериментов. Регрессионный анализ активно используется для изучения влияния на электоральное поведение граждан ряда социально-демографических параметров: пола, возраста, профессии, места проживания, национальности, уровня и характера доходов.

Применительно к регрессионному анализу используют понятия независимой и зависимой переменных. Независимой называют переменную, которая объясняет или служит причиной изменения другой переменной. Зависимой называют переменную, значение которой объясняют воздействием первой переменной. Например, на президентских выборах в 2004 г. определяющими факторами, т.е. независимыми переменными, выступили такие показатели, как стабилизация материального положения населения страны, уровень известности кандидатов и фактор incumbency. В качестве зависимой переменной в данном случае можно считать процент голосов, поданных за кандидатов. Аналогично в паре переменных «возраст избирателя» и «уровень электоральной активности» независимой является первая, зависимой - вторая.

Регрессионный анализ позволяет решать следующие задачи:

  • 1) установить сам факт наличия или отсутствия статистически значимой связи между Ки X;
  • 2) построить наилучшие (в статистическом смысле) оценки функции регрессии;
  • 3) по заданным значениям X построить прогноз для неизвестного У
  • 4) оценить удельный вес влияния каждого фактора X на У и соответственно исключить из модели несущественные признаки;
  • 5) посредством выявления причинных связей между переменными частично управлять значениями Рпутем регулирования величин объясняющих переменных X.

Регрессионный анализ связан с необходимостью выбора взаимно независимых переменных, влияющих на значение исследуемого показателя, определения формы уравнения регрессии, оценки параметров при помощи статистических методов обработки первичных социологических данных. В основе этого вида анализа лежит представление о форме, направлении и тесноте (плотности) взаимосвязи. Различают парную и множественную регрессию в зависимости от количества исследуемых признаков. На практике регрессионный анализ обычно выполняется совместно с корреляционным. Уравнение регрессии описывает числовое соотношение между величинами, выраженное в виде тенденции к возрастанию или убыванию одной переменной величины при возрастании или убывании другой. При этом ра зл и ч а ют л инейную и нелинейную регрессии. При описании политических процессов в равной степени обнаруживаются оба варианта регрессии.

Диаграмма рассеяния для распределения взаимозависимости интереса к статьям на политические темы (У) и образования респондентов (X) представляет собой линейную регрессию (рис. 30).

Рис. 30.

Диаграмма рассеяния для распределения уровня электоральной активности (У) и возраста респондента (А) (условный пример) представляет собой нелинейную регрессию (рис. 31).


Рис. 31.

Для описания взаимосвязи двух признаков (А"и У) в модели парной регрессии используют линейное уравнение

где а, - случайная величина погрешности уравнения при вариации признаков, т.е. отклонение уравнения от «линейности».

Для оценки коэффициентов а и b используют метод наименьших квадратов, предполагающий, что сумма квадратов отклонений каждой точки на диаграмме разброса от линии регрессии должна быть минимальной. Коэффициенты а ч Ь могут быть вычислены при помощи системы уравнений:

Метод оценки наименьших квадратов дает такие оценки коэффициентов а и Ь, при которых прямая проходит через точку с координатами х и у, т.е. имеет место соотношение у = ах + Ь. Графическое изображение уравнения регрессии называется теоретической линией регрессии. При линейной зависимости коэффициент регрессии представляет на графике тангенс угла наклона теоретической линии регрессии к оси абсцисс. Знак при коэффициенте показывает направление связи. Если он больше нуля, то связь прямая, если меньше - обратная.

В приведенном ниже примере из исследования «Политический Петербург-2006» (табл. 56) показана линейная взаимосвязь представлений граждан о степени удовлетворенности своей жизнью в настоящем и ожиданиями изменений качества жизни в будущем. Связь прямая, линейная (стандартизованный коэффициент регрессии равен 0,233, уровень значимости - 0,000). В данном случае коэффициент регрессии невысокий, однако он превышает нижнюю границу статистически значимого показателя (нижнюю границу квадрата статистически значимого показателя коэффициента Пирсона).

Таблица 56

Влияние качества жизни горожан в настоящем на ожидания

(Санкт-Петербург, 2006 г.)

* Зависимая переменная: «Как Вы думаете, как изменится Ваша жизнь в ближайшие 2-3 года?»

В политической жизни значение изучаемой переменной чаше всего одновременно зависит от нескольких признаков. Например, на уровень и характер политической активности одновременно оказывают влияние политический режим государства, политические традиции, особенности политического поведения людей данного района и социальная микрогруппа респондента, его возраст, образование, уровень дохода, политическая ориентация и т.д. В этом случае необходимо воспользоваться уравнением множественной регрессии , которое имеет следующий вид:

где коэффициент Ь. - частный коэффициент регрессии. Он показывает вклад каждой независимой переменной в определение значений независимой (результирующей) переменной. Если частный коэффициент регрессии близок к 0, то можно сделать вывод, что непосредственной связи между независимыми и зависимой переменными нет.

Расчет подобной модели можно выполнить на PC, прибегнув к помоши матричной алгебры. Множественная регрессия позволяет отразить многофакторность социальных связей и уточнить меру воздействия каждого фактора в отдельности и всех вместе на результирующий признак.

Коэффициент, обозначаемый Ь, называется коэффициентом линейной регрессии и показывает силу связи между вариацией факторного признака X и вариацией результативного признака Y Данный коэффициент измеряет силу связи в абсолютных единицах измерения признаков. Однако теснота корреляционной связи признаков может быть выражена и в долях среднего квадратического отклонения результативного признака (такой коэффициент называется коэффициентом корреляции). В отличие от коэффициента регрессии b коэффициент корреляции не зависит от принятых единиц измерения признаков, а стало быть, он сравним для любых признаков. Обычно считают связь сильной, если / > 0,7, средней тесноты - при 0,5 г 0,5.

Как известно, максимально тесная связь - это связь функциональная, когда каждое индивидуальное значение Y может быть однозначно поставлено в соответствие значению X. Таким образом, чем ближе коэффициент корреляции к 1, тем ближе связь к функциональной. Уровень значимости для регрессионного анализа не должен превышать 0,001.

Коэффициент корреляции долгое время рассматривался как основной показатель тесноты связи признаков. Однако позднее таким показателем стал коэффициент детерминации. Смысл этого коэффициента в следующем - он отражает долю общей дисперсии результирующего признака У , объясняемую дисперсией признака X. Находится он простым возведением в квадрат коэффициента корреляции (изменяющегося от 0 до 1) и в свою очередь для линейной связи отражает долю от 0 (0%) до 1 (100%) значений признака Y, определяемую значениями признака X. Записывается он как I 2 , а в результирующих таблицах регрессионного анализа в пакете SPSS - без квадрата.

Обозначим основные проблемы построения уравнения множественной регрессии.

  • 1. Выбор факторов, включаемых в уравнение регрессии. На этой стадии исследователь сначала составляет общий список основных причин, которые согласно теории обусловливают изучаемое явление. Затем он должен отобрать признаки в уравнение регрессии. Основное правило отбора: факторы, включаемые в анализ, должны как можно меньше коррелировать друг с другом; только в этом случае можно приписать количественную меру воздействия определенному фактору-признаку.
  • 2. Выбор формы уравнения множественной регрессии (на практике чаще пользуются линейной или линейно-логарифмической). Итак, для использования множественной регрессии исследователь сначала должен построить гипотетическую модель влияния нескольких независимых переменных на результирующую. Чтобы полученные результаты были достоверны, необходимо, чтобы модель точно соответствовала реальному процессу, т.е. связь между переменными должна быть линейной, нельзя проигнорировать ни одну значимую независимую переменную, точно так же нельзя включать в анализ ни одну переменную, не имеющую прямого отношения к изучаемому процессу. Кроме того, все измерения переменных должны быть предельно точными.

Из приведенного описания вытекает ряд условий применения этого метода, без соблюдения которых нельзя приступить к самой процедуре множественого регрессионного анализа (МРА). Только соблюдение всех из нижеперечисленных пунктов позволяет корректно осуществлять регрессионный анализ.

Целью регрессионного анализа является измерение связи меж­ду зависимой переменной и одной (парный регрессионный анализ) или не­сколькими (множественный) независимыми переменными. Независимые переменные называют также факторными, объясняющими, опреде­ляющими, регрессорами и предикторами.

Зависимую переменную иногда называют определяемой, объясняемой, «откликом». Чрезвы­чайно широкое распространение регрессионного анализа в эмпири­ческих исследованиях связано не только с тем, что это удобный ин­струмент тестирования гипотез. Регрессия, особенно множественная, является эффективным методом моделирования и прогнозирования.

Объяснение принципов работы с регрессионным анализом начнем с более простого - парного метода.

Парный регрессионный анализ

Первые действия при использовании регрессионного анализа будут практически идентичны предпринятым нами в рамках вычисления коэффициента корреляции. Три основных условия эффективности корреляционного анализа по методу Пирсона - нормальное распре­деление переменных, интервальное измерение переменных, линейная связь между переменными - актуальны и для множественной регрес­сии. Соответственно, на первом этапе строятся диаграммы рассеяния, проводится статистически-описательный анализ переменных и вы­числяется линия регрессии. Как и в рамках корреляционного анализа, линии регрессии строятся методом наименьших квадратов.

Чтобы более наглядно проиллюстрировать различия между двумя методами анализа данных, обратимся к уже рассмотренному приме­ру с переменными «поддержка СПС» и «доля сельского населения». Исходные данные идентичны. Отличие в диаграммах рассеяния бу­дет заключаться в том, что в регрессионном анализе корректно от­кладывать зависимую переменную - в нашем случае «поддержка СПС» по оси Y, тогда как в корреляционном анализе это не имеет значения. После чистки выбросов диаграмма рассеяния имеет вид:

Принципиальная идея регрессионного анализа состоит в том, что, имея общую тенденцию для переменных - в виде линии регрессии, - можно предсказать значение зависимой переменной, имея значения независимой.

Представим обычную математическую линейную функцию. Лю­бую прямую в евклидовом пространстве можно описать формулой:

где а - константа, задающая смещение по оси ординат; b - коэффи­циент, определяющий угол наклона линии.

Зная угловой коэффициент и константу, можно рассчитать (пред­сказать) значение у для любого х.

Эта простейшая функция и легла в основу модели регрессионного анализа с той оговоркой, что значение у мы предскажем не точно, а в рамках определенного доверительного интервала, т.е. приблизительно.

Константой является точка пересечения линии регрессии и оси ординат (F-пересечение, в статистических пакетах, как правило, обозначаемое «interceptor»). В нашем примере с голосованием за СПС ее округленное значение составит 10,55. Угловой коэффициент Ъ бу­дет равен примерно -0,1 (как и в корреляционном анализе, знак по­казывает тип связи - прямая или обратная). Таким образом, получен­ная модель будет иметь вид СП С = -0,1 х Сел. нас. + 10,55.

Так, для случая «Республика Адыгея» с долей сель­ского населения 47% предсказанное значение составит 5,63:

СПС = -0,10 х 47 + 10,55 = 5,63.

Разность между исходным и предсказанным значениями называет­ся остатком (с этим термином - принципиальным для статистики - мы уже сталкивались при анализе таблиц сопряженности). Так, для случая «Республика Адыгея» остаток будет равен 3,92 - 5,63 = -1,71. Чем больше модульное значение остатка, тем менее удачно предсказа­но значение.

Рассчитываем предсказанные значения и остатки для всех случаев:
Случай Сел. нас. СПС

(исходное)

СПС

(предсказанное)

Остатки
Республика Адыгея 47 3,92 5,63 -1,71 -
Республика Алтай 76 5,4 2,59 2,81
Республика Башкортостан 36 6,04 6,78 -0,74
Республика Бурятия 41 8,36 6,25 2,11
Республика Дагестан 59 1,22 4,37 -3,15
Республика Ингушетия 59 0,38 4,37 3,99
И т.д.

Анализ соотношения исходных и предсказанных значений служит для оценки качества полученной модели, ее прогностической способности. Одним из главных показателей регрессионной статистики является множественный коэффициент корреляции R - коэффициент корреляции между исходными и предсказанными значениями зави­симой переменной. В парном регрессионном анализе он равен обыч­ному коэффициенту корреляции Пирсона между зависимой и неза­висимой переменной, в нашем случае - 0,63. Чтобы содержательно интерпретировать множественный R, его необходимо преобразовать в коэффициент детерминации. Это делается так же, как и в корреля­ционном анализе - возведением в квадрат. Коэффициент детерминации R -квадрат (R 2) показывает долю вариации зависимой пере­менной, объясняемую независимой (независимыми) переменными.

В нашем случае R 2 = 0,39 (0,63 2); это означает, что переменная «доля сельского населения» объясняет примерно 40% вариации переменной «поддержка СПС». Чем больше величина коэффициента детер­минации, тем выше качество модели.

Другим показателем качества модели является стандартная ошиб­ка оценки (standard error of estimate). Это показатель того, насколько сильно точки «разбросаны» вокруг линии регрессии. Мерой разброса для интервальных переменных является стандартное отклонение. Со­ответственно, стандартная ошибка оценки - это стандартное откло­нение распределения остатков. Чем выше ее значение, тем сильнее разброс и тем хуже модель. В нашем случае стандартная ошибка со­ставляет 2,18. Именно на эту величину наша модель будет «ошибаться в среднем» при прогнозировании значения переменной «поддерж­ка СПС».

Регрессионная статистика включает в себя также дисперсионный анализ. С его помощью мы выясняем: 1) какая доля вариации (дисперсии) зависимой переменной объясняется независимой перемен­ной; 2) какая доля дисперсии зависимой переменной приходится на остатки (необъясненная часть); 3) каково отношение этих двух вели­чин (/"-отношение). Дисперсионная статистика особенно важна для выборочных исследований - она показывает, насколько вероятно наличие связи между независимой и зависимой переменными в генеральной совокупности. Однако и для сплошных исследований (как в нашем примере) изучение результатов дисперсионного анализа небесполезно. В этом случае проверяют, не вызвана ли выявленная ста­тистическая закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых на­ходится обследуемая совокупность, т.е. устанавливается не истинность полученного результата для какой-то более обширной гене­ральной совокупности, а степень его закономерности, свободы от случайных воздействий.

В нашем случае статистика дисперсионного анализа такова:

SS df MS F значение
Регрес. 258,77 1,00 258,77 54,29 0.000000001
Остат. 395,59 83,00 Л,11
Всего 654,36

F-отношение 54,29 значимо на уровне 0,0000000001. Соответ­ственно, мы можем с уверенностью отвергнуть нулевую гипотезу (что обнаруженная нами связь носит случайный характер).

Аналогичную функцию выполняет критерий t, но уже в отношении регрессионных коэффициентов (углового и F-пересечения). С помо­щью критерия / проверяем гипотезу о том, что в генеральной совокуп­ности регрессионные коэффициенты равны нулю. В нашем случае мы вновь можем уверенно отбросить нулевую гипотезу.

Множественный регрессионный анализ

Модель множественной регрессии практически идентична модели парной регрессии; разница лишь в том, что в линейную функцию последовательно включаются несколько независимых переменных:

Y = b1X1 + b2X2 + …+ bpXp + а.

Если независимых переменных больше двух, мы не имеем возмож­ности получить визуальное представление об их связи, в этом плане множественная регрессия менее «наглядна», нежели парная. При на­личии двух независимых переменных данные бывает полезно отобразить на трехмерной диаграмме рассеяния. В профессиональных ста­тистических пакетах программ (например, Statisticа) существует опция вращения трехмерной диаграммы, позволяющая хорошо визуально представить структуру данных.

При работе с множественной регрессией, в отличие от парной, не­обходимо определять алгоритм анализа. Стандартный алгоритм включает в итоговую регрессионную модель все имеющиеся предикторы. Пошаговый алгоритм предполагает последовательное включе­ние (исключение) независимых переменных, исходя из их объяснительного «веса». Пошаговый метод хорош, когда имеется много независимых переменных; он «очищает» модель от откровенно слабых предикторов, делая ее более компактной и лаконичной.

Дополнительным условием корректности множественной регрес­сии (наряду с интервальностью, нормальностью и линейностью) является отсутствие мультиколлинеарности - наличия сильных корреляционных связей между независимыми переменными.

Интерпретация статистики множественной регрессии включает в себя все злементы, рассмотренные нами для случая парной регрессии. Кроме того, в статистике множественного регрессионного анализа есть и другие важные составляющие.

Работу с множественной регрессией мы проиллюстрируем на при­мере тестирования гипотез, объясняющих различия в уровне электоральной активности по регионам России. В ходе конкретных эмпири­ческих исследований были высказаны предположения, что на уровень явки избирателей влияют:

Национальный фактор (переменная «русское население»; операционализирована как доля русского населения в субъектах РФ). Предполагается, что увеличение доли русского населения ведет к сни­жению активности избирателей;

Фактор урбанизации (переменная «городское население»; операционализирована как доля городского населения в субъектах РФ, с этим фактором мы уже работали в рамках корреляционного анализа). Предполагается, что увеличение доли городского населения также ве­дет к снижению активности избирателей.

Зависимая переменная - «интенсивность избирательной активно­сти» («актив») операционализирована через усредненные данные яв­ки по регионам на федеральных выборах с 1995 по 2003 г. Исходная таблица данных для двух независимых и одной зависимой перемен­ной будет иметь следующий вид:

Случай Переменные
Актив. Гор. нас. Рус. нас.
Республика Адыгея 64,92 53 68
Республика Алтай 68,60 24 60
Республика Бурятия 60,75 59 70
Республика Дагестан 79,92 41 9
Республика Ингушетия 75,05 41 23
Республика Калмыкия 68,52 39 37
Карачаево-Черкесская Республика 66,68 44 42
Республика Карелия 61,70 73 73
Республика Коми 59,60 74 57
Республика Марий Эл 65,19 62 47

И т.д. (после чистки выбросов остается 83 случая из 88)

Статистика, описывающая качество модели:

1. Множественный R = 0,62; Л-квадрат = 0,38. Следовательно, национальный фактор и фактор урбанизации вместе объясняют около 38% вариации переменной «электоральная активность».

2. Средняя ошибка составляет 3,38. Именно настолько «в среднем ошибается» построенная модель при прогнозировании уровня явки.

3. /л-отношение объясненной и необъясненной вариации состав­ляет 25,2 на уровне 0,000000003. Нулевая гипотеза о случайности выявленных связей отвергается.

4. Критерий /для константы и регрессионных коэффициентов пе­ременных «городское население» и «русское население» значим на уровне 0,0000001; 0,00005 и 0,007 соответственно. Нулевая гипотеза о случайности коэффициентов отвергается.

Дополнительная полезная статистика в анализе соотношения ис­ходных и предсказанных значений зависимой переменной - расстояние Махаланобиса и расстояние Кука. Первое - мера уникальности слу­чая (показывает, насколько сочетание значений всех независимых переменных для данного случая отклоняется от среднего значения по всем независимым переменным одновременно). Второе - мера влия­тельности случая. Разные наблюдения по-разному влияют на наклон линии регрессии, и с помощью расстояния Кука можно сопоставлять их по этому показателю. Это бывает полезно при чистке выбросов (вы­брос можно представить как чрезмерно влиятельный случай).

В нашем примере к уникальным и влиятельным случаям, в частно­сти, относится Дагестан.

Случай Исходные

значения

Предска­

значения

Остатки Расстояние

Махаланобиса

Расстояние
Адыгея 64,92 66,33 -1,40 0,69 0,00
Республика Алтай 68,60 69.91 -1,31 6,80 0,01
Республика Бурятия 60,75 65,56 -4,81 0,23 0,01
Республика Дагестан 79,92 71,01 8,91 10,57 0,44
Республика Ингушетия 75,05 70,21 4,84 6,73 0,08
Республика Калмыкия 68,52 69,59 -1,07 4,20 0,00

Собственно регрессионная модель обладает следующими парамет­рами: У-пересечение (константа) = 75,99; Ь (Гор. нас.) = -0,1; Ъ (Рус. нас.) = -0,06. Итоговая формула:

Аактив, = -0,1 х Гор. нас.n+- 0,06 х Рус. нас.n + 75,99.

Можем ли мы сравнивать «объяснительную силу» предикторов, исходя из значения коэффициента 61. В данном случае - да, так как обе независимые переменные имеют одинаковый процентный фор­мат. Однако чаще всего множественная регрессия имеет дело с пере­менными, измеренными в разных шкалах (к примеру, уровень дохода в рублях и возраст в годах). Поэтому в общем случае сравнивать пред­сказательные возможности переменных по регрессионному коэффи­циенту некорректно. В статистике множественной регрессии для этой цели существует специальный бета-коэффициент (В), вычисляемый отдельно для каждой независимой переменной. Он представляет со­бой частный (вычисленный после учета влияния всех других предик­торов) коэффициент корреляции фактора и отклика и показывает не­зависимый вклад фактора в предсказание значений отклика. В парном регрессионном анализе бета-коэффициент по понятным причинам равен коэффициенту парной корреляции между зависимой и незави­симой переменной.

В нашем примере бета (Гор. нас.) = -0,43, бета (Рус. нас.) = -0,28. Та­ким образом, оба фактора отрицательно влияют на уровень электо­ральной активности, при этом значимость фактора урбанизации су­щественно выше значимости национального фактора. Совокупное влияние обоих факторов определяет около 38% вариации переменной «электоральная активность» (см. значение Л-квадрат).

Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет зависимость между исследуемыми переменными.

Последовательность этапов регрессионного анализа

Рассмотрим кратко этапы регрессионного анализа.

    Формулировка задачи. На этом этапе формируются предварительные гипотезы о зависимости исследуемых явлений.

    Определение зависимых и независимых (объясняющих) переменных.

    Сбор статистических данных. Данные должны быть собраны для каждой из переменных, включенных в регрессионную модель.

    Формулировка гипотезы о форме связи (простая или множественная, линейная или нелинейная).

    Определение функции регрессии (заключается в расчете численных значений параметров уравнения регрессии)

    Оценка точности регрессионного анализа.

    Интерпретация полученных результатов. Полученные результаты регрессионного анализа сравниваются с предварительными гипотезами. Оценивается корректность и правдоподобие полученных результатов.

    Предсказание неизвестных значений зависимой переменной.

При помощи регрессионного анализа возможно решение задачи прогнозирования и классификации. Прогнозные значения вычисляются путем подстановки в уравнение регрессии параметров значений объясняющих переменных. Решение задачи классификации осуществляется таким образом: линия регрессии делит все множество объектов на два класса, и та часть множества, где значение функции больше нуля, принадлежит к одному классу, а та, где оно меньше нуля, - к другому классу.

Задачи регрессионного анализа

Рассмотрим основные задачи регрессионного анализа: установление формы зависимости, определение функции регрессии , оценка неизвестных значений зависимой переменной.

Установление формы зависимости.

Характер и форма зависимости между переменными могут образовывать следующие разновидности регрессии:

    положительная линейная регрессия (выражается в равномерном росте функции);

    положительная равноускоренно возрастающая регрессия;

    положительная равнозамедленно возрастающая регрессия;

    отрицательная линейная регрессия (выражается в равномерном падении функции);

    отрицательная равноускоренно убывающая регрессия;

    отрицательная равнозамедленно убывающая регрессия.

Однако описанные разновидности обычно встречаются не в чистом виде, а в сочетании друг с другом. В таком случае говорят о комбинированных формах регрессии.

Определение функции регрессии.

Вторая задача сводится к выяснению действия на зависимую переменную главных факторов или причин, при неизменных прочих равных условиях, и при условии исключения воздействия на зависимую переменную случайных элементов. Функция регрессии определяется в виде математического уравнения того или иного типа.

Оценка неизвестных значений зависимой переменной.

Решение этой задачи сводится к решению задачи одного из типов:

    Оценка значений зависимой переменной внутри рассматриваемого интервала исходных данных, т.е. пропущенных значений; при этом решается задача интерполяции.

    Оценка будущих значений зависимой переменной, т.е. нахождение значений вне заданного интервала исходных данных; при этом решается задача экстраполяции.

Обе задачи решаются путем подстановки в уравнение регрессии найденных оценок параметров значений независимых переменных. Результат решения уравнения представляет собой оценку значения целевой (зависимой) переменной.

Рассмотрим некоторые предположения, на которые опирается регрессионный анализ.

Предположение линейности, т.е. предполагается, что связь между рассматриваемыми переменными является линейной. Так, в рассматриваемом примере мы построили диаграмму рассеивания и смогли увидеть явную линейную связь. Если же на диаграмме рассеивания переменных мы видим явное отсутствие линейной связи, т.е. присутствует нелинейная связь, следует использовать нелинейные методы анализа.

Предположение о нормальности остатков . Оно допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения можно воспользоваться гистограммамиостатков .

При использовании регрессионного анализа следует учитывать его основное ограничение. Оно состоит в том, что регрессионный анализ позволяет обнаружить лишь зависимости, а не связи, лежащие в основе этих зависимостей.

Регрессионный анализ дает возможность оценить степень связи между переменными путем вычисления предполагаемого значения переменной на основании нескольких известных значений.

Уравнение регрессии.

Уравнение регрессии выглядит следующим образом: Y=a+b*X

При помощи этого уравнения переменная Y выражается через константу a и угол наклона прямой (или угловой коэффициент) b, умноженный на значение переменной X. Константу a также называют свободным членом, а угловой коэффициент - коэффициентом регрессии или B-коэффициентом.

В большинстве случав (если не всегда) наблюдается определенный разброс наблюдений относительно регрессионной прямой.

Остаток - это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис "Пакет анализа" и инструмент анализа "Регрессия". Задаем входные интервалы X и Y. Входной интервал Y - это диапазон зависимых анализируемых данных, он должен включать один столбец. Входной интервал X - это диапазон независимых данных, которые необходимо проанализировать. Число входных диапазонов должно быть не больше 16.

На выходе процедуры в выходном диапазоне получаем отчет, приведенный в таблице 8.3а -8.3в .

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значениеR-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно,множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии

Коэффициенты

Стандартная ошибка

t-статистика

Y-пересечение

Переменная X 1

* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты выводаостатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки

Наблюдение

Предсказанное Y

Остатки

Стандартные остатки

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае - 0,778, наименьшее - 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными нарис. 8.3 . Как видим, линия регрессии достаточно точно "подогнана" под значения исходных данных.

Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.

Рис. 8.3. Исходные данные и линия регрессии

Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.

Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4 .

Таблица 8.4. Результаты прогнозирования переменной Y

Y(прогнозируемое)

Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:

    построили уравнение регрессии;

    установили форму зависимости и направление связи между переменными - положительная линейная регрессия, которая выражается в равномерном росте функции;

    установили направление связи между переменными;

    оценили качество полученной регрессионной прямой;

    смогли увидеть отклонения расчетных данных от данных исходного набора;

    предсказали будущие значения зависимой переменной.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

В этой работе мы рассмотрели основные характеристики описательной статистики и среди них такие понятия, каксреднее значение ,медиана ,максимум ,минимум и другие характеристики вариации данных.

Также было кратко рассмотрено понятие выбросов . Рассмотренные характеристики относятся к так называемому исследовательскому анализу данных, его выводы могут относиться не к генеральной совокупности, а лишь к выборке данных. Исследовательский анализ данных используется для получения первичных выводов и формирования гипотез относительно генеральной совокупности.

Также были рассмотрены основы корреляционного и регрессионного анализа, их задачи и возможности практического использования.

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.


Теперь, когда мы перейдем во вкладку «Данные» , на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных» .

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Линейная регрессия в программе Excel

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк. В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.


Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Одним из основных показателей является R-квадрат . В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты» . Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Основная цель регрессионного анализа состоит в определении аналитической формы связи, в которой изменение результативного признака обусловлено влиянием одного или нескольких факторных признаков, а множество всех прочих факторов, также оказывающих влияние на результативный признак, принимается за постоянные и средние значения.
Задачи регрессионного анализа :
а) Установление формы зависимости. Относительно характера и формы зависимости между явлениями, различают положительную линейную и нелинейную и отрицательную линейную и нелинейную регрессию.
б) Определение функции регрессии в виде математического уравнения того или иного типа и установление влияния объясняющих переменных на зависимую переменную.
в) Оценка неизвестных значений зависимой переменной. С помощью функции регрессии можно воспроизвести значения зависимой переменной внутри интервала заданных значений объясняющих переменных (т. е. решить задачу интерполяции) или оценить течение процесса вне заданного интервала (т. е. решить задачу экстраполяции). Результат представляет собой оценку значения зависимой переменной.

Парная регрессия - уравнение связи двух переменных у и х: y=f(x), где y - зависимая переменная (результативный признак); x - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.
Линейная регрессия: y = a + bx + ε
Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.
Регрессии, нелинейные по объясняющим переменным:

Регрессии, нелинейные по оцениваемым параметрам:

  • степенная y=a·x b ·ε
  • показательная y=a·b x ·ε
  • экспоненциальная y=e a+b·x ·ε
Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, Используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических y x минимальна, т.е.
.
Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции r xy для линейной регрессии (-1≤r xy ≤1):

и индекс корреляции p xy - для нелинейной регрессии (0≤p xy ≤1):

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации .
Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
.
Допустимый предел значений A - не более 8-10%.
Средний коэффициент эластичности Э показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:
.

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
∑(y-y )²=∑(y x -y )²+∑(y-y x)²
где ∑(y-y )² - общая сумма квадратов отклонений;
∑(y x -y )² - сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
∑(y-y x)² - остаточная сумма квадратов отклонений.
Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R 2:

Коэффициент детерминации - квадрат коэффициента или индекса корреляции.

F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Но о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического F факт и критического (табличного) F табл значений F-критерия Фишера. F факт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
,
где n - число единиц совокупности; m - число параметров при переменных х.
F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.
Если F табл < F факт, то Н о - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Н о не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н о о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
; ; .
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:



Сравнивая фактическое и критическое (табличное) значения t-статистики - t табл и t факт - принимаем или отвергаем гипотезу Н о.
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

Если t табл < t факт то H o отклоняется, т.е. a , b и r xy не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт то гипотеза Н о не отклоняется и признается случайная природа формирования а, b или r xy .
Для расчета доверительного интервала определяем предельную ошибку D для каждого показателя:
Δ a =t табл ·m a , Δ b =t табл ·m b .
Формулы для расчета доверительных интервалов имеют следующий вид:
γ a =a±Δ a ; γ a =a-Δ a ; γ a =a+Δ a
γ b =b±Δ b ; γ b =b-Δ b ; γ b =b+Δ b
Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
Прогнозное значение y p определяется путем подстановки в уравнение регрессии y x =a+b·x соответствующего (прогнозного) значения x p . Вычисляется средняя стандартная ошибка прогноза m y x:
,
где
и строится доверительный интервал прогноза:
γ y x =y p ±Δ y p ; γ y x min=y p -Δ y p ; γ y x max=y p +Δ y p
где Δ y x =t табл ·m y x .

Пример решения

Задача №1 . По семи территориям Уральского района За 199Х г. известны значения двух признаков.
Таблица 1.

Требуется: 1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной (предварительно нужно произвести процедуру линеаризации переменных, путем логарифмирования обеих частей);
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации A и F-критерий Фишера.

Решение (Вариант №1)

Для расчета параметров a и b линейной регрессии y=a+b·x (расчет можно проводить с помощью калькулятора).
решаем систему нормальных уравнений относительно а и b:
По исходным данным рассчитываем ∑y, ∑x, ∑y·x, ∑x², ∑y²:
y x yx x 2 y 2 y x y-y x A i
l 68,8 45,1 3102,88 2034,01 4733,44 61,3 7,5 10,9
2 61,2 59,0 3610,80 3481,00 3745,44 56,5 4,7 7,7
3 59,9 57,2 3426,28 3271,84 3588,01 57,1 2,8 4,7
4 56,7 61,8 3504,06 3819,24 3214,89 55,5 1,2 2,1
5 55,0 58,8 3234,00 3457,44 3025,00 56,5 -1,5 2,7
6 54,3 47,2 2562,96 2227,84 2948,49 60,5 -6,2 11,4
7 49,3 55,2 2721,36 3047,04 2430,49 57,8 -8,5 17,2
Итого 405,2 384,3 22162,34 21338,41 23685,76 405,2 0,0 56,7
Ср. знач. (Итого/n) 57,89
y
54,90
x
3166,05
x·y
3048,34
3383,68
X X 8,1
s 5,74 5,86 X X X X X X
s 2 32,92 34,34 X X X X X X


a=y -b·x = 57.89+0.35·54.9 ≈ 76.88

Уравнение регрессии: у = 76,88 - 0,35х. С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.
Рассчитаем линейный коэффициент парной корреляции:

Связь умеренная, обратная.
Определим коэффициент детерминации: r² xy =(-0.35)=0.127
Вариация результата на 12,7% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х , определим теоретические (расчетные) значения y x . Найдем величину средней ошибки аппроксимации A :

В среднем расчетные значения отклоняются от фактических на 8,1%.
Рассчитаем F-критерий:

Полученное значение указывает на необходимость принять гипотезу Н 0 о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.
1б. Построению степенной модели y=a·x b предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:
lg y=lg a + b·lg x
Y=C+b·Y
где Y=lg(y), X=lg(x), C=lg(a).

Для расчетов используем данные табл. 1.3.
Таблица 1.3

Y X YX Y 2 X 2 y x y-y x (y-y x)² A i
1 1,8376 1,6542 3,0398 3,3768 2,7364 61,0 7,8 60,8 11,3
2 1,7868 1,7709 3,1642 3,1927 3,1361 56,3 4,9 24,0 8,0
3 1,7774 1,7574 3,1236 3,1592 3,0885 56,8 3,1 9,6 5,2
4 1,7536 1,7910 3,1407 3,0751 3,2077 55,5 1,2 1,4 2,1
5 1,7404 1,7694 3,0795 3,0290 3,1308 56,3 -1,3 1,7 2,4
6 1,7348 1,6739 2,9039 3,0095 2,8019 60,2 -5,9 34,8 10,9
7 1,6928 1,7419 2,9487 2,8656 3,0342 57,4 -8,1 65,6 16,4
Итого 12,3234 12,1587 21,4003 21,7078 21,1355 403,5 1,7 197,9 56,3
Среднее значение 1,7605 1,7370 3,0572 3,1011 3,0194 X X 28,27 8,0
σ 0,0425 0,0484 X X X X X X X
σ 2 0,0018 0,0023 X X X X X X X

Рассчитаем С иb:

C=Y -b·X = 1.7605+0.298·1.7370 = 2.278126
Получим линейное уравнение: Y=2.278-0.298·X
Выполнив его потенцирование, получим: y=10 2.278 ·x -0.298
Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата. По ним рассчитаем показатели: тесноты связи - индекс корреляции p xy и среднюю ошибку аппроксимации A .

Характеристики степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.

. Построению уравнения показательной кривой y=a·b x предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:
lg y=lg a + x·lg b
Y=C+B·x
Для расчетов используем данные таблицы.

Y x Yx Y 2 x 2 y x y-y x (y-y x)² A i
1 1,8376 45,1 82,8758 3,3768 2034,01 60,7 8,1 65,61 11,8
2 1,7868 59,0 105,4212 3,1927 3481,00 56,4 4,8 23,04 7,8
3 1,7774 57,2 101,6673 3,1592 3271,84 56,9 3,0 9,00 5,0
4 1,7536 61,8 108,3725 3,0751 3819,24 55,5 1,2 1,44 2,1
5 1,7404 58,8 102,3355 3,0290 3457,44 56,4 -1,4 1,96 2,5
6 1,7348 47,2 81,8826 3,0095 2227,84 60,0 -5,7 32,49 10,5
7 1,6928 55,2 93,4426 2,8656 3047,04 57,5 -8,2 67,24 16,6
Итого 12,3234 384,3 675,9974 21,7078 21338,41 403,4 -1,8 200,78 56,3
Ср. зн. 1,7605 54,9 96,5711 3,1011 3048,34 X X 28,68 8,0
σ 0,0425 5,86 X X X X X X X
σ 2 0,0018 34,339 X X X X X X X

Значения параметров регрессии A и В составили:

A=Y -B·x = 1.7605+0.0023·54.9 = 1.887
Получено линейное уравнение: Y=1.887-0.0023x. Произведем потенцирование полученного уравнения и запишем его в обычной форме:
y x =10 1.887 ·10 -0.0023x = 77.1·0.9947 x
Тесноту связи оценим через индекс корреляции p xy:

3588,01 56,9 3,0 9,00 5,0 4 56,7 0,0162 0,9175 0,000262 3214,89 55,5 1,2 1,44 2,1 5 55 0,0170 0,9354 0,000289 3025,00 56,4 -1,4 1,96 2,5 6 54,3 0,0212 1,1504 0,000449 2948,49 60,8 -6,5 42,25 12,0 7 49,3 0,0181 0,8931 0,000328 2430,49 57,5 -8,2 67,24 16,6 Итого 405,2 0,1291 7,5064 0,002413 23685,76 405,2 0,0 194,90 56,5 Среднее значение 57,9 0,0184 1,0723 0,000345 3383,68 X X 27,84 8,1 σ 5,74 0,002145 X X X X X X X σ 2 32,9476 0,000005 X X