Лето

Все абиотические факторы. Экологические факторы среды. Абиотические факторы среды и их влияние на живые организмы. Примеры биотических факторов

К абиотическим факторам среды относят факторы неживой природы: свет, температура, влажность, геомагнитное поле Земли, гравитация, состав водной, воздушной, почвенной среды.

Свет. Излучение Солнца выполняет по отношению к живой природе двоякую функцию. Во-первых, это источник тепла, от количества которого зависит активность жизни на данной территории; во-вторых, свет служит сигналом, определяющим активность процессов жизнедеятельности, а также ориентиром при передвижении в пространстве.

Для животных и растительных организмов большое значение имеют длина волны воспринимаемого излучения, его интенсивность и продолжительность воздействия (длина светового периода суток, или фотопериод). Видимый, или белый свет, составляют около 45 % общего количества лучистой энергии, падающей на Землю. Ультрафиолетовые лучи составляют около 10 % всей лучистой энергии. Невидимые для человека, они воспринимаются органами зрения насекомых и служат им для ориентации на местности в пасмурную погоду. Лучи ультрафиолетовой части спектра необходимы и для нормальной жизнедеятельности человека. Под их воздействием в организме образуется витамин D.

Наибольшее значение для организмов имеет видимый свет с длиной волны от 0,4 до 0,75 мкм. Энергия видимого света используется для процессов фотосинтеза в клетках растений. При этом листьями особенно сильно поглощаются оранжево-красные (0,66-0,68 мкм) и сине-фиолетовые (0,4-0,5 мкм) лучи. На биосинтез расходуется от 0,1 до 1 % приходящей солнечной энергии,
иногда коэффициент полезного действия фотосинтезирующей растительности достигает нескольких процентов.

Разнообразие световых условий, при которых живут растения, очень велико. В разных местообитаниях неодинаковы интенсивность солнечной радиации, ее спектральный состав, продолжительность освещения и т. д. У растений интенсивность фотосинтеза возрастает с увеличением освещенности до известного предела, называемого уровнем светового насыщения или экологического оптимума. Дальнейшее усиление светового потока не сопровождается увеличением фотосинтеза, а затем приводит к его угнетению.

По отношению к свету различают три группы растений: светолюбивые, тенелюбивые и теневыносливые.

Светолюбивые обитают на открытых местах в условиях полного солнечного освещения (степные и луговые травы, культурные растения открытого грунта и многие другие). Но и у светолюбивых растений увеличение освещенности сверх оптимальной подавляет фотосинтез.

Тенелюбивые растения имеют экологический оптимум в области слабой освещенности и не выносят сильного света. Это виды, обитающие в нижних, затененных ярусах растительных сообществ - ельников, дубрав и т. п. Теневыносливые растения хорошо растут при полной освещенности, но адаптируются и к слабому свету.

Инфракрасное излучение составляет примерно 45 % от общего количества солнечной энергии, притекающей к Земле. Инфракрасные лучи поглощаются тканями растений и животных, объектами неживой природы, в том числе водой. Любая поверхность, имеющая температуру выше нуля, испускает длинноволновые инфракрасные (тепловые) лучи. Поэтому растения и животные получают тепловую энергию не только от Солнца, но и от предметов окружающей среды.

Из вышеизложенного следует, что свет является одним из важнейших абиотических факторов .

Температура. От температуры окружающей среды зависит температура тела большинства организмов и, следовательно, скорость всех химических реакций, составляющих обмен веществ. Нормальное строение и функционирование белков, от которых зависит само существование жизни, возможно в пределах от 0 до 50 °С. Между тем температурные границы, в пределах которых обнаруживается жизнь, гораздо шире. В ледяных пустынях Антарктики температура может опускаться до - 88 °С, а в безводных пустынях достигать 58 °С в тени. Некоторые виды бактерий и водорослей обитают в горячих источниках при температурах 80-88 °С. Таким образом, диапазон колебаний температур на разных территориях Земли, где встречается жизнь, достигает 176 °С. Даже в одном местообитании разница между минимальной температурой зимой и максимальной летом может составлять более 80 °С. В некоторых местностях велики и суточные колебания температуры: так, в пустыне Сахара на протяжении суток температура может изменяться на 50 °С. Но ни одно живое существо в мире не способно в активном состоянии переносить весь диапазон температур. Поэтому распространение любого вида животных и растений ограничено тем местообитанием, к температуре которого он приспособлен .

Влажность. Вода - необходимый компонент клетки, поэтому ее количество в том или, ином местообитании определяет характер растительности и животного мира в данной местности. В некоторой зависимости от количества воды в окружающей среде находится и содержание ее в теле растений и животных и их устойчивость к высыханию.

У растений пустынь, сухих степей вода составляет 30-65 % от общей массы, в лесостепных дубравах эта величина возрастает до 70-85 %, в ельниках достигает 90 %.

Тело животных, как правило, не менее чем на 50 % состоит из воды. У амбарного долгоносика, питающегося очень сухим кормом - зерном, воды в теле еще меньше - 46 %. Гусеницы, поедающие сочные листья, содержат 85-90 % воды. В целом у животных, обитающих на суше, меньше воды в организме, чем у водных. Так, тело домашнего скота содержит 59 % влаги, тело человека - 64 %, утки кряквы - 70 %. У рыб содержание воды в организме достигает 75 %, а у медуз - более чем 99%.

Водный баланс местности зависит от количества осадков, выпадающих в течение года, и величины, характеризующей ее испарение. Если количество испаряемой воды превышает годовую сумму осадков, такие области носят название сухих, засушливых или аридных.

Области, достаточно обеспеченные влагой, называют гумидными (влажными). Избыток воды в почве приводит к развитию болот, населяемых видами растений, не способных регулировать свой водный режим. К ним относятся водоросли, грибы, лишайники, некоторые мхи, элодея, водяные лютики, валлиснерия, тростник и многие другие. У таких растений низкое осмотическое давление клеточного сока и, следовательно, незначительная водоудерживающая
способность, высокий уровень испарения через широко открытые устьица. Корневая система у цветковых болотных растений плохо развита или совсем отсутствует.

Ограничена способность к регуляции водного баланса у травянистых растений темнохвойных лесов. При уменьшении влажности почвы меняется видовой состав растительных сообществ. Широколиственные леса сменяются мелколиственными, которые переходят в лесостепь. При дальнейшем уменьшении количества осадков (и повышении сухости почвы) высокие травы уступают место низкотравью. При годовом количестве осадков 250 мм и ниже возникают пустыни. При неравномерном распределении осадков по временам года растениям и животным приходится переносить длительные засухи.

Растения выработали ряд приспособлений к периодическому недостатку влаги. Это - резкое сокращение вегетационного периода (до 4-6 недель) и длительный период покоя, который растения переживают в виде семян, луковиц, клубней и т. д. (тюльпаны, гусиный лук, мак и др.). Такие растения называются эфемерами и эфемероидами. Другие, не прекращающие роста в сухой период, имеют сильно развитую корневую систему, по массе намного превосходящую надземную часть.

Уменьшение испарения достигается уменьшением листовой пластинки, ее опушением, сокращением числа устьиц, преобразованием листа в колючки, развитием водонепроницаемого воскового налета. Некоторые виды, например саксаулы, теряют листву, и фотосинтез осуществляют зеленые ветви. Многие растения способны запасать воду в тканях стебля или корня (кактус, африканские пустынные молочаи, степная таволга).

Выживанию в условиях сухого периода способствуют и высокое осмотическое давление клеточного сока, препятствующее испарению, и способность терять большое количество воды (до 80 %) без потери жизнеспособности. Пустынные животные имеют особый тип обмена веществ, при котором вода образуется в организме при поедании сухого корма (грызуны). Источником воды служит и жир, накапливающийся у некоторых животных в больших количествах (верблюды, курдючные овцы). Копытные способны в поисках воды пробегать огромные расстояния. Многие мелкие животные на период засухи впадают в анабиоз.

Соленость. Для живых организмов большое значение имеет качественный и количественный состав минеральных солей в окружающей среде. Воздух содержит мало солей, и они не оказывают существенного влияния на живые организмы. В воде соли присутствуют всегда и почти исключительно в растворах. Главными компонентами солевых растворов служат ионы Na + , К + , Са 2+ и Mg 2+ . Из анионов наибольший удельный вес принадлежит хлору (Сl -), остаткам серной кислоты (SO 4 2-) гидрокарбоната (НСО з -) и карбоната (СО 3 2-).

К важным компонентам природных растворов относятся также ионы двух- или трехвалентного железа и марганца.

В целом можно сказать, что в морской воде больше всего натрия и хлора. В пресных водах преимущественно встречаются ионы кальция, гидрокарбоната и карбоната. В некоторых водоемах преобладают сульфаты (Каспийское и Аральское моря).

1) пресные воды - до 0,5;

2) солоноватые воды - от 0,5 до 30;

3) соленые - от 30 до 40;

4) рассолы - свыше 40.

Концентрация и качественный состав солей в водоемах оказывают большое влияние на численность и распространение водных животных. Пресноводные животные в целом имеют более высокое осмотическое давление по отношению к окружающей их среде, поэтому вода поступает в их организм постоянно.

Для выведения излишков воды служат пульсирующие вакуоли (у простейших) и органы выделения у многоклеточных животных. Морские обитатели в большинстве изотоничны морской воде, но многие виды гипотоничны и для них регулирование концентрации растворенных в жидкостях тела веществ сопряжено с большими энергетическими затратами. Например, у древних хрящевых рыб (акул, скатов) осмотическое давление внутри тела равно давлению в окружающей морской воде. Но у костистых рыб, эволюционно возникших в пресной воде, осмотическое давление низкое.

Для компенсации потерь воды в их теле они пьют морскую воду, а поглощенные вместе с ней избыточные соли выделяются почками, а также через кишечник и жабры.

Немногие виды водных животных могут обитать и в пресной, и в соленой воде. Так, европейский речной угорь нерестится в море. Молодые угри проникают в реки и вырастают в пресной воде. Для нереста взрослые рыбы снова мигрируют в море. Наоборот, семга и лосось нерестятся в пресной воде, а вырастают в море. Точно так же некоторые крабы поднимаются по рекам далеко в глубь материка, но личинки их развиваются и достигают половой зрелости только в море. Это связано с историей развития видов. Так, у угря родственные виды - чисто морские рыбы, а виды, близкие к семге и лососю,- пресноводные. Таким образом, мигрирующие виды в своем онтогенезе повторяют филогенез соответствующих семейств рыб. Водоемы, очень богатые солями, в целом для обитания животных непригодны. К существованию в таких условиях приспособился рачок артемия, отдельные виды синезеленых водорослей, жгутиковых, бактерий. Кислотность и щелочность среды обитания (рН) почвы и воды оказывают сильное влияние на организмы. Высокие концентрации ионов Н + или ОН - (при рН соответственно ниже 3 или выше 9) оказываются токсичными.

В очень кислых или щелочных почвах повреждаются клетки корней растений. Кроме того, при рН ниже 4,0 почвы содержат много ионов алюминия, которые также токсически воздействуют на растения. В этих условиях токсических концентраций достигают и ионы железа и марганца, в малых количествах совершенно необходимые растениям. В щелочных почвах наблюдается обратное явление - нехватка необходимых химических элементов. При высоких значениях рН железо, марганец, фосфаты, ряд микроэлементов оказываются связанными в малорастворимых соединениях и малодоступны растениям.

В реках, прудах и озерах с повышением кислотности воды видовое разнообразие уменьшается. Повышенная кислотность действует на животных несколькими путями: нарушая процесс осморегуляции, работу ферментов, газообмен через дыхательные поверхности; повышая концентрацию токсичных элементов, особенно алюминия; снижая качество и разнообразие пищи. Например, при низком рН подавляется развитие грибов, а водная растительность менее разнообразна или совсем отсутствует.

Промышленное загрязнение атмосферы (диоксид серы, оксиды азота) приводит к выпадению кислотных дождей, рН которых достигает 3,7-3,3. Такие дожди служат причиной засыхания лесов и исчезновения рыбы из водоемов.

Кислород. Кислород необходим для обеспечения жизнедеятельности большинства живых организмов. В воздухе в среднем содержится 21 % кислорода (по объему), в воде не более 1%. С повышением высоты над уровнем моря содержание кислорода в воздухе уменьшается параллельно снижению атмосферного давления. В высокогорных областях содержание кислорода в воздухе служит границей распространения многих видов животных.

За последние десятилетия резко возросло потребление кислорода промышленностью и увеличился выброс в атмосферу диоксида углерода. Например, при сгорании 100 л бензина расходуется количество кислорода, достаточное для дыхания одного человека в течение года. Вместе с тем в промышленных центрах содержание СО 2 в атмосфере в безветренные дни может в десятки раз превышать обычную норму (0,03 % по объему). Источником пополнения запасов кислорода в атмосфере служат в основном леса. Один гектар соснового леса дает в год около 30 т кислорода - столько, сколько требуется для дыхания 19 человек в течение года. Один гектар лиственного леса выделяет в год около 16 т. а гектар сельскохозяйственных угодий - от 3 до 10т в год. Отсюда понятно, что сведение лесов наряду с возрастающим выбросом в атмосферу СО 2 может серьезно изменить соотношение этих газов и повлиять на животный мир планеты.

Удовлетворение потребности в кислороде у живущих в воде животных осуществляется по-разному: одни создают постоянный ток воды над своими дыхательными поверхностями (например, движениями жаберных крышек у рыб), другие имеют очень большую (по отношению к объему) поверхность тела или разнообразные выросты (многие водные ракообразные), третьи часто возвращаются на поверхность, чтобы сделать вдох (киты, дельфины, черепахи, тритоны).

Потребности корней растений в кислороде только отчасти удовлетворяются из почвы. Часть кислорода диффундирует к корням от побегов. У растений, живущих на бедных кислородом почвах (тропические болота), образуются дыхательные корни. Они поднимаются вертикально вверх, на их поверхности имеются отверстия, через которые воздух поступает в корни, а затем в части растения, погруженные в болотистую почву.

Магнитное поле Земли. Магнитное поле Земли - важный фактор окружающей среды, под влиянием которого протекала эволюция и который оказывает постоянное влияние на живые организмы. Напряженность магнитного поля возрастает с широтой. При изменении интенсивности потоков частиц, движущихся от Солнца («солнечного ветра»), возникают кратковременные нарушения в магнитном поле Земли - «магнитные бури».

Напряженность магнитного поля Земли не остается постоянной и на протяжении суток. Резкие колебания напряженности геомагнитного поля нарушают у человека функционирование нервной и сердечно-сосудистой системы. Насколько глубоко геомагнитное поле влияет на растения, скорость роста растения зависит от ориентации семени по отношению к магнитным силовым линиям.

Абиотические факторы - это прямо или косвенно действующие на организм факторы неживой природы - свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).

Свет (cолнечная радиация) - экологический фактор, характеризующийся нитенсивностью и качеством лучистой энергии Солнца, которая используется фотосинтезирующими зелеными растениями для создания растительной биомассы. Солнечный свет, достигающий поверхности Земли, - основной источник энергии для поддержания теплового баланса планеты, водного обмена организмов, создания и превращения органического вещества автотрофным звеном биосферы, что в конечном итоге делает возможным формирование среды, способной удовлетворять жизненные потребности

организмов.

Температура - один из важнейших абиотических факторов, от которого в значительной степени зависит существование, развитие и распространение организмов на Земле [показать]. Значение температуры состоит прежде всего в непосредственном ее влиянии на скорость и характер протекания реакций обмена веществ в организмах. Поскольку суточные и сезонные колебания температур возрастают по мере удаления от экватора, растения и животные, приспосабливаясь к ним, проявляют различную потребность в тепле.

Влажность - экологический фактор, характеризующийся содержанием воды в воздухе, почве, живых организмах. В природе существует суточный ритм влажности: она повышается ночью и понижается днем. Вместе с температурой и светом влажность играет важную роль в регуляции активности живых организмов. Источником воды для растений и животных служат главным образом атмосферные осадки и подземные воды, а также роса и туман.

В абиотической части среды обитания (в неживой природе) все факторы, прежде всего можно разделить на физические и химические. Однако для понимания сути рассматриваемых явлений и процессов абиотические факторы удобно представить совокупностью климатических, топографических, космических факторов, а также характеристик состава среды (водной, наземной или почвенной).

К основным климатическим факторам относят энергию Солнца, температуру, осадки и влажность, подвижность среды, давление, ионизирующие излучения.

Экологи́ческие фа́кторы - свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер.

Классификации экологических факторов

По характеру воздействия

Прямо действующие - непосредственно влияющие на организм, главным образом на обмен веществ

Косвенно действующие - влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.)

По происхождению

Абиотические - факторы неживой природы:

климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха

эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы химический состав почвы

орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона

химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность

физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения

Биотические - связанные с деятельностью живых организмов:

фитогенные - влияние растений

микогенные - влияние грибов

зоогенные - влияние животных

микробиогенные - влияние микроорганизмов

Антропогенные (антропические):

физические: использование атомной энергии, перемещение в поездах и самолётах, влияние шума и вибрации

химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта

биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания

социальные - связанные с отношениями людей и жизнью в обществе

По расходованию

Ресурсы - элементы среды, которые организм потребляет, уменьшая их запас в среде (вода, CO2, O2, свет)

Условия - не расходуемые организмом элементы среды (температура, движение воздуха, кислотность почвы)

По направленности

Векторизованные - направленно изменяющиеся факторы: заболачивание, засоление почвы

Многолетние-циклические - с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом

Осцилляторные (импульсные, флуктуационные) - колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года)

Правило Оптимума

В соответствии с этим правилом для экосистемы, организма или определенной стадии его развития имеется диапазон наиболее благоприятного (опти­мального) значения фактора. За пределами зоны оптимума лежат зоны угнетения, переходящие в критические точки, за которыми существование невозможно. К зоне оптимума обычно приурочена максимальная плотность популяции. Зоны оптимума для различных организмов неодинаковы. Для одних они имеют значительный диапазон. Такие организмы относятся к группе эврибионтов. Организмы с узким диапазоном адаптации к факторам называются стенобионтами.

Диапазон значений факторов (между критическими точками) называют экологической валентностью. Синонимом термина валентность является толерантность, или пластичность (изменчивость). Эти характеристики зависят в значительной мере от среды, в которой обитают организмы. Если она относительно стабильна по своим свойствам (малы амплитуды колебаний отдельных факторов), в ней больше стено-бионтов (например, в водной среде), если динамична, например, наземно-воздушная - в ней больше шансов на выживание имеют эврибионты. Зона оптимума и экологическая валентность обычно шире у теплокровных организмов, чем у холоднокровных. Надо также иметь в виду, что экологическая валентность для одного и того же вида не остается одинаковой в различных условиях (например, в северных и южных районах в отдельные периоды жизни и т.п.). Молодые и старческие организмы, как правило, требуют более кондиционированных (однородных) условий. Иногда эти требования весьма неоднозначны. Например, по отношению к температуре личинки насекомых обычно стенобионтны (стенотермны), в то время как куколки и взрослые особи могут относиться к эврибионтам (эвритермным).


Похожая информация.


Это прямо или косвенно действующие на организм факторы неживой природы - свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).

Свет

(cолнечная радиация) - экологический фактор, характеризующийся нитенсивностью и качеством лучистой энергии Солнца, которая используется фотосинтезирующими зелеными растениями для создания растительной биомассы. Солнечный свет, достигающий поверхности Земли, - основной источник энергии для поддержания теплового баланса планеты, водного обмена организмов, создания и превращения органического вещества автотрофным звеном биосферы, что в конечном итоге делает возможным формирование среды, способной удовлетворять жизненные потребности организмов.

Биологическое действие солнечного света обусловливается его спектральным составом [показать] ,

В спектральном составе солнечного света различают

  • инфракрасные лучи (длина волны более 0,75 мкм)
  • видимые лучи (0,40-0,75 мкм) и
  • ультрафиолетовые лучи (менее 0,40 мкм)

Разные участки солнечного спектра неравнозначны по биологическому действию.

Инфракрасные , или тепловые, лучи несут основное количество тепловой энергии. На их долю приходится около 49 % лучистой энергии, которая воспринимается живыми организмами. Тепловая радиация хорошо поглощается водой, количество которой в организмах довольно велико. Это приводит к нагреванию всего организма, что имеет особенное значение для холоднокровных животных (насекомых, рептилий и др.). У растений важнейшая функция инфракрасных лучей состоит в осуществлении транспирации, с помощью которой из листьев водяными парами отводится излишек тепла, а также в создании оптимальных условий для вхождения углекислого газа через устьица.

Видимый участок спектра составляют около 50 % лучистой энергии, поступающей на Землю. Данная энергия необходима растениям для фотосинтеза. Однако на это используется лишь 1 % ее, остальная же часть отражается или рассеивается в виде тепла. Этот участок спектра oбусловил появление у растительных и животных организмов многих важных приспособлений. У зеленых растений, кроме формирования светопоглотительного пигментного комплекса, с помощью которого осуществляется процесс фотосинтеза, возникла яркая окраска цветов, что способствует привлечению опылителей.

Для животных свет в основном играет информационную роль и участвует в регуляции многих физиолого-биохимческих процессов. Уже у простейших имеются светочувствительные органоиды (светочувствительный глазок у эвглены зеленой), а реакция на свет выражается в виде фототаксисов - перемещение в сторону наибольшей или наименьшей освещенности. Начиная с кишечнополостных, практически у всех животных развиваются различные по строению светочувствительные органы. Различают ночных и сумеречных животных (совы, летучие мыши и др.), а также животных, обитающих в постоянной темноте (медведка, аскарида, крот и др.).

Ультрафиолетовая часть характеризуется самой высокой энергией квантов и высокой фотохимической активностью. С помощью ультрафиолетовых лучей с длиной волны 0,29-0,40 мкм в организме животных осуществляется биосинтез витамина D, пигментов сетчатки глаза, кожи. Эти лучи лучше всего воспринимают органы зрения многих насекомых, у растений они оказывают формообразовательный эффект и способствуют синтезу некоторых биологически активных соединений (витаминов, пигментов). Лучи с длиной волны менее 0,29 мкм губительно действуют на живое.

Интенсивностью [показать] ,

У растений, жизнедеятельность которых всецело зависит от света, возникают различные морфоструктурные и функциональные адаптации к световому режиму местообитаний. По требовательности к условиям освещения растения распределены на следующие экологические группы:

  1. Светолюбивые (гелиофиты) растения открытых местообитаний, успешно произрастающие только в условиях полного солнечного освещения. Для них характерна высокая интенсивность фотосинтеза. Это ранневесенние растения степей и полупустынь (гусиный лук, тюльпаны), растения безлесных склонов (шалфей, мята, чабрец), хлебные злаки, подорожник, кувшинка, акация и др.
  2. Теневыносливые растения характеризуются широкой экологической амплитудой к световому фактору. Лучше всего растут в условиях высокой освещенности, однако способны адаптироваться к условиям разного уровня затенения. Это древесные (береза, дуб, сосна) и травянистые (земляника лесная, фиалка, зверобой и др.) растения.
  3. Тенелюбивые растения (сциофиты) не выносят сильного освещения, произрастают только в затененных местах (под пологом леса), а на открытых никогда не растут. На вырубках при сильном освещении у них происходит замедление роста, а иногда - гибель. К таким растениям относятся лесные травы - папоротники, мхи, кислица и др. Адаптация к затенению обычно сочетается с потребностью хорошего водоснабжения.

Суточной и сезонной периодичностью [показать] .

Суточная периодичность определяет процессы роста и развития растений и животных, которые зависят от длины светового дня.

Фактор, который регулирует и управляет ритмикой суточной жизнедеятельности организмов, называется фотопериодизмом. Он является важнейшим сигнальным фактором позволяющим растениям и животным "измерять время" - соотношение между продолжительностью периода освещенности и темноты в течение суток, определять количественые параметры освещенности. Иными словами, фотопериодизм - это реакция организмов на смену дня и ночи, которая проявляется в колебании интенсивности физиологических процессов - роста и развития. Именно продолжительность дня и ночи очень точно и закономерно изменяется в течение года независимо от случайных факторов, неизменно повторяясь из года в год, поэтому организмы в процессе эволюции согласовали все этапы своего развития с ритмом этих временных интервалов.

В умеренном поясе свойство фотопериодизма служит функциональным климатическим фактором, определяющим жизненный цикл большинства видов. У растений фотопериодический эффект проявляется в согласовании периода цветения и созревания плодов с периодом наиболее активного фотосинтеза, у животных - в совпадении времени размножения с периодом обилия пищи, у насекомых - в наступлении диапаузы и выходе из нее.

К биологическим явлениям, вызываемым фотопериодизмом, относятся также сезонные миграции (перелеты) птиц, проявление их гнездовых инстинктов и размножения, смена меховых покровов у млекопитающих и т. п.

По необходимой длительности светового периода растения разделяют на

  • длиннодневные, которым для нормального роста и развития необходимо больше 12 ч светового времени (лен, лук, морковь, овес, белена, дурман, молодило, картофель, белладонна и др.);
  • растения короткого дня - им нужно для зацветания не менее 12 ч беспрерывного темнового периода (георгины, капуста, хризантемы, амарант, табак, кукуруза, томаты и др.);
  • нейтральные растения, у которых развитие генеративных органов происходит как при длинном, так и при коротком дне (бархатцы, виноград, флоксы, сирень, гречиха, горох, спорыш и др.)

Растения длинного дня происходят преимущественно из северных широт, короткого - из южных. В тропическом поясе, где продолжительность дня и ночи мало изменяются на протяжении года, фотопериод не может служить ориентирующим фактором периодичности биологических процессов. Его заменяет чередование сухого и влажного сезонов. Длиннодневные виды успевают дать урожай даже в условиях короткого северного лета. Образование большой массы органических веществ происходит летом в течение довольно длинного светового дня, который на широте Москвы может достигать 17 ч, а на широте Архангельска - более 20 ч в сутки.

Продолжительность дня существенно сказывается и на поведении животных. С наступлением весенних дней, длительность которых прогрессивно увеличивается, у птиц появляются гнездовые инстинкты, они возвращаются из теплых краев (хотя температура воздуха еще может быть и неблагоприятной), приступают к кладке яиц; теплокровные животные линяют.

Сокращение длительности дня осенью вызывает противоположные сезонные явления: отлет птиц, некоторые животные впадают в спячку, у других отрастает плотный шерстный покров, образуются зимующие стадии у насекомых (несмотря на еще благоприятную температуру и обилие корма). В этом случае уменьшение длительности дня сигнализирует живым организмам о близком наступлении зимнего периода, и они могут заранее подготовиться к нему.

У животных, особенно у членистоногих, рост и развитие также зависят от длины светового дня. Например, капустная белянка, березовая пяденица нормально развиваются лишь при длинном световом дне, тогда как тутовый шелкопряд, различные виды саранчи, совок - при коротком. Фотопериодизм влияет и на время наступления и прекращения брачного периода у птиц, млекопитающих и других животных; на размножение, эмбриональное развитие земноводных, пресмыкающихся, птиц и млекопитающих;

Сезонные и суточные изменения освещенности являются самыми точными часами, ход которых четко закономерен и практически не изменился в течение последнего периода эволюции.

Благодаря этому появилась возможность искусственного регулирования развития животных и растений. Например, создание растениям в теплицах, оранжереях или парниках светового дня длительностью 12-15 ч позволяет даже зимой выращивать овощные культуры, декоративные растения, ускорять рост и развитие рассады. Наоборот, затенение растений летом ускоряет появление цветков или семян позднецветущих осенних растений.

Продолжением дня за счет искусственного освещения зимой можно увеличить период яйценосности кур, гусей, уток, регулировать размножение пушных зверей на зверофермах. Огромную роль играет световой фактор и в других жизненных процессах животных. Прежде всего он является необходимым условием видения, их зрительной ориентации в пространстве в результате восприятия органами зрения прямых, рассеянных или отраженных от окружающих предметов световых лучей. Велика информативность для большинства животных поляризованного света, способности различать цвета, ориентироваться по астрономическим источникам света в осенних и весенних миграциях птиц, в навигационных способностях других животных.

На основе фотопериодизма у растений и животных в процессе эволюции выработались специфические годичные циклы периодов роста, размножения, подготовки к зиме, которые получили название годичных или сезонных ритмов. Эти ритмы проявляются в изменении интенсивности характера биологических процессов и повторяются с годичной периодичностью. Совпадение периодов жизненного цикла с соответствующим временем года имеет огромное значение для существования вида. Сезонные ритмы обеспечивают растениям и животным наиболее благоприятные условия для роста и развития.

Более того, физиологические процессы растений и животных находятся в строгой зависимости от суточной ритмичности, что выражается определенными биологическими ритмами. Следовательно, биологические ритмы - это периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. У растений биологические ритмы проявляются в суточном движении листьев, лепестков, изменении фотосинтеза, у животных - в колебании температуры, изменении секреции гормонов, скорости деления клеток и т. д. У человека также наблюдаются суточные колебания частоты дыхания, пульса, артериального давления, бодрствования и сна и др. Биологические ритмы являются наследственно закрепленными реакциями, поэтому познание их механизмов имеет важное значение при организации труда и отдыха человека.

Температура

Один из важнейших абиотических факторов, от которого в значительной степени зависит существование, развитие и распространение организмов на Земле [показать] .

Верхним температурным пределом жизни на Земле, вероятно, является 50-60°С. При таких температурах происходит потеря активности ферментов и свертывание белка. Однако общий температурный диапазон активной жизни на планете значительно шире и ограничивается следующими пределами (табл. 1)

Таблица 1. Температурный диапазон активной жизни на планете, °С

Среди организмов, способных существовать при очень высоких температурах, известны термофильные водоросли, которые могут жить в горячих источниках при 70-80°С. Успешно переносят очень высокие температуры (65-80°С) накипные лишайники, семена и вегетативные органы пустынных растений (саксаул, верблюжья колючка, тюльпаны), находящиеся в верхнем слое раскаленной почвы.

Существует немало видов животных и растений, выдерживающих большие значения минусовых температур. Деревья и кустарники в Якутии не вымерзают при минус 68°С. В Антарктиде при минус 70°С живут пингвины, а в Арктике - белые медведи, песцы, полярные совы. Полярные воды с температурой от 0 до -2°С населены разнообразными представителями растительного и животного мира - микроводорослями, беспозвоночными, рыбами, жизненный цикл которых постоянно происходит в таких температурных условиях.

Значение температуры состоит прежде всего в непосредственном ее влиянии на скорость и характер протекания реакций обмена веществ в организмах. Поскольку суточные и сезонные колебания температур возрастают по мере удаления от экватора, растения и животные, приспосабливаясь к ним, проявляют различную потребность в тепле.

Способы приспособления

  • Миграция - переселение в более благоприятные условия. Регулярно в течение года мигрируют киты, многие виды птиц, рыб, насекомых и других животных.
  • Оцепенение - состояние полной неподвижности, резкое снижение жизнедеятельности, прекращение питания. Наблюдается у насекомых, рыб, земноводных, млекопитающих при понижении температуры среды осенью, зимой (зимняя спячка) или при повышении ее летом в пустынях (летняя спячка).
  • Анабиоз - состояние резкого угнетения жизненных процессов, когда видимые проявления жизни временно прекращаются. Это явление обратимое. Отмечается у микробов, растений, низших животных. Семена некоторых растений в анабиозе могут находиться до 50 лет. Микробы в состоянии анабиоза образуют споры, простейшие - цисты.

Многие растения и животные при соответствующей подготовке успешно переносят в состоянии глубокого покоя или анабиоза предельно низкие температуры. В лабораторных экспериментах семена, пыльца, споры растений, нематоды, коловратки, цисты простейших и других организмов, сперматозоиды после обезвоживания или помещения в растворы специальных защитных веществ - криопротекторов - переносят температуры, близкие к абсолютному нулю.

В настоящее время достигнуты успехи по практическому использованию веществ с криопротекторными свойствами (глицерин, полиэтиленоксид, диметилсульфоксид, сахароза, маннит и др.) в биологии, сельском хозяйстве, медицине. В растворах криопротекторов осуществляется длительное хранение консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, некоторых органов и тканей для трансплантации; защита растений от зимних морозов, ранневесенних заморозков и т. п. Оказанные проблемы относятся к компетенции криобиологии и криомедицины и решаются многими научными учреждениями.

  • Терморегуляция. У растений и животных в процессе эволюции выработались различные механизмы терморегуляции:
  1. у растений
    • физиологический - накопление в клетках сахара, за счет которого повышается концентрация клеточного сока и снижается обводненность клеток, что способствует морозоустойчивости растений. Например, у карликовой березы, можжевельника верхние ветви при чрезмерно низкой температуре омертвевают, а стелющиеся перезимовывают под снегом и не погибают.
    • физический
      1. устьичная транспирация - отведения избытка тепла и предотвращение ожогов путем выведения воды (испарения) из тела растения
      2. морфологический - направленный на предотвращение перегрева: густая опушенность листьев для рассеивания солнечных лучей, глянцевитая поверхность для их отражения, уменьшение поглощающей лучи поверхности - свертывание листовой пластинки в трубочку (ковыль, овсяница), расположение листа ребром к солнечным лучам (эвкалипт), редуцирование листвы (саксаул, кактус); направленный на предотвращение замерзания: особые формы роста - карликовость, образование стелющихся форм (зимовка под снегом), темная окраска (помогает лучше поглощать тепловые лучи и нагреваться под снегом)
  2. у животных
    • холоднокровных (пойкилотермных, эктотермных) [беспозвоночные, рыбы, земноводные и пресмыкающиеся] - регуляция температуры тела осуществляется пассивно за счет усиления мышечной работы, особенностей структуры и цвета покровов, отыскивания мест, где возможно интенсивное поглощение солнечных лучей, и т.д., т.к. они не могут поддерживать температурный режим обменных процессов и их активность зависит главным образом, от тепла, поступающего извне, а температура тела - от значений температуры окружающей среды и энергетического баланса (соотношения поглощения и отдачи лучистой энергии).
    • теплокровных (гомойотермных, эндотермных) [птицы и млекопитающие] - способны поддерживать постоянную температуру тела независимо от температуры среды. Это свойство дает возмоность многим видами животных жить и размножаться при температуре ниже нуля (северный олень, белый медведь, ластоногие, пингвины). В процессе эволюции у них выработались два механизма терморегуляции, с помощью которых они поддерживают постоянную температуру тела: химический и физический [показать] .
      • Химический механизм терморегуляции обеспечивается скоростью и интенсивностью окислительно-восстановительных реакций и контролируется рефлекторно центральной нервной системой. Важную роль в повышении эффективности химического механизма терморегуляции сыграли такие ароморфозы, как появление четырехкамерного сердца, совершенствование органов дыхания у птиц и млекопитающих.
      • Физический механизм терморегуляции обеспечивается появлением теплоизолирующих покровов (перья, мех, подкожно-жировая клетчатка), потовых желез, органов дыхания, а также развитием нервных механизмов регуляции кровообращения.

      Частным случаем гомойотермии является гетеротермия - разный уровень температуры тела в зависимости от функциональной активности организма. Гетеротермия свойственна животным, впадающим в неблагоприятный период года в спячку или временное оцепенение. При этом высокая температура их тела заметно снижается за счет замедленного обмена веществ (суслики, ежи, летучие мыши, птенцы стрижей и др.).

Пределы выносливости больших значений температурного фактора различны как у пойкилотермных, так и у гомойотермных организмов.

Эвритермные виды способны переносить колебания температуры в широких пределах.

Стенотермные организмы живут в условиях узких пределов температуры, подразделяясь на теплолюбивые стенотермные виды (орхидеи, чайный куст, кофе, кораллы, медузы и др.) и на холодолюбивые (кедровый стланик, предледниковая и тундровая растительность, рыбы полярных бассейнов, животные абиссали - области наибольших океанических глубин и т. п.).

Для каждого организма или группы особей существует, оптимальная зона температуры, в пределах которой деятельность выражена особенно хорошо. Выше этой зоны находится зона временного теплового оцепенения, еще выше - зона продолжительной бездеятельности или летней спячки, граничащая с зоной высокой летальной температуры. При понижении последней ниже оптимума находится зона холодового оцепенения, зимней спячки и летальной низкой температуры.

Распределение особей в популяции в зависимости от изменения температурного фактора по территории подчиняется в целом такой же закономерности. Зоне оптимальных температур соответствует наибольшая плотность популяции, а по обе стороны от нее наблюдается снижение плотности вплоть до границы ареала, где она наименьшая.

Температурный фактор на большой территории Земли подвержен резко выраженным суточным и сезонным колебаниям, что в свою очередь обусловливает соответствующий ритм биологических явлений в природе. В зависимости от обеспеченности тепловой энергией симметричных участков обоих полушарий земного шара, начиная от экватора, различают следующие климатические зоны:

  1. Тропическая зона . Минимальная среднегодовая температура превышает 16° C, в самые прохладные дни не опускается ниже 0° C. Колебания температуры во времени незначительны, амплитуда не превышает 5° C. Вегетация круглогодичная.
  2. Субтропическая зона . Средняя температура самого холодного месяца не ниже 4° C, а самого теплого - выше 20° C. Минусовые температуры редки. Устойчивый снежный покров зимой отсутствует. Вегетационный период продолжается 9-11 мес.
  3. Умеренная зона . Хорошо выражены летний вегетационный сезон и зимний период покоя растений. В основной части зоны устойчивый снежный покров. Весной и осенью типичны заморозки. Иногда эта зона подразделяется на две: умеренно теплую и умеренно холодную, для которых характерно четыре времени года.
  4. Холодная зона . Среднегодовая темлература ниже О° C, заморозки возможны даже в течение короткого (2-3 мес) вегетационного периода. Очень велико годовое колебание температуры.

Закономерность вертикального размещения растительности, почв, животного мира в горных районах обусловлена главным образом также температурным фактором. В горах Кавказа, Индии, Африки можно выделить четыре-пять растительных поясов, последовательность которых снизу вверх отвечает последовательности широтных зон от экватора к полюсу на одной и той же высоте.

Влажность

Экологический фактор, характеризующийся содержанием воды в воздухе, почве, живых организмах. В природе существует суточный ритм влажности: она повышается ночью и понижается днем. Вместе с температурой и светом влажность играет важную роль в регуляции активности живых организмов. Источником воды для растений и животных служат главным образом атмосферные осадки и подземные воды, а также роса и туман.

Влага - необходимое условие существования всех живых организмов на Земле. В водной среде зародилась жизнь. Обитатели суши и поныне зависимы от воды. Для многих видов животных и растений вода продолжает оставаться средой обитания. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, выступает важнейшим исходным, промежуточным и конечным продуктом биохимических превращений. Значимость воды определяется и ее количественным содержанием. Живые организмы состоят не менее чем на 3/4 из воды.

По отношению к воде высшие растения делятся на

  • гидрофиты - водные растения (кувшинка, стрелолист, ряска);
  • гигрофиты - обитатели избыточно увлажненных мест (аир, вахта);
  • мезофиты - растения нормальных условий влажности (ландыш, валериана, люпин);
  • ксерофиты - растения, живущие в условиях постоянного или сезонного дефицита влаги (саксаул, верблюжья колючка, эфедра) и их разновидности суккуленты (кактусы, молочаи).

Приспособления к обитанию в обезвоженной среде и среде с периодическим недостатком влаги

Важной особенностью основных климатических факторов (света, температуры, влажности) является их закономерная изменчивость в течение годичного цикла и даже суток, а также в зависимости от географической зональности. В связи с этим приспособления живых организмов также имеют закономерный и сезонный характер. Приспособление организмов к условиям среды может быть быстрым и обратимым или довольно медленным, что зависит от глубины воздействия фактора.

В результате жизнедеятельности организмы способны изменять абиотические условия жизни. Например, растения низшего яруса оказываются в условиях меньшей освещенности; процессы распада органических веществ, которые происходят в водоемах, часто вызывают дефицит кислорода для других организмов. За счет деятельности водных организмов изменяется температурный и водный режимы, количество кислорода, углекислого газа, рН среды, спектральный состав света и др.

Воздушная среда и ее газовый состав

Освоение воздушной среды организмами началось после выхода их на сушу. Жизнь в воздушной среде потребовала специфических приспособлений и высокого уровня организации растений и животных. Низкая плотность и оводненность, высокое содержание кислорода, легкость перемещения воздушных масс, резкие перепады температуры и т. п. заметно сказались на процессе дыхания, водообмене и передвижении живых существ.

Подавляющее большинство наземных животных в ходе эволюции приобрели способность к полету (75 % всех видов наземных животных). Для многих видов характерна ансмохория - расселение с помощью воздушных потоков (споры, семена, плоды, цисты простейших, насекомые, пауки и т. п.). Некоторые растения стали ветроопыляемыми.

Для успешного существования организмов важны не только физические, но и химические свойства воздуха, содержание в нем нужных для жизни газовых компонентов.

Кислород. Для абсолютного большинства живых организмов кислород жизненно необходим. В бескислородной среде могут развиваться только анаэробные бактерии. Кислород обеспечивает осуществление экзотермических реакций, в ходе которых освобождается необходимая для жизнедеятельности организмов энергия. Он является конечным акцептором электрона, который отщепляется от атома водорода в процессе энергетического обмена.

В химически связанном состоянии кислород входит в состав многих очень важных органических и минеральных соединений живых организмов. Огромна его роль как окислителя в круговороте отдельных элементов биосферы.

Единственными продуцентами свободного кислорода на Земле являются зеленые растения, которые образуют его в процессе фотосинтеза. Определенное количество кислорода образуется в результате фотолиза паров воды ультрафиолетовыми лучами за пределами озонового слоя. Поглощение организмами кислорода из внешней среды происходит всей поверхностью тела (простейшие, черви) или специальными органами дыхания: трахеями (насекомые), жабрами (рыбы), легкими (позвоночные).

Кислород химически связывается и переносится по всему организму специальными пигментами крови: гемоглобином (позвоночные), гемоциапином (моллюски, ракообразные). У организмов, пребывающих в условиях постоянного недостатка кислорода, выработались соответствующие приспособления: повышенная кислородная емкость крови, более частые и глубокие дыхательные движения, большой объем легких (у жителей высокогорья, птиц) или уменьшение использования кислорода тканями благодаря повышению количества миоглобина - аккумулятора кислорода в тканях (у обитателей водной среды).

Вследствие высокой растворимости СО 2 и О 2 в воде относительное их содержание здесь выше (в 2-3 раза), чем в воздушной среде (рис. 1). Это обстоятельство очень важно для гидробионюв, использующих либо растворенный кислород для дыхания, либо СО 2 для фотосинтеза (водные фототрофы).

Углекислый газ. Нормальное количество этого газа в воздухе невелико - 0,03 % (по объему) или 0,57 мг/л. Вследствие этого даже небольшие колебания в содержании СО 2 существенно отражаются па непосредственно зависящем от него процессе фотосинтеза. Главные источники поступления СО 2 в атмосферу - дыхание животных и растений, процессы горения, извержения вулканов, деятельность почвенных микроорганизмов и грибов, промышленные предприятия и транспорт.

Обладая свойством поглощения в инфракрасной области спектра, углекислый газ влияет на оптические параметры и температурный режим атмосферы, обусловливая известный "парниковый эффект".

Важным экологическим аспектом является повышение растворимости кислорода и углекислого газа в воде по мере уменьшения ее температуры. Именно поэтому фауна водных бассейнов полярных и приполярных широт очень обильна и разнообразна, главным образом за счет повышенной концентрации в холодной воде кислорода. Растворение кислорода в воде, как и любого другого газа, подчиняется закону Генри: оно обратно пропорционально температуре и прекращается при достижении точки кипения. В теплых водах тропических бассейнов пониженная концентрация растворенного кислорода ограничивает дыхание, а следовательно, и жизнедеятельность и численность водных животных.

В последнее время наблюдается заметное ухудшение кислородного режима многих водоемов, вызванное увеличением количества органических загрязнителей, деструкция которых требует большого количества кислорода.

Зональность распространения живых организмов

Географическая (широтная) зональность

В широтном направлении с севера на юг на территории РФ последовательно располагаются такие природные зоны: тундра, тайга, лиственный лес, степь, пустыня. Среди элементов климата, которые определяют зональность размещения и распространения организмов, ведущую роль играют абиотические факторы - температура, влажность, световой режим.

Наиболее заметно зональные изменения проявляются в характере растительности - ведущем компоненте биоценоза. Это в свою очередь сопровождается изменениями состава животных - потребителей и деструкторов органических остатков звеньев цепей питания.

Тундра - холодная, безлесная равнина северного полушария. Климатические условия ее мало пригодны для вегетации растений и разложения органических остатков (вечная мерзлота, относительно низкая температура даже летом, короткий период плюсовых температур). Тут сформировались своеобразные малочисленные по видовому составу (мхи, лишайники) биоценозы. Продуктивность биоценоза тундры в связи с этим малая: 5-15 ц/га органического вещества в год.

Зона тайги характеризуется относительно благоприятными почвенно-климатическими условиями, особенно для хвойных пород. Тут сформировались богатые и высокопродуктивные биоценозы. Ежегодное образование органического вещества составляет 15-50 ц/га.

Условия умеренной зоны привели к формированию сложных биоценозов лиственных лесов с самой высокой на территории РФ их биологической продуктивностью (до 60 ц/га в год). Разновидностями лиственных лесов являются дубравы, буково-кленовые, смешанные леса и др. Такие леса характеризуются хорошо развитым кустарниковым и травянистым подлесками, что способствует размещению разнообразной по видам и количеству фауны.

Степи - природная зона умеренного пояса полушарий Земли, которая характеризуется недостаточным водообеспечением, поэтому тут преобладает травянистая, преимущественно злаковая растительность (ковыль, типчак и др.). Животный мир разнообразен и богат (лисица, заяц, хомяк, мыши, много птиц, особенно перелетных). В степной зоне размещены важнейшие районы производства зерна, технических, овощных культур и животноводства. Биологическая продуктивность этой природной зоны относительно велика (до 50 ц/га в год).

Пустыни преобладают в Средней Азии. Вследствие незначительного количества осадков и высокой температуры летом растительность занимает менее половины территории этой зоны и имеет специфические приспособления к засушливым условиям. Животный мир разнообразен, его биологические особенности рассматривались раньше. Ежегодное образование органической массы в зоне пустынь не превышает 5 ц/га (рис. 107).

Соленость среды

Соленость водной среды характеризуется содержанием в ней растворимых солей. В пресной воде содержится 0,5-1,0 г/л, а в морской - 10-50 г/л солей.

Соленость водной среды имеет важное значение для ее обитателей. Существуют животные, приспособленные к обитанию только в пресной воде (карпообразные) или только в морской (сельдеобразные). У некоторых же рыб отдельные стадии индивидуального развития проходят при различной солености воды, например угорь обыкновенный обитает в пресных водоемах, а на нерест мигрирует в Саргассово море. Таким водным обитателям необходима соответствующая регуляция солевого баланса в организме.

Механизмы регуляции ионного состава организмов .

Сухопутные животные вынуждены регулировать солевой состав своих жидких тканей для поддержания внутренней среды в постоянном или почти постоянном химически неизмененном ионном состоянии. Основной способ поддерживать солевой баланс у гидробионтов и сухопутных растений - избегать местообитаний с неподходящей соленостью.

Особенно напряженно и безошибочно должны работать такие механизмы у мигрирующих рыб (лосося, кеты, горбуши, угря, осетра), которые периодически переходят из морской воды в пресную или наоборот.

Проще всего происходит осмотическая регуляция в пресной воде. Известно, что в последней концентрация ионов значительно меньше, чем в жидких тканях. Согласно законам осмоса внешняя среда по концентрационному градиенту через полупроницаемые мембраны поступает внутрь клеток, происходит как бы "разведение" внутреннего содержимого. Если бы такой процесс не контролировался, организм мог бы разбухнуть и погибнуть. Однако пресноводные организмы имеют органы, которые выводят наружу лишнюю воду. Сохранению необходимых для жизнедеятельности ионов способствует то, что моча у таких организмов довольно разбавленная (рис. 2, а). Отделение такого разведенного раствора от внутренних жидкостей, вероятно, требует активной химической работы специализированных клеток или органов (почек) и потребления ими значительной доли общей энергии основного обмена.

Наоборот, морские животные и рыбы пьют и усваивают только морскую воду, пополняя тем самым постоянный выход ее из организма во внешнюю среду, которая характеризуется высоким осмотическим потенциалом. При этом одновалентные ионы соленой воды активно выводятся наружу жабрами, а двухвалентные - почками (рис. 2, б). На откачку избыточной воды клетки затрачивают довольно много энергии, поэтому при возрастании солености и уменьшении воды в теле организмы обычно переходят к неактивному состоянию - солевому анабиозу. Это свойственно видам, обитающим в периодически пересыхающих лужах морской воды, лиманах, на литорали (коловратки, бо-коплавы, жгутиковые и др.)

Соленость верхнего слоя земной коры определяется содержанием в ней ионов калия и натрия, и также, как и соленость водной среды, имеет важное значение для ее обитателей и, в первую очередь, растений, которые имеют к ней соответствующую приспособленность. Этот фактор для растений не случаен, он сопровождает их в течение эволюционного процесса. К почвам с высоким содержанием калия и натрия приурочена так называемая солончаковая растительность (солянка, солодка и др.).

Верхний слой земной коры - это почва. Кроме солености почвы различают другие ее показатели: кислотность, гидротермический режим, аэрация почвы и т.п. В совокупности с рельефом эти свойства земной поверхности, получившие название эдафические факторы среды, оказывают экологическое воздействие на ее обитателей.

Эдафические факторы среды

Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей.


заимствовано

Почвенный профиль

Тип почвы определяется ее составом и цветом.

A - Тундровая почва имеет темную торфянистую поверхность.

B - Пустынная почва светлая, крупнозерниста и бедна органическим веществом

Каштановая почва (С) и чернозем (D) - богатые перегноем луговые почвы, типичные для степей Евразии и прерий Северной Америки.

Красноватый выщелоченный латосол (Е)тропической саванны имеет очень тонкий, но богатый перегноем слой.

Подзолистые почвы типичны для северных широт, где выпадает большое количество осад ков, а испарение очень мало. Они включают богатый органическими веществами коричневый лесной подзол (F), серо-коричневый подзол (Н) и серо-каменистый подзол (I), на котором произрастают как хвойные, так и лиственные деревья. Все они относительно кислые, и в отличие от них красно-желтый подзол (G) сосновых лесов достаточно сильно выщелочен.

В зависимости от эдафических факторов можно выделить ряд экологических групп растений.

По реакции на кислотность почвенного раствора различают:

  • ацидофильные виды, растущие при рН ниже 6,5 (растения торфяных болот, хвощ, сосна, пихта, папоротник);
  • нейтрофильные, предпочитающие почву с нейтральной реакцией (рН 7) (большинство культурных растений);
  • базифильные - растения, которые лучше всего растут на субстрате, имеющем щелочную реакцию (рН более 7) (ель, граб, туя)
  • и индифферентные - могут произрастать на почвах с разным значением рН.

По отношению к химическому составу почвы растения делятся на

  • олиготрофные, малотребовательные к количеству питательных веществ;
  • мезотрофные, требующие умеренного количества минеральных веществ в почве (травянистые многолетники, ель),
  • мезотрофные, нуждающиеся в большом количестве доступных зольных элементов (дуб, плодовые).

По отношению к отдельным элементам питания

  • виды, особенно требовательные к высокому содержанию азота в почве, называются - нитрофилами (крапива, растения скотных дворов);
  • требующие много кальция - кальцефилами (бук, лиственница, порезник, хлопчатник, маслина);
  • растения засоленных почв называются галофитами (солянка, сарсазан), излишек солей некоторые из галофитов способны выделять наружу, где эти соли после высыхания образуют твердые пленки или кристаллические скопления

По отношению к механическому составу

  • растений сыпучих песков - псаммофиты (саксаул, акация песчаная)
  • растений каменистых осыпей, трещин и углублений скал и других подобных местообитаний - литофиты [петрофиты] (можжевельник, дуб скальный)

Рельеф местности и характер грунта существенно влияют на специфику передвижения животных, на распределение видов, жизнедеятельность которых временно или постоянно связана с почвой. От гидротермического режима почв, их аэрации, механического и химического составов зависят характер корневой системы (глубинная, поверхностная), образ жизни почвенной фауны. Химический состав почвы и разнообразие обитателей влияют на ее плодородие. Наиболее плодородными являются черноземные почвы, богатые перегноем.

Как абиотический фактор рельеф оказывает влияние на распределение климатических факторов и, таким образом, на формирование соответствующих флоры и фауны. Например, на южных склонах холмов или гор всегда более высокая температура, лучшая освещенность и соответственно меньшая влажность.

Воздействие факторов среды на живые организмы в отдельности и сообщества в целом многогранно. При оценке влияния того или иного фактора среды важным оказывается характеристика интенсивности его действия на живую материю: в благоприятных условиях говорят об оптимальном, а при избытке или недостатке - ограничивающем факторе.

Температура. Большинство видов приспособлено к довольно узкому диапазону температур. Некоторые организмы, особенно в стадии покоя, способны существовать при очень низких температурах. Например, споры микроорганизмов выдерживают охлаждение до -200 °С. Отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре от +80 до -88 °С. Диапазон колебаний температуры в воде значительно меньше, чем на суше, соответственно и пределы устойчивости к колебаниям температуры у водных организмов уже, чем у наземных. Однако и для водных и для наземных обитателей оптимальной является температура в пределах от +15 до +30 °С.

Различают организмы с непостоянной температурой тела - пой- килотермные (от греч. poikilos - различный, переменчивый и therme - тепло) и организмы с постоянной температурой тела - гомойотерм- ные (от греч. homoios - подобный и therme - тепло). Температура тела пойкилотермных организмов зависит от температуры окружающей среды. Ее повышение вызывает у них интенсификацию жизненных процессов и, в известных пределах, ускорение развития.

В природе температура непостоянна. Организмы, которые обычно подвергаются воздействию сезонных колебаний температур, что наблюдается в умеренных зонах, хуже переносят постоянную температуру. Резкие колебания температуры - сильные морозы или зной - также неблагоприятны для организмов. Существует много приспособлений для борьбы с охлаждением или перегревом. С наступлением зимы растения и пойкилотермные животные впадают в состояние зимнего покоя. Интенсивность обмена веществ резко снижается, в тканях запасается много жиров и углеводов. Количество воды в клетках уменьшается, накапливаются сахара и глицерин, препятствующие замерзанию. В жаркое время года включаются физиологические механизмы, защищающие от перегрева. У растений усиливается испарение воды через устьица, что приводит к снижению температуры листьев. У животных в этих условиях также усиливается испарение воды через дыхательную систему и кожные покровы. Кроме того, пойкилотермные животные избегают перегрева путем приспособительного поведения: выбирают места обитания с наиболее благоприятным микроклиматом, в жаркое время дня скрываются в норах или под камнями, проявляют активность в определенное время суток и т.п.

Таким образом, температура окружающей среды представляет собой важный и зачастую ограничивающий жизненные проявления фактор.

Гораздо меньше зависят от температурных условий среды животные гомойотермные - птицы и млекопитающие. Ароморфные изменения строения позволили этим двум классам сохранять активность при очень резких перепадах температур и освоить практически все места обитания.

Угнетающее действие низких температур на организмы усиливается сильными ветрами.

Свет. Свет в форме солнечной радиации обеспечивает все жизненные процессы на Земле (рис. 25.4). Для организмов важны длина волны воспринимаемого излучения, его интенсивность и продолжительность воздействия (длина дня, или фотопериод). Ультрафиолетовые лучи с длиной волны более 0,3 мкм составляют примерно 40% лучистой энергии, достигающей земной поверхности. В небольших дозах они необходимы животным и человеку. Под их воздействием в организме образуется витамин D. Насекомые зрительно различают ультрафиолетовые лучи и пользуются этим для ориентации на местности в облачную погоду. Наибольшее влияние на организм оказывает видимый свет с длиной волны 0,4-0,75 мкм. Энергия видимого света составляет около 45% общего количества лучистой энергии, падающей на Землю. Видимый свет менее всего ослабляется при прохождении через плотные облака и воду. Поэтому фотосинтез может идти и при пасмурной погоде, и под слоем воды определенной толщины. Но все же на синтез биомассы расходуется лишь от 0,1 до 1% приходящей солнечной энергии.

Рис. 25.4.

В зависимости от условий обитания растения адаптируются к тени - теневыносливые растения или, напротив, к яркому солнцу - светолюбивые растения. К последней группе относятся хлебные злаки.

Чрезвычайно важную роль в регуляции активности живых организмов и их развития играет продолжительность воздействия света - фотопериод. В умеренных зонах, выше и ниже экватора, цикл развития растений и животных приурочен к сезонам года и подготовка к изменению температурных условий осуществляется на основе сигнала длины дня, которая, в отличие от других сезонных факторов, в определенное время года в данном месте всегда одинакова. Фотопериод представляет собой как бы пусковой механизм, последовательно включающий физиологические процессы, приводящие к росту, цветению растений весной, плодоношению летом и сбрасыванию ими листьев осенью, а также к линьке и накоплению жира, миграции и размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых.

Кроме сезонных изменений смена дня и ночи определяет суточный ритм активности как целых организмов, так и физиологических процессов. Способность организмов ощущать время, наличие у них «биологических часов» - важное приспособление, обеспечивающее выживание особи в данных условиях среды.

Инфракрасное излучение составляет 45% общего количества лучистой энергии, падающей на Землю. Инфракрасные лучи повышают температуру тканей растений и животных, хорошо поглощаются объектами неживой природы, в том числе водой.

Для продуктивности растений, т.е. образования органического вещества, наиболее важен такой показатель, как суммарное прямое солнечное излучение, получаемое за длительные промежутки времени (месяцы, год).

Влажность. Вода - необходимый компонент клетки, поэтому количество ее в тех или иных местах обитания служит ограничивающим фактором для растений и животных и определяет характер флоры и фауны в данной местности. Избыток воды в почве приводит к развитию болотной растительности. В зависимости от влажности почвы (и годового количества осадков) видовой состав растительных сообществ меняется. При годовом количестве осадков 250 мм и менее развивается пустынный ландшафт. Неравномерное распределение осадков по временам года также представляет важный ограничивающий фактор для организмов. В этом случае растениям и животным приходится переносить длительные засухи. В короткий же период высокой влажности почвы происходит накопление первичной продукции для сообщества в целом. Им определяется размер годового запаса пищи для животных и сапрофагов (от греч. sapros - гнилой и phagos - пожиратель) - организмов, разлагающих органические остатки.

В природе, как правило, существуют суточные колебания влажности воздуха, которые наряду со светом и температурой регулируют активность организмов. Влажность как экологический фактор важна тем, что изменяет эффект температуры. Температура оказывает более выраженное влияние на организм, если влажность очень высока или низка. Точно так же роль влажности повышается, если температура близка к пределам выносливости данного вида. Виды растений и животных, обитающие в зонах с недостаточной степенью увлажнения, в процессе естественного отбора эффективно приспособились к неблагоприятным условиям засушливости. У таких растений мощно развита корневая система, повышено осмотическое давление клеточного сока, способствующее удержанию воды в тканях, утолщена кутикула листа, сильно уменьшена или превращена в колючки листовая пластинка. У некоторых растений (саксаула) листья утрачиваются, а фотосинтез осуществляется зелеными стеблями. При отсутствии воды рост пустынных растений прекращается, в то время как влаголюбивые растения в таких условиях увядают и гибнут. Кактусы способны запасать большое количество воды в тканях и экономно ее расходовать. Аналогичное приспособление обнаружено у африканских пустынных молочаев, что служит примером параллельной эволюции неродственных групп в сходных условиях среды.

У пустынных животных также есть целый ряд физиологических адаптаций, позволяющих переносить недостаток воды. Мелкие животные - грызуны, пресмыкающиеся, членистоногие - извлекают воду из пищи. Источником воды служит и жир, накапливающийся у некоторых животных в больших количествах (горб у верблюда). В жаркое время года многие животные (грызуны, черепахи) впадают в спячку, продолжающуюся несколько месяцев.

Ионизирующее излучение. Излучение с очень высокой энергией, которое способно приводить к образованию пар положительных и отрицательных ионов, называется ионизирующим. Его источником являются радиоактивные вещества, содержащиеся в горных породах; кроме того, оно поступает из космоса.

Интенсивность ионизирующего излучения в окружающей среде значительно повысилась в результате использования человеком атомной энергии. Испытания атомного оружия, атомные электростанции, получение топлива для них и захоронение отходов, медицинские исследования и другие виды мирного использования атомной энергии создают локальные «горячие пятна» и образуют отходы, нередко попадающие в окружающую среду в процессе транспортировки или хранения.

Из трех видов ионизирующего излучения, имеющих важное экологическое значение, два представляют собой корпускулярное излучение (альфа- и бета-частицы), а третье - электромагнитное (гамма-излучение и близкое ему рентгеновское излучение).

Корпускулярное излучение состоит из потока атомных или субатомных частиц, которые передают свою энергию всему, с чем они сталкиваются. Альфа-излучение - это ядра гелия, они имеют огромные по сравнению с другими частицами, размеры. Длина их пробега в воздухе составляет всего несколько сантиметров. Бета-излучение - это быстрые электроны. Их размеры гораздо меньше, длина пробега в воздухе равна нескольким метрам, а в тканях животного или растительного организма - нескольким сантиметрам. Что касается ионизирующего электромагнитного излучения, то оно сходно со световым, только длина волны у него гораздо короче. Оно проходит в воздухе большие расстояния и легко проникает в вещество, высвобождая свою энергию на протяжении длинного следа. Гамма-излучение, например, легко проникает в живые ткани; это излучение может пройти сквозь организм, не оказав никакого воздействия, или же может вызвать ионизацию на большом отрезке своего пути. Биологи нередко называют радиационные вещества, испускающие альфа- и бета-излучение, «внутренними излучателями», так как они обладают наибольшим эффектом, будучи поглощенными, заглоченными или оказавшись каким-то иным способом внутри организма. Радиоактивные вещества, испускающие преимущественно гамма-излучение, относят к «внешним излучателям», так как это проникающее излучение может оказывать действие, когда его источник находится вне организма.

Космическое и ионизирующее излучения, испускаемые природными радиоактивными веществами, содержащимися в воде и почве, образуют так называемое фоновое излучение, к которому адаптированы ныне существующие животные и растения. В разных частях биосферы естественный фон различается в 3-4 раза. Наименьшая его интенсивность наблюдается около поверхности моря, а наибольшая на больших высотах в горах, образованных гранитными породами. Интенсивность космического излучения возрастает с увеличением высоты местности над уровнем моря, а гранитные скалы содержат больше встречающихся в природе радионуклидов, чем осадочные породы.

В целом ионизирующее излучение оказывает на более высокоразвитые и сложные организмы наиболее губительное действие, причем человек отличается особой чувствительностью.

Большие дозы, получаемые организмом за короткое время (минуты или часы), называют острыми дозами в противоположность хроническим дозам, которые организм мог бы выдержать на протяжении всего своего жизненного цикла. Воздействие низких хронических доз измерить сложнее, так как они могут вызывать отдаленные генетические и соматические последствия. Любое повышение уровня излучения в среде над фоновым или даже высокий естественный фон может повысить частоту вредных мутаций.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра. У высших животных не обнаружено такой простой или прямой зависимости между чувствительностью и строением клеток; для них более важное значение имеет чувствительность отдельных систем органов. Так, млекопитающие очень чувствительны даже к низким дозам вследствие легкой повреждаемости облучением быстро делящейся кроветворной ткани - костного мозга. Чувствителен и пищеварительный тракт, а повреждения неделящихся нервных клеток наблюдаются только при высоких уровнях облучения.

Попадая в окружающую среду, радионуклиды рассеиваются и разбавляются, но они могут различными способами накапливаться в живых организмах при движении по пищевой цепи. Радиоактивные вещества могут также накапливаться в воде, почве, осадках или в воздухе, если скорость их поступления превышает скорость естественного радиоактивного распада.

Загрязняющие вещества. Условия жизни человека и устойчивость природных биогеоценозов в течение последних десятилетий быстро ухудшаются вследствие загрязнения окружающей среды веществами, образующимися в результате его производственной деятельности. Эти вещества можно разделить на две группы: природные соединения, являющиеся отходами технологических процессов, и искусственные соединения, не встречающиеся в природе.

К первой группе относятся сернистый ангидрид (медеплавильное производство), диоксид углерода (тепловые электростанции), оксиды азота, углерода, углеводороды, соединения меди, цинка и ртути и др., минеральные удобрения (главным образом нитраты и фосфаты).

Во вторую группу входят искусственные вещества, обладающие специальными свойствами, удовлетворяющими потребности человека: пестициды (от лат. pestis - зараза, разрушение и cido - убивать), используемые для борьбы с животными - вредителями сельскохозяйственных культур, антибиотики, применяемые в медицине и ветеринарии для лечения инфекционных заболеваний. К пестицидам относятся инсектициды (от лат. insecta - насекомые и cido - убивать) - средства для борьбы с вредными насекомыми и гербициды (от лат. herba - трава, растение и cido - убивать) - средства для борьбы с сорняками.

Все они обладают определенной токсичностью (ядовитостью) для человека. Одновременно они служат антропогенными абиотическими факторами среды, оказывающими значимое влияние на видовой состав биогеоценозов. Это влияние выражается в изменении свойств почвы (закисление, переход в растворимое состояние токсичных элементов, нарушение структуры, обеднение ее видового состава); изменении свойств воды (повышенная минерализация, повышение содержания нитратов и фосфатов, закисление, насыщение поверхностно-активными веществами); изменении соотношения элементов в почве и воде, что приводит к ухудшению условий развития растений и животных.

Подобные изменения служат факторами отбора, в результате действия которых формируются новые растительные и животные сообщества с обедненным видовым составом.

Изменения факторов среды по силе действия на организмы могут быть: 1) регулярно-периодическими, например в связи со временем суток, сезоном года или ритмом приливов и отливов в океане; 2) нерегулярными, например изменения погодных условий в разные годы, катастрофы (бури, ливни, обвалы и т.д.); 3) направленными: при похолодании или потеплении климата, зарастании водоемов и т.д. Популяции организмов, обитающие в какой-то определенной среде, приспосабливаются к этому непостоянству путем естественного отбора. У них вырабатываются те или иные морфологические и физиологические особенности, позволяющие существовать именно в этих и ни в каких других условиях среды. Для каждого влияющего на организм фактора существует благоприятная сила воздействия, называемая зоной оптимума экологического фактора или просто его оптимума. Для организмов данного вида отклонение от оптимальной интенсивности действия фактора (уменьшение или увеличение) угнетает жизнедеятельность. Границы, за пределами которых наступает гибель организма, называют верхним и нижним пределами выносливости (рис. 25.5).


Рис. 25.5. Интенсивность действия факторов среды

Опорные точки

  • Большинство видов организмов приспособлено к жизни в узком диапазоне температур; оптимальные значения температуры составляют от +15 до +30 °С.
  • Свет в форме солнечной радиации обеспечивает все процессы жизнедеятельности на Земле.
  • Космическое и ионизирующее излучения, испускаемые природными радиоактивными веществами, образуют «фоновое» излучение, к которому ныне существующие растения и животные адаптированы.
  • Загрязняющие вещества, обладая токсическим действием на живые организмы, обедняют видовой состав биоценозов.

Вопросы и задания для повторения

  • 1. Что такое абиотические факторы среды?
  • 2. Какие приспособления существуют у растений и животных к изменениям температуры окружающей среды?
  • 3. Укажите, какая часть спектра видимого излучения Солнца наиболее активно поглощается хлорофиллом зеленых растений?
  • 4. Расскажите о приспособлениях живых организмов к недостатку воды.
  • 5. Охарактеризуйте влияние различных видов ионизирующего излучения на животный и растительный организмы.
  • 6. Каково влияние загрязняющих веществ на состояние биогеоценозов?

ГЛАВА 5. ГРУППА АБИОТИЧЕСКИХ ФАКТОРОВ

Общие сведения

Влияние климатических факторов (температура, влажность воздуха, осадки, ветер и др.) на организм всегда бывает совокупным. Однако изучение воздействия каждого отдельно взятого климатического фактора позволяет лучше понять его роль в жизни определенных видов или сельскохозяйственных культур и служит необходимой предпосылкой исследования воздействия всего комплекса климатических факторов. При оценке климатических факторов нельзя придавать исключительное значение лишь одному из них. Любой из названных компонентов климата в конкретных условиях может быть представлен по-разному: не только в количественном отношении, но и в качественном. Например, сумма годовых осадков для определенной местности может быть достаточно высокой, но распределение их в течение года неблагоприятно. Поэтому в отдельные периоды года (в вегетационные периоды) влага может выступать в роли минимум-фактора и тормозить рост и развитие растений.

Свет

У культур, особенно требовательных к свету, например риса, при недостаточной освещенности задерживается развитие. Формирование высокопроизводительных древостоев многих лесообразующих пород и плодовых насаждений также в значительной степени определяется интенсивностью солнечной энергии. Сахаристость свеклы прямо зависит от интенсивности лучистой энергии солнца в течение вегетационного периода. Известно, что у льна обыкновенного (Linum usitatissimum) и конопли посевной (Cannabis sativa) в условиях короткого светового дня синтезируется в тканях значительное количество масла, а в условиях длинного убыстряется формирование лубяных волокон. Реакция растений на длину дня и ночи проявляется в ускорении или задержке развития. Следовательно, действие света на растение избирательно и неоднозначно. Значение освещенности как экологического фактора для организма определяется продолжительностью, интенсивностью и длиной волн светового потока.

На границе земной атмосферы с космосом радиация составляет от 1,98 до 2 кал/см 2 в 1 мин; Указанную величину называют солнечной постоянной. К поверхности Земли при разных погодных условиях доходит 42...70% солнечной постоянной. Солнечная радиация, проходя через атмосферу, претерпевает ряд изменений не только в количественном отношении, но и по составу. Коротковолновая радиация поглощается озоновым экраном, расположенным на высоте около 25 км, и кислородом воздуха. Инфракрасные лучи поглощаются в атмосфере водяными парами и диоксидом углерода. В результате нагревается воздух. Остальная часть лучистой энергии достигает поверхности Земли в виде прямой или рассеянной радиации (рис. 10). Совокупность прямой и рассеянной солнечной радиации составляет суммарную радиацию В ясные дни рассеянная радиация составляет от 1/3 до 1/8 суммарной радиации, тогда как в облачные дни рассеянная радиация составляет 100 %. В высоких широтах преобладает рассеянная радиация, под тропиками - прямая. Рассеянная радиация содержит в полдень желто-красных лучей до 60 %, прямая - 30...40 %.

Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. В ясные солнечные дни лучистая энергия, достигающая поверхности Земли, состоит на 45 % из видимого света (380...720 нм) и на 45 % из инфракрасного излучения, только 10 % приходится на ультрафиолетовое излучение. Значительное влияние на радиационный режим оказывает запыленность атмосферы. В некоторых городах вследствие ее загрязненности освещенность может составлять 15 % и менее освещенности за городом.

Освещенность на поверхности Земли варьирует в широких пределах. Все зависит от высоты стояния солнца над горизонтом, т. е. угла падения солнечных лучей, длины дня и условий погоды, прозрачности атмосферы. Интенсивность света также колеблется в зависимости от времени года и времени суток. Неравноценно в отдельных районах Земли и качество света, например соотношение длинноволновых (красных) и коротковолновых (синих и ультрафиолетовых) лучей. Как известно, коротковолновые лучи больше, чем длинноволновые, поглощаются и рассеиваются атмосферой. Поэтому в горных местностях всегда больше коротковолновой солнечной радиации.

Рис. 10. Интенсивность солнечной радиации, падающей на поверхность Земли, по В. Лархеру

Поскольку фотосинтетически активная радиация (ФАР) представлена участком спектра между длиной волны 380 и 710 нм и максимальна в области оранжево-красных лучей (600...680 им), то естественно, что коэффициент использования растениями рассеянной радиации выше. Вследствие увеличения длины дня свет даже в высоких северных широтах не ограничивает жизнедеятельности растений. Л. Иванов рассчитал, что даже на Шпицбергене солнечной радиации достаточно (20 000 кДж на 1 га) для получения некоторою урожая сухой растительной массы.

У разных видов растений и растительных группировок потребность в свете неодинакова, иначе говоря, для нормальной вегетации им необходимо и неодинаковое световое довольствие (£,), т. е. доля в процентах полной ФАР. Это позволяет выделить в отношении потребности к свету три экологические группы растений:

· световые растения, или гелиофиты (от греч. helios - солнце + phyton), - L опт = 100 %, £ мин = 70 %, это растения открытых пространств, например ковыли (Stipa), большинство культивируемых растений (сахарная свекла, картофель и др.);

· теневыносливые растения, или гемисциофиты, могут расти при L = 100 %, но переносят и большое затенение; ежа сборная (Dactylis glomerata), например, способна вегетировать при диапазоне L от 100 до 2,5 %;

· теневые растения, или сциофиты (от греч. skia - тень), не переносят полного освещения, их L макс всегда меньше 100 %, это кислица обыкновенная (Oxalis acetosella) , седь-мичник европейский (Trientalis europaea) и др.; ввиду особой структуры листьев сциофиты при слабой интенсивности света способны ассимилировать диоксид углерода не менее эффективно, чем листья гелиофитов при L = 100 %.



Московский растениевод А. Дояренко установил, что для большинства сельскохозяйственных травянистых растений коэффициент использования света для фотосинтеза составляет 2...2,5 %, но есть и исключения:

· свекла кормовая - 1,91

· вика - 1,98

· клевер - 2,18

· рожь - 2,42

· картофель - 2,48

· пшеница - 2,68

· овес - 2,74

· лен - 3,61

· люпин - 4,79

Из растительных сообществ лесные наиболее активно трансформируют состав солнечного света, и до поверхности почвы доходит очень малая часть первоначальной солнечной радиации. Известно, что листовая поверхность древостоя поглощает около 80 % падающей ФАР, еще 10 % отражается и только 10 % проникает под полог леса. Следовательно, полная и проникшая сквозь полог древесных растений радиация различается не только количественно, но и качественно.

Сциофиты и гелиоциофиты, обитающие под пологом других растений, довольствуются лишь долей полного освещения. Так, если у кислицы максимум интенсивности фотосинтеза достигается при 1/10 полного дневного освещения, то у светолюбивых видов он наступает примерно при 1/2 этого освещения. Световые растения менее приспособлены к существованию при слабом освещении, чем теневые и теневыносливые. Нижний предел, при котором могут расти лесные зеленые мхи, - 1/90 полного дневного освещения. В дождевых тропических лесах встречаются еще более сциофильные виды, вегетирующие при 1/120 полного освещения. Удивительны в этом отношении некоторые мхи: шистостега перистая (Schistostega pennaia) и др. - это растения темных пещер, вегетирующие при 1/2000 полного освещения.

Каждая географическая местность характеризуется определенным световым режимом. Важнейшими элементами светового режима, определяющими направление адаптации растений, являются интенсивность радиации, спектральный состав света, продолжительность освещения (длина дня и ночи). Продолжительность солнечного дня постоянна лишь на экваторе. Здесь день, как и ночь, длится 12 ч. Длительность солнечного дня в течение летнего периода возрастает от экватора в направлении обоих полюсов; на полюсе, как известно, целое лето длится полярный день, а зимой - полярная ночь. Реакцию растения на сезонные изменения длины дня и ночи называют фотопериодизмом.

Растениеводы давно обратили внимание на то, что сельскохозяйственные растения разного происхождения неодинаково реагируют на длину светового дня. В зависимости от этой реакции одни виды выделили как растения длинного дня, другие - короткого, третьи - как не реагирующие заметно на длину дня. Общеизвестно, что в условиях длинного дня формируется высокий урожай пшеницы, ржи, овса (Avena sativa) и ряда кормовых злаков; к растениям длинного дня относятся также картофель, цитрусовые и ряд других овощных и плодовых культур. Продолжительное освещение указанных растений вызывает более быстрое прохождение фаз развития плодов и семян. С другой стороны, у растений короткого дня, например проса (Panicum miliaceum), сорго (Sorghum сегпиит), риса, скорость прохождения этапов развития при длительном освещении замедляется. Сокращение периодов развития достигается укорачиванием времени освещения.

Указанные особенности необходимо учитывать при интродукции сельскохозяйственных растений. Виды низких широт (южные растения) часто бывают растениями короткого дня. При интродукции в высокие широты, т. е. в условия длинного дня, они развиваются медленно, часто не вызревают, а иногда даже не цветут, как, например, конопля. К данной группе можно отнести и топинамбур (Helianthus tuberosus). Таким образом, продолжительность дня и ночи может определять границы распространения и возможной интродукции отдельных видов: "южных" - на север, "северных" - на юг, К числу нейтральных в отношении длины дня относятся томат, виноград, гречиха посевная (Fagopyrum esculentum) и др.

В ходе изучения фотопериодизма и фотохимических реакций выяснено, что у растений длинного дня в весенне-летний период, когда в природе наблюдается длинный световой день, явно убыстряется рост. Однако во второй половине лета, когда солнечный день сокращается, ростовые процессы явно замедляются. В результате в условиях холодного климата у длиннодневных растений до наступления морозов не всегда успевает сформироваться комплекс покровных тканей - перидерма. Поэтому длиннодневные многолетние культуры, возделываемые в условиях высоких широт, могут утратить зимостойкость, что нужно иметь в виду при подборе ассортимента растений для возделывания в этих местностях. Предпочтительнее в условиях длинного дня вводить однолетние культуры, не требующие перезимовки. Продвижению к северу некоторых других культур, например клеверов, препятствуют не зимние морозы, а характер фотопериодических реакций. Именно их характером можно объяснить тот парадоксальный факт, что морозостойкость клеверов и люцерны более высока в средней полосе европейской части России, чем в северной.

Свет оказывает формирующее действие на растения, что проявляется в размерах, форме и структуре (макро- и микроскопической) световых и теневых листьев (рис. 11), а также в ростовых процессах. Зависимость структуры листа (побега) от света не всегда прямая; листья (побеги), развивающиеся весной, формируются в соответствии в освещением не текущего года, а прошлого, т. е. когда закладывались почки. И. Серебряков (1962) считал, что световая структура листа детерминирована уже в почке. Листья сохраняют данную структуру достаточно устойчиво даже при перенесении световых побегов в затенение. Большая высота, колоннообразная форма стволов, высокое расположение крон (очищение от сухих ветвей) характеризуют светолюбивые растения.

Рис. 11. Поперечные срезы листьев сирени (род Syringa): а - светового; б - теневого

Одна из реакций светолюбивых растений - затормаживание роста надземных побегов, что приводит в одних случаях к сильной ветвистости, в других - к розеточности. Отличает растения упомянутой группы и ряд других изменений структуры: мелколистность, увеличение мощности наружной стенки эпидермы и ее выростов (трихом и эмергенцев), кутикулярного слоя и т. д. (рис. 12).


Рис. 12. Поперечный срез листа светолюбивого растения олеандра (Nerium oleander):
1 - двухслойная эпидерма с кутикулой; 2 - гиподерма; 3 - изопалисадный мезофилл; 4 - углубления на нижней стороне листа (крипты) с устьицами и волосками

Один из примеров приспособления растений к свету - ориентировка листовой пластинки по отношению к солнечным лучам. Различают три способа ориентировки:

· листовая пластинка ориентирована горизонтально, т. е. перпендикулярно солнечным лучам; в этом случае максимально улавливаются лучи, когда солнце находится в зените;

· листовая пластинка ориентирована параллельно солнечным лучам, т. е. расположена более или менее вертикально, в результате растение лучше усваивает солнечные лучи в утреннее и предвечернее время;

· листовые пластинки расположены по побегу диффузно, как у кукурузы, - то вертикально, то горизонтально, поэтому солнечная радиация улавливается достаточно полно в течение всего светового дня.

Имеющиеся научные данные позволяют считать, что растения высоких широт, где преобладает низкое солнцестояние, чаще имеют вертикальную ориентацию листьев. При организации смешанных посевов, например кормовых трав, нужно обязательно учитывать структуру побегов компонентов посевов. Удачное сочетание кормовых трав с разной ориентацией листьев обеспечит больший урожай фитомассы.

Как уже отмечалось, в зависимости от недостатка или избытка освещенности многие растения способны размещать листья в плоскостях, перпендикулярной и параллельной направлению солнечных лучей, образуя так называемую листовую мозаику. Листовая мозаика образуется в результате рационального размещения неодинаковых по величине не только листовых пластинок, но и черешков. Типичную листовую мозаику можно наблюдать в фитоценозах с участием клена остролистного, липы мелколистной (Tilia cordata), вяза гладкого (Ulmus laevis), ильма горного (Ulmus glabra) и других древесных пород. Четко прослеживается листовая мозаика у многих растений с горизонтальным размещением ветвей, например у плюща обыкновенного (Hedera helix) и многих травянистых растений (рис. 13).

Рис. 13. Листовая мозаика у плюща (Hedera helix)

Компасные растения явно избегают сильного освещения. Их листовая пластинка расположена не перпендикулярно солнечным лучам, как у розеточных растений, а параллельно, как у эвкалиптов или у латука дикого (Lactuca serrtola), что предохраняет листья от перегрева в условиях избыточной солнечной радиации. Тем самым обеспечивается и благоприятное прохождение фотосинтеза и транспирации.

Существует целый ряд других адаптивных приспособлений, как структурных, так и физиологических. Иногда подобные приспособления носят явно сезонный характер, что хорошо иллюстрирует, например, сныть обыкновенная (Aegopodium podagrata). В типичном местообитании (дубравы) на растении в течение вегетационного периода формируются два "поколения" листьев. Весной, когда почки деревьев еще не распустились и полог леса пропускает много света, образуется листовая розетка, ее листья по структуре (микро- и макроскопической) явно световые.

Позднее, когда развивается густой полог леса и до поверхности почвы доходит лишь 3…4 % лучистой энергии, появляется второе "поколение" листьев, явно теневых. Нередко у одного отдельно взятого растения можно наблюдать одновременно световые и теневые листья. Листья нижних ярусов кроны шелковицы черной (Morus nigra) крупные, лопастные, тогда как верхние ярусы кроны несут световые листья - более мелкие, лишенные лопастей. У лесообразующих пород подобным же образом формируется периферия кроны: в верхних ярусах - световые листья, внутри кроны - теневые.

Температура

Жизнедеятельность любого вида протекает в определенных интервалах температур. При этом прослеживаются зоны оптимума, минимума и максимума. В зоне минимума или максимума происходит затухание деятельности организма. В первом случае низкие температуры (холод), а во втором - высокие (жара) приводят к нарушению его жизненных процессов. За пределами крайних температур лежит летальная зона, в которой наступает необратимый процесс отмирания растения. Следовательно, температуры определяют границы жизни.

Вследствие неподвижного образа жизни высшие растения выработали большую выносливость к суточным и сезонным (годовым) колебаниям температур. Многие лесообразующие породы нашей тайги - сосна сибирская, лиственница даурская (Larix dahurica) и др. - выдерживают понижения температуры до - 50 °С и ниже и летнее тепло до 25 °С и выше. Годовая амплитуда достигает 75 °С, а иногда 85...90 °С. Виды растений, выдерживающие большие перепады температур, называют эвритермными (от греч. eurys + therme - тепло) в отличие от стенотермных.

Дифференциация тепла на нашей планете - основа широтной зональности и высотной поясности растительности и почв. Вследствие уменьшения от экватора к полюсам высоты солнцестояния и угла падения лучей изменяется количество тепла. Так, среднегодовая температура около экватора составляет 26,2 °С, возле 30 °с. ш. она уже равна 20,3 °С, а при 60° с. ш. снижается до - 1 °С.

Помимо среднегодовой температуры данной местности, важное значение в жизни организмов имеют наиболее высокая и наиболее низкая температуры (абсолютный максимум и абсолютный минимум), наблюдаемые в данной климатической зоне, а также средняя температура самого теплого и самого холодного месяца. Так, продолжительность вегетационного периода в тундре (т. е. выше 70° с. ш.) составляет всего полтора - два с половиной месяца при средней температуре 10...12 °С.

Тайга, иначе зона хвойных лесов, имеет вегетационный период три - пять месяцев, среднюю температуру 14.. Л6 °С. В южной части зоны, где преобладают хвойно-широколиственные леса, вегетация длится четыре-пять месяцев, средняя температура составляет 15... 16 °С. В зоне широколиственных лесов (40...50° с. ш.) вегетационный период - пять-шесть месяцев, средняя температура 16...18 °С. Резким контрастом описанным зонам выступает зона дождевых тропических лесов (0...15° с. и ю. ш.). Вегетационный период здесь круглогодичный со средней температурой 25...28 °С и часто не дифференцирован на сезоны. Исключительно важная особенность тропических районов в том, что разница между средними температурами самого теплого и самого холодного месяца менее контрастна, чем суточные колебания.

Рост растений непосредственно связан с температурным фактором. Зависимость отдельных видов от температуры колеблется в широких пределах. Четко различаются термофильные (от греч. therme + philia - любовь) растения и их антиподы - холодовыносливые, или криофильные (от греч. kryos - холод). А. Декандоль (1885) выделял группы гекистотермных, микротермных, мезотермных и мегатермных растений (от греч. gekisto - холод, mikros - малый, mesos - средний, megas - большой).

Перечисленные группы растений по отношению к температуре - комплексные, при их выделении учитывают и отношение растений к влаге. Дополнением к данной классификации можно считать выделение растений криофитов и психрофитов (от греч. psychros - холод + phyton) - гекистотермов и частично микротермов, требующих различных режимов увлажнения. Криофиты произрастают в холодных сухих условиях, а психрофиты - это холодостойкие растения влажных почв.

Не менее наглядно влияние температур на распространение отдельных видов растений и их группировок. Давно уже установлена связь географического распространения отдельных видов с изотермами. Как известно, виноград созревает в пределах изотермы со средней температурой в течение шести месяцев (апрель - сентябрь) 15 °С. Распространение дуба черешчатого на север ограничено годовой изотермой 3 °С; северная граница плодоношения финиковой пальмы совпадает с годовой изотермой 18... 19 °С.

В целом ряде случаев распространение растений обусловлено не только температурами. Так, изотерма 10 °С проходит с запада на восток через Ирландию, Германию (Карлсруэ), Австрию (Вена), Украину (Одесса). Названные местности имеют достаточно различный видовой состав природного растительного покрова и представляют возможность интродукции и возделывания разнообразного набора культур. В Ирландии часто не вызревают зерновые культуры. В Германии и Ирландии не вызревают многие тыквенные (арбузы - Citrullus vulgaris, дыни), хотя в открытом грунте произрастают камелии (Camella) и пальмы. В Карлсруэ в открытом грунте растут плющ и падуб (Ilex ), иногда вызревает и виноград. В районе Одессы возделывают дыни и арбузы, но плющ и камелии не выдерживают низких температур зимы. Таких примеров можно привести много.

Таким образом, средние температуры в отрыве от других факторов среды не могут служить надежным показателем (индикатором) возможности интродукции и возделывания интересующей нас культуры. Суть в том, что разные виды растений характеризуются неодинаковой продолжительностью вегетационного периода. Поэтому в отношении температуры необходимо учитывать как продолжительность периода благоприятных температур для нормального развития растений, так и время наступления и продолжительность действия минимальных температур (то же в отношении максимальных).

В экологической и растениеводческой литературе для оценки тепловых ресурсов вегетационного периода широко используют сумму активных температур. Она служит хорошим показателем при оценке потребности растений в тепле и дает возможность определить район возделывания той или иной сельскохозяйственной культуры. Сумма активных температур состоит из суммы положительных среднесуточных температур за период, когда она выше 10 °С. В районах, где сумма активных температур равна 1000...1400 °С, можно возделывать ранние сорта картофеля, корнеплоды; где эта сумма достигает 1400...2200 °С, - хлебные злаки, картофель, лен и др.; сумма активных температур 2200...3500 °С соответствует зоне интенсивного плодоводства; при сумме этих температур более 4000 °С успешно возделывание субтропических многолетников.

Организмы, жизнедеятельность которых и температура тела зависят от тепла, поступающего из окружающей среды, называют пойкилотермными (от греч. poikilos - различный). К ним относят все растения, микроорганизмы, беспозвоночных животных и некоторые группы хордовых. Температура тела пойкилотермных организмов зависит от внешней среды. Вот почему экологическая роль тепла в жизни всех систематических групп растений и названных групп животных имеет первостепенное значение. Высокоорганизованных животных (птиц и млекопитающих) относят к группе гомойотермных (от греч. homoios - одинаковый), у которых температура тела постоянная, поскольку поддерживается за счет собственного тепла.

Известно, что протопласт клеток живых организмов способен нормально функционировать в интервале температур 0...50 °С. Только организмы, которые имеют специальные приспособления, могут выдерживать указанные экстремальные температуры в течение длительного времени. Физиологи установили оптимальные и критические температуры дыхания и других функций. Оказывается, нижний предел температуры дыхания у зимующих органов (почки, хвоя) - 20... - 25 °С. При повышении температуры интенсивность дыхания возрастает. Температуры свыше 50 °С разрушают белково-липидный комплекс поверхностного слоя цитоплазмы, что приводит к потере клетками осмотических свойств.

В некоторых районах России периодически наблюдается массовая гибель растений от слишком низких температур. Катастрофическое действие последних в наибольшей степени сказывается в малоснежные зимы преимущественно на озимых хлебах. Губительны и внезапные похолодания весной, когда растения трогаются в рост (поздневесенние заморозки). Нередко от холода гибнут не только интродуцированные вечнозеленые древесные, например цитрусовые, но и листопадные растения. Н. Максимов, изучая механизм действия низких температур, пришел к выводу, что причина гибели растений объясняется обезвоживанием цитоплазмы. В межклетниках ткани происходит кристаллизация воды. Кристаллы льда оттягивают воду из клеток и механически повреждают органеллы клеток. Критический момент наступает именно с появлением кристаллов льда внутри клеток.

Выделены природные группы морозоустойчивых растений. К ним можно отнести хвойные вечнозеленые деревья и кустарники, а также бруснику (Vaccinium vitis-idea) , вереск и др. Среди травянистых многолетников также выявлено немало морозоустойчивых растений, способных переживать суровую зиму. В период зимнего покоя растения могут выдерживать очень низкие температуры. Так, побеги смородины черной (Ribes nigrum) при медленном снижении температуры до - 253 °С (температура, близкая к абсолютному нулю) могут сохранять жизнеспособность.

Большинство видов растений характеризуются индивидуальными реакциями на температуру. Так, весной прорастание зерновок ржи начинается при 1...2 °С, семян клевера лугового (Trifolium pratense) - при 1 °С, люпина желтого (Lupinus luteus) - при 4...5, риса - при 10...12 °С. Оптимальные температуры для вызревания семян этих культур составляют соответственно 25, 30, 28, 30...32 °С.

Для нормального роста и развития растений необходима соответствующая температура окружающей среды для надземных и подземных органов. Например, лен нормально развивается при температуре корня примерно в два раза ниже (10 °С), чем надземных органов (22 °С). В ходе онтогенеза потребность растений в тепле заметно меняется. Значительно варьирует температура органов тела растения и в зависимости от местонахождения (почва, воздух) и ориентировки по отношению к солнечным лучам (рис. 14). Экспериментально установлено, что прорастание семян рапса (Brassica napus), сурепицы (В. campestrts), пшеницы, овса, ячменя, клевера, люцерны и других растений наблюдается при температуре 0...2 °С, тоща как для появления всходов требуются более высокие температуры (3...5 °С).


Рис. 14. Температура (°С) разных органов растений: А - новосиверсии (Novosiversia glacialis), по Б. Тихомирову; Б - пролески сибирской (Scilla sibiriati , по Т. Горышиной, а - подстилка, б - почва

На многих видах континентальных растений благоприятно сказывается суточный термопериодизм, когда амплитуда ночных и дневных температур составляет 5... 15° С. Суть его заключается в том, что многие растения более успешно развиваются при пониженных ночных температурах. Например, томаты лучше развиваются, если дневная температура воздуха достигает 26° С, а ночная температура 17...18° С. Опытные данные свидетельствуют также, что растениям умеренных широт для нормального онтогенетического развития необходимы также осенние пониженные температуры - сезонный термопериодизм.

Температурный фактор влияет на растения на всех этапах их роста и развития. Причем в разные периоды каждый вид растений нуждается в определенных температурных условиях. Для большинства однолетних растений, например ячменя, овса и других, прослеживается общая закономерность: на ранних этапах развития температура должна быть ниже, чем на более поздних.

Мегатермные растения тропического происхождения, например сахарный тростник (Saccharum officinarum), нуждаются в высоких температурах в течение всей жизни. Наибольшей выносливостью к сверхвысоким температурам отличаются растения жарких и сухих районов - эуксерофиты, а также многие суккуленты, например Кактусовые и Толстянковые (Crassulaceae). Это свойственно и растениям засоленных, особенно сульфидами и хлоридами, почв. Указанные виды, как показал еще X. Люденгорд (1925, 1937), сохраняют жизнеспособность даже при 70 °С. Хорошо переносят высокие температуры сильно обезвоженные семена и плоды. Именно на данном свойстве основан известный метод борьбы с возбудителем пыльной головни пшеницы (Ustilago trtttci). При термообработке пораженных семян гриб, будучи стенотермным, погибает, тоща как зародыш зерновки остается жизнеспособным.

Труднее решить вопрос о влиянии температуры на изменение структуры самого растения, его морфологию. Наблюдения в природе и экспериментальные сведения дают различные объяснения. В самом деле, такое приспособление, как сильное опушение почечных чешуи и листьев, представляется комплексным, оно служит защитой не только от яркого света, но и от высоких температур, а также от излишнего испарения влаги. Яркий блеск глянцевитых листьев, параллельное расположение листовой пластинки к солнечным лучам, войлочное опушение - все это, несомненно, предотвращает перегрев листа, а также излишнюю транспирацию.

Основатель экологии растений Е. Варминг (1895) наглядно продемонстрировал влияние температуры на формирование приземистых и розеточных форм растений в Арктике и в высокогорьях альпийского и субнивального поясов, т. е. у самой границы вечных снегов. Речь идет не только о травянистых бесстебельных, розеточных вроде девясила корнеглавого (Inula rhizocephala) , но и о древесных жизненных формах - березе карликовой, можжевельнике туркестанском (Juniperus turcestanica) , кедровом стланике и пр. Стелющиеся и подушечные формы растений, например минуартия арктическая (Minuartia arctica), наиболее приспособлены к условиям жизни у самой поверхности почвы под прикрытием снежного покрова. Когда снега нет, в припочвенном слое воздуха на высоте до 15...20 см сохраняется наиболее высокая температура и сила ветра минимальна. К тому же внутри "подушки", формируемой растением, создается особый микроклимат, и колебания температур здесь гораздо менее выражены, чем вне ее. На развитие приземистых форм температурный фактор может действовать и непосредственно, и косвенно - вследствие нарушения водоснабжения и минерального питания.

Наиболее велика роль прямого влияния температур в процессе геофилизации растений. Под геофилизацией понимают погружение нижней (базальной) части растения в почву (сначала гипокотиля, затем эпикотиля, первого междоузлия и т. д.). Данный феномен свойствен преимущественно покрытосеменным растениям. Именно в ходе их исторического развития геофилизация играла видную роль в трансформации жизненных форм от деревьев до трав. С погружением в почву основания побегов интенсивно развивается система придаточных корней, корневищ, столонов и других органов вегетативного размножения. Геофилизация была необходимой предпосылкой появления разнообразных подземных органов растений, особенно органов вегетативного размножения. Указанное дало покрытосеменным большие преимущества в борьбе за существование, за господство на континентах Земли.

В онтогенезе многих покрытосеменных геофилизация растений осуществляется при помощи особых втягивающих (контрактильных) корней. Интересные экспериментальные исследования по геофилизации провел П. Лисицын. Он выяснил, что втягивание в почву базальной части растения распространено гораздо шире, чем ранее предполагалось (рис. 15). У озимых сельскохозяйственных культур геофилизация улучшает условия зимовки, у яровых, например гречихи, - условия водоснабжения.

Рис. 15. Геофилизация (втягивание в почву) подсемядольного колена клевера лугового (Trifolium pratense), по П. Лисицину: а - поверхность почвы; б - глубина втягивания

Вода

Все процессы жизнедеятельности на уровнях клетки, ткани, организма немыслимы без достаточного водоснабжения. Органы растении обычно содержат 50...90 % воды, а иноща и больше. Вода - обязательный компонент живой клетки. Обезвоживание организма влечет замедление, а затем и прекращение жизненного процесса. Максимальное обезвоживание при сохранении жизни и обратимости нормальных жизненных процессов наблюдается в спорах и семенах. Здесь содержание воды падает соответственно до 10 и 12 %. Холодоустойчивость, равно как и жароустойчивость растений, зависит от количества находящейся в них воды. С водой связано и почвенное питание растений (поступление и транспортирование азотистых и других минеральных веществ), фотосинтез, ферментные процессы. Продукты метаболизма растворяются и транспортируются в теле растения также при помощи воды.

Вода - одно из необходимых условий формирования растительной массы. Установлено, что 99,5 % воды, транспортируемой от корневой системы к листьям, поддерживает тургор и только 0,5 % ее тратится на синтез органического вещества. Для получения 1 г сухой растительной массы требуется 250...400 г воды и более. Соотношение вышеуказанных значений составляет транспирационный коэффициент. У разных видов и даже сортов растений этот показатель существенно различается. Существует закономерность: величина транспирационного коэффициента прямо пропорциональна сухости климата. Поэтому один и тот же сорт может иметь неодинаковый транспирационный коэффициент при выращивании в разных эколого-географических условиях.

Оптимум водного режима наблюдается в случаях, когда испарение воды в атмосферу не превышает поступления ее в тело растения из почвы. В ходе онтогенеза наступает этап, когда снабжение водой определяет все последующее развитие растения и урожай. У многих культивируемых растений эти фазы развития хорошо изучены. Критический этап развития у злаков - формирование цветков и соцветий. При неблагоприятных условиях водоснабжения часть бугорков конуса нарастания дегенерирует. Поскольку данный процесс необратим, формируются укороченные, слабоветвистые соцветия, содержащие мало цветков, а следовательно, и зерновок.

На протяжении миллионов лет непрерывной эволюции организмы приспосабливались к различным условиям жизни. Растения аридных районов, где климат исключительно сухой, имеют ярко выраженные ксероморфные (от греч. xeros - сухой, morphe - форма) признаки. Они позволяют снижать потерю влаги, которая в основном происходит в результате транспирации через устьичный аппарат, а также через водяные устьица (явление гуттации - от лат. gutta - капля). Значительный расход влаги происходит и через клетки эпидермы (кутикулярное испарение). Гуттация хорошо выражена у проростков злаков, картофеля, гречихи, у многих комнатных растений, например у алоказии (Alocasia macrorhiza) и др. Наиболее распространена гуттация у растений влажных тропиков и субтропиков.

Растения засушливых условий имеют разнообразные приспособления, предупреждающие потерю воды. У многих злаков листья свернуты в трубку, так что устьица оказываются внутри. Листья ксероморфных растений часто имеют толстый восковой налет или волоски. Органы транспирации (устьичный аппарат) у таких растений погружены в мезофилл, часто наблюдается у них редукция листьев до чешуек или превращение в колючки и шипы. При сильной редукции листьев функцию фотосинтеза берет на себя стебель. Многие сельскохозяйственные культуры, как травянистые, так и древесные, реагируют на нехватку почвенной влаги и подземных вод быстрым развертыванием корневой системы.

Водный баланс растения определяется разностью между поглощением и расходованием воды организмом. На водный баланс влияет целая серия условий среды: влажность воздуха, сумма и распределение осадков, обилие и высота стояния подземных вод, направление и сила ветра.

Расход воды растениями в значительной мере определяется относительной влажностью воздуха. В более влажном климате при прочих равных условиях растения расходуют меньше влаги на образование сухого вещества. В умеренной зоне продуктивность транспирации составляет около 3 г сухих веществ при расходе 1 л воды, С возрастанием влажности воздуха в семенах, плодах и других органах растений содержится меньше белков, углеводов и минеральных элементов. Кроме того, уменьшается синтез хлорофилла в листьях и стеблях, однако одновременно усиливается рост и тормозятся процессы старения. При высоком насыщении воздуха водяными парами хлеба созревают очень медленно, а иногда не дозревают вовсе. Влажность воздуха оказывает большое влияние на количество и качество урожая, работу сельскохозяйственных машин. При высокой влажности воздуха возрастают потери урожая при обмолоте и уборке, а также замедляются процессы послеуборочного дозревания семян, что снижает в конечном счете их сохранность.

В зависимости от отношения к влаге растения разделяют на две экологические группы: пойкилогидридные и гомойгидридные. Первые не имеют специальных механизмов для регулирования гидратуры (обводненности) своего тела; по характеру потери влаги они практически не отличаются от мокрой хлопчатобумажной ткани. К пойкилогидридным относят низшие растения, мхи, многие папоротники. Абсолютное большинство семенных растений гомойгидридны и имеют специальные механизмы (устьичные аппараты, трихомы на листьях и т. д.) для регулирования внутреннего водного режима. Пойкилогидридность среди покрытосеменных крайне редка и имеет, скорее всего, вторичное происхождение, т. е. является своеобразной адаптацией к ксерическому режиму. Редким примером пойкилогидридного покрытосеменного растения служит пустынная осока вздутая, или илак (Carex physoides).

Гомойгидридные растения по характерному для них водному режиму подразделяют на гидрофиты, гелофиты, гигрофиты, мезофиты, ксерофиты, ультраксерофиты.

Гидрофиты (от греч. hydor - вода + phyton) - водные растения, свободно плавающие или укореняющиеся на дне водоема или полностью погруженные в воду (иногда с плавающими на поверхности листьями или выставленными над водой соцветиями). Поглощение воды и минеральных солей осуществляется всей поверхностью растения. У плавающих гидрофитов корневая система сильно редуцирована и иногда теряет свои функции (например, у рясок). Мезофилл подводных листьев не дифференцирован, отсутствуют кутикула и устьица". Примерами гидрофитов служат валлиснерия (Vallisneria spiralis), элодея канадская (Elodea canadensis), рдест плавающий (Potamogeton natans) , альдрованда пузырчатая (Aldrovanda vesiculosa), кувшинка белая (Nymphaea alba), кубышка желтая (Nuphar luteum) и др. Для перечисленных видов характерны сильное развитие воздухоносной ткани - аэренхимы, большое количество устьиц у плавающих листьев, слабое развитие механических тканей, иногда разнолистность.

Гелофиты (от греч. helos - болото) - водно-наземные растения, растущие как в воде на мелководьях, так и по переувлажненным берегам рек, водоемов; могут обитать и на обильно увлажненной почве в удалении от водоемов. Встречаются только в условиях постоянного и обильного водоснабжения. К гелофитам относят тростник обыкновенный; частуху подорожниковую (Alisma plantago-aquaucd), стрелолист стрелолистный (Saggitaria sagittifolia), сусак зонтичный (Butomus umbellatus) и др. Гелофиты могут выдерживать недостаток кислорода в почве.

Гигрофиты (от греч. hygros - влажный) - наземные растения, произрастающие в условиях повышенной влажности почвы и воздуха. Они характеризуются насыщенностью тканей водой до 80 % и выше, наличием водяных устьиц. Различают две экологические группы гигрофитов:

· теневые, произрастающие под пологом сырых лесов в разных климатических зонах, для них характерны водяные устьица - гидатоды, позволяющие поглощать воду из почвы и транспортировать минеральные элементы, даже если воздух насыщен водяными парами; к теневым гигрофитам относят недотрогу обыкновенную (Impattens noli-tangere) , цирцею парижскую (Circaea lutetiana) , кислицу обыкновенную;

· световые, произрастающие на открытых местообитаниях, вде почва и воздух постоянно влажные; к ним относят папирус (Cyperus papyrus), росянку круглолистную (Drosera rotundifolia) , подмаренник болотный (Galium palustre), рис посевной, калужницу болотную (Caltha palustrts).

Для гигрофитов характерна слабая приспособленность к регуляции обводненности тканей, поэтому сорванные растения данной группы очень быстро вянут. Таким образом, гигрофиты из наземных гомойгидридных растений наиболее близки к пойкилогидридным формам. Гидрофиты, гелофиты и гигрофиты имеют положительный водный баланс.

Мезофиты (от греч. mesos - средний) - растения, приспособленные к жизни в условиях среднего водоснабжения. Они проявляют высокую жизнеспособность в условиях умеренно теплого режима и средней обеспеченности минеральным питанием. Могут переносить непродолжительную не очень сильную засуху. К указанной группе принадлежит подавляющее большинство возделываемых культур, а также растения лесов и лугов. Вместе с тем мезофиты настолько разнообразны по морфофизиологической организации и приспособленности к различным местообитаниям, что им трудно дать общее определение. Они составляют разнообразную гамму промежуточных растений между гигрофитами и ксерофитами. В зависимости от распространения в различных климатических зонах А. Шенников (1950) выделил следующие пять групп мезофитов: вечнозеленые мезрфиты влажных тропических лесов - деревья и кустарники [*] , вегетирующие круглый год без резко выраженного сезонного перерыва; для них характерны крупные листья с гидатодами, часто такие листья имеют на конце острие, отводящее воду; кожистость, пониклость и расчлененность листьев обеспечивают их сохранность во время дождей (филодендрон - Philodendron, фикус - Ficus elastica и др.); верхние широкие и плотные листья растений группы адаптированы к яркому освещению, им свойственна толстая кутикула, хорошо выраженная столбчатая паренхима, достаточно развитые проводящая система и механические ткани;

зимне-зеленые деревянистые мезофиты, или тропофиты (от греч. tropos - поворот), - также преимущественно виды тропической и субтропической зон, но распространенные не в дождевых лесах, а в саваннах; сбрасывают листву и впадают в состояние покоя во время сухого летнего периода; имеют хорошо выраженные покровные комплексы - перидерму и корку; типичный представитель - баобаб;

летне-зеленые деревянистые мезофиты - растения умеренного климата, деревья и кустарники, сбрасывающие листья и впадающие в состояние покоя в холодный период года; к ним относят большинство листопадных деревьев холодной и умеренной зон; опадение листвы зимой служит приспособлением к уменьшению испарения в холодные месяцы, когда всасывание воды из почвы затруднено; большое значение для данной подгруппы мезофитов имеют покровные комплексы (перидерма и корка), а также приспособления для защиты почек от потери воды; все же зимой растения теряют значительное количество влаги; испарение идет главным образом через слабозащищенные листовые рубцы и почки;

летне-зеленые травянистые многолетние мезофиты - растения умеренного климата, надземные части которых обычно отмирают на зиму, за исключением защищенных почек возобновления; очень обширная группа; наиболее типичные представители - многолетние луговые травы (тимофеевка луговая - Phleum pratense, клевер луговой и др.) и лесные травы (ясменник душистый - Asperula odorata, копытень европейский и др.); для листьев характерен дифференцированный мезофилл, хотя у лесных растений (сциофитов и гемисциофитов) палисадная ткань часто не выражена; проводящие элементы развиты умеренно; эпидерма тонкая, кутикула имеется не всегда; механические ткани развиты в средней степени или слабо;

эфемеры и эфемероиды (от греч. ephemeros - однодневный) - однолетние (эфемеры) и дву- или многолетние (эфемероиды) растения, которые в засушливых условиях вегетируют короткий влажный период, в сухой сезон переходят в состояние покоя; например, растения пустынь и сухих степей: эфемеры - веснянка весенняя, бурачок маленький (Alissum minutum) и др.; эфемероиды - мятлик живородящий, или курчавый (Роа bulbosa subsp. vMparum) различные виды тюльпанов (Tulipa) , гусиных луков (Gagea), ирисов (Iris), ферул (Ferula) и др.; характерно отсутствие структурных адаптации к недостатку влаги, но семена способны переносить сильное высыхание и высокие температуры; луковичным и клубнелуковичным эфемероидам свойственны контрактильные (втягивающие) корни, обеспечивающие втягивание почки возобновления под почву на неблагоприятный период.

Необходимо отметить, что не все ученые согласны с отнесением пустынных эфемеров и эфемероидов к группе мезофитов и причисляют их к ксерофитам (понимая последний термин очень широко).

Ксерофиты (от греч. xeros) - растения, приспособленные к жизни в условиях низкого водоснабжения. Переносят почвенную и атмосферную засуху, так как имеют разнообразные приспособления для жизни в условиях жаркого климата при очень малом количестве осадков. Важнейшая особенность ксерофитов - формирование морфофизиологических адаптации к губительному действию атмосферной и почвенной засухи. В большинстве случаев ксерофиты имеют приспособления, ограничивающие транспирацию: безлистность, мелколистность, летний листопад, опушение. Многие из них способны длительное время выдерживать довольно сильное обезвоживание, сохраняя жизнеспособность. На рисунке 12 был показан лист с приспособлениями, ограничивающими испарение.

В зависимости от структурных особенностей органов и тканей, способов регулирования водного режима различают следующие три типа ксерофитов.

Первый тип - эуксерофиты (от греч. еu - настоящий) , или склерофиты (от греч. skleros - твердый), или собственно ксерофиты; по внешнему виду это суховатые, жесткие растения. Даже в период полного обеспечения водой обводненность их тканей мала. Склерофиты отличаются высокой устойчивостью к завяданию - могут без заметного вреда для себя терять до 25 % влаги. Их цитоплазма остается живой при столь сильном обезвоживании, которое было бы губительно для других растений. Еще одна особенность эуксерофитов - повышенное осмотическое давление клеточного сока, позволяющее значительно увеличивать сосущую силу корней.

Прежде считали, что интенсивность транспирации склерофитов, как и других ксерофитов, очень мала, однако работы Н. Максимова (1926, 1944) показали, что при благоприятных условиях водоснабжения эти растения транспирируют более интенсивно, чем мезофиты, особенно в пересчете на единицу поверхностного листа. И. Культиасов (1982) подчеркивал, что, по-видимому, основная особенность ксерофитов в их высокой засухоустойчивости, зависящей от свойств цитоплазмы, а также в способности эффективно использовать влагу после дождя. Характерная "склерофитная" морфология (мощное развитие механических и покровных тканей, мелколистность и др.) имеет защитное значение при затруднениях в водоснабжении.

Корневая система у эуксерофитов очень разветвленная, но неглубокая (менее 1 м). К рассматриваемой группе относят много растений наших степей, полупустынь и пустынь: полыни (белоземельная Artemisia terrae-albae, Лерха - А lerchlana и др.), веронику седую (Veronica incana) и др.

Д. Колпинов (1957) выделил из эуксерофитов особую группу - стипаксерофиты (от лат. stipa - ковыль). В нее входят узколистные злаки типа ковылей, типчака (Festuca valesiaca). Растения группы отличаются мощной корневой системой, использующей влагу кратковременных ливней. Стипаксерофиты чувствительны к обезвоживанию и переносят только кратковременный недостаток влаги.

Второй тип ксерофитов - гемиксерофиты (от греч. hemi - наполовину) имеют глубокую корневую систему, достигающую уровня грунтовых вод (до 10 м и более), т. е. являются фреатофитами (см. ниже).

Третий тип ксерофитов - суккуленты (от лат. succulentus - сочный) в отличие от ксерофитов описанных выше типов имеют хорошо развитую водозапасающую паренхимную ткань. В зависимости от ее дислокации различают листовые и стеблевые суккуленты. Примерами первых служат агавы (Agava), алоэ (Aloe), очитки (Sedum) и др. У стеблевых суккулентов листья обычно редуцированы, и воду эти виды запасают в стеблях (кактусы и кактусовидные молочаи).

Корневая система суккулентов обычно поверхностная. Они отличаются способностью запасать воду, когда она в окружающей среде находится в избытке, длительно удерживать и экономно расходовать ее. Транспирация у суккулентов чрезвычайно мала. Для ее сокращения у растений существует ряд приспособительных черт в строении, в том числе своеобразие форм надземных частей, демонстрирующих "знание" законов геометрии. Известно, что у сферических тел (особенно у шара) наименьшее отношение поверхности к объему. Утолщение листьев и стеблей, т. е. приближение их к шаровидной или цилиндрической форме, - способ сокращения транспирирующей поверхности при сохранении необходимой массы. У многих суккулентов эпидерма защищена кутикулой, восковым налетом, опушением. Устьица немногочисленны и днем обычно закрыты. Последнее обстоятельство создает затруднения для фотосинтеза, поскольку поглощение диоксида углерода этими растениями может идти в основном ночью: доступ СO 2 и света не совпадает во времени. Поэтому у суккулентов выработался особый путь фотосинтеза - так называемый "САМ-путъ", при котором источником СО 2 частично служат продукты дыхания.

Реакция корневой системы на водоснабжение хорошо изучена у культивируемых растений. На рисунке 16 показана глубина проникновения в почву корневой системы озимой пшеницы при различном количестве осадков.


Рис. 16. Корневая система озимой пшеницы (род Triticum):
1 - при большом количестве осадков; 2 - при среднем; 3 - при малом

Существует особая классификация экологических групп растений с учетом использования ими грунтовой влаги, т. е. по источникам поглощения влаги из субстрата. В ней выделяют фреатофиты (от греч. phreatos - колодец) - растения, корневая система которых постоянно связана с водоносными горизонтами почв и материнских почвообразующих пород, омброфиты (от греч. ombros - дождь) - растения, питающиеся влагой атмосферных осадков, и трихогидрофиты (от греч. trichos - волос) - растения, связанные с капиллярной каймой грунтовых вод, находящихся в состоянии постоянной подвижности. Среди фреатофитов выделяют облигатные и факультативные; последние довольно близки к трихогидрофитам. Для фреатофитов характерно развитие глубоко проникающих подземных органов; у верблюжьей колючки (Alchagi) - до 15 м, у древовидных форм черного саксаула (Haloxylon aphyllum) - до 25, у среднеазиатских тамариксов (Tamarix) - 7, у тамариксов Северной Африки - до 30, у люцерны посевной (Medicago sativa) - до 15 м. Омброфиты имеют неглубоко залегающую, но сильно разветвленную систему подземных органов, способную поглощать атмосферную влагу в большом объеме почвы. Типичные представители группы - эфемеры и эфемероиды пустынь. Для трихогидрофитов характерна корневая система универсального типа, в ней сочетаются черты фреатофитов и омброфитов. Фреатофиты и трихогигрофиты часто относят к группе гемиксерофитов.

Водоснабжение растений осуществляется из двух источников: осадков и грунтовых вод. Из атмосферных осадков важнейшую роль играют дождь и снег. Град, роса, туман, иней, ожеледь занимают более скромную долю в водном балансе растений. Атмосферные осадки для растений - не только источник водоснабжения. Твердые атмосферные осадки, образуя снежный покров, предохраняют почву, а следовательно, надземные и подземные органы растений от низких температур. Снежный покров в экологическом плане существенно влияет на среду обитания растений и животных - создает запас почвенной влаги, существенно понижает испарение влаги растениями. Важное значение для сельскохозяйственных растений, а также для продуктивности пастбищ и сенокосов имеют распределение осадков по сезонам, их форма, сумма и интенсивность выпадения.

Дожди, которые дают большое количество осадков в короткое время (более 1…2 мм/мин), называют ливневыми, или ливнями. Ливни обычно сопровождаются сильными ветрами и оказывают негативное влияние на сельскохозяйственные угодья. Самое большое количество осадков на Кавказе и в s Восточной Европе вообще (до 2500 мм в год) и ливневых дождей в частности приходится на Черноморское побережье Кавказа - Аджарию и Абхазию. Однако сильные ливни (свыше 5 мм/мин) зарегистрированы и на Украине. В целом же с продвижением на север внутри континента количество осадков сначала повышается, достигая максимума в умеренной зоне, а затем снижается (не распространяется на приморские районы); есть закономерность в изменении и других климатических показателей (рис. 17).

Большие различия (рис. 18) по количеству осадков между отдельными регионами Земли наряду с температурным режимом создают пестроту экологических условий на планете. Самые влажные районы располагаются в верхнем течении р. Амазонки, на о-вах Малайского архипелага.

Рис. 17. Схематичный профиль европейской части России с севера на юг, по Г. Высоцкому


Рис. 18. Годовое распределение осадков по континентам

В зоне умеренного климата в местах, где наблюдаются частые оттепели, прослеживается гибель озимых от ледяной корки. После оттепелей талая снеговая вода, скопившаяся на полях в микропонижениях, замерзает и покрывает озимые культуры ледяной коркой. При этом происходит механическое давление льда, особенно губительно действующее на зоны кущения, одновременно ощущается недостаток кислорода.

Толщина и плотность снежного покрова имеют важное значение для сельского, лесного, водного хозяйства. Рыхлый снег лучше защищает от охлаждения зимующие в почве растения. Плотность снега наименьшая при образовании снежного покрова, затем она постоянно возрастает и наибольшей становится в период таяния снега. Поэтому к весне защитное действие снежного покрова снижается. Части растений, не укрытые снегом, особенно в холодную и ветреную зиму, быстро теряют влагу и погибают. При температуре воздуха - 21 °С под снегом на поверхности почвы она составляет всего - 5 °С. Если снег выпадает рано и достаточно толстым слоем покрывает почву, она не промерзает, растения нормально растут и развиваются. Бывают зимы, когда под снежным покровом можно найти цветущие шафраны (род Crocus), любку двулистную (Platanthera bifolia) и другие растения.

В условиях суровой зимы высоких северных широт, а также в горах вырабатываются особые шпалерная и стланиковая формы одревесневающих растений. Даже крупноствольные деревья лесной зоны - ель сибирская, лиственница сибирская и другие - в условиях арктического климата трансформируются в стелющиеся формы.

Атмосферный воздух

Экологическое значение атмосферных осадков в жизни растений проявляется также в участии их как растворителя в подкормке минеральными веществами нижних ярусов древесных и травянистых растений. Во время дождя падающие капли насыщаются в воздухе летучими и парообразными веществами, последние вместе с каплей попадают на органы растений и поверхность почвы. Наряду с веществами, вымытыми из крон деревьев, и поглощаемыми летучими соединениями, выделяемыми растениями, в атмосферных осадках растворяются и смешиваются летучие и парообразные вещества, которые образуются в результате антропогенной деятельности, а также продукты жизнедеятельности почвенной микрофлоры.

Травянистые растения для данных экосистем нехарактерны, a эпифиты тропического леса относятся к подгруппам ксеромезофитов или гигромезофитов. Особенности их дислокации в кронах деревьев определяются микроклиматическими условиями.

Покрывающий Землю мощный слой воздуха (атмосфера) защищает живые организмы от мощного ультрафиолетового излучения и космической радиации, предотвращает резкие колебания температуры. Экологически не менее важны газовый состав атмосферы и перемещение воздушных масс (ветер и конвекционные потоки).

При характеристике газового состава воздуха обычно подчеркивают его постоянство. Почти во всех регионах земного шара сухой воздух тропосферы (нижнего слоя атмосферы) содержит около 78,1 % азота, 21 % кислорода, 0,032 % диоксида углерода, следы водорода, незначительное количество инертных газов. Наряду с постоянными компонентами в воздухе присутствуют газообразные составляющие, содержание которых варьирует в зависимости от времени и места: различные промышленные газы, аммиак, газообразные выделения растений и т. д.

Прямое экологическое влияние преобладающего в воздухе атмосферы свободного азота невелико; в данной форме указанный химический элемент оправдывает свое название, которое в переводе с греческого означает "не поддерживающий жизнь". Связанный азот служит важнейшим и обязательным компонентом всех биологических систем. Свободный атмосферный кислород не только поддерживает жизнь (дыхание), но и сам имеет биологическое происхождение (фотосинтез). Таким образом, ухудшение состояния зеленого мира нашей планеты может существенно сказаться на запасах свободного кислорода атмосферы.

Около 21 % выделяемого при фотосинтезе и содержащегося в воздухе кислорода потребляется растениями, животными и человеком в процессе дыхания. Взрослое дерево за сутки выделяет до 180 л кислорода. Человек потребляет в день при отсутствии физических нагрузок около 360 л кислорода, а при интенсивной работе - до 900 л. Легковой автомобиль на 1000 км расходует годичную норму кислорода, потребляемого человеком, а реактивный лайнер на перелет из Европы в Америку расходует 35 т кислорода.

Еще более зависит от жизнедеятельности различных организмов содержание в воздухе диоксида углерода. Важнейшими естественными источниками СO 2 служат дыхание, брожение и гниение - на общую долю перечисленных процессов приходится 5.6,1 % поступления СO 2 в атмосферу. Около 38 % диоксида углерода поступает в воздух из почвы ("почвенное дыхание"); 0,1 % - при извержении вулканов. Довольно существенным источником СO 2 становятся лесные и степные пожары, а также сжигание топлива - до 0,4 %. Последний показатель постоянно растет: в 1970 г. вследствие антропогенной деятельности в воздух попало 0,032 % годового поступления СO 2 , по прогнозам ученых, к двухтысячному году доля рассматриваемого источника возрастет до 0,038...0,04 %.

Существенно сказывается деятельность человека и на темпах фиксации диоксида углерода в биосфере. Главным образом это объясняется чрезмерной вырубкой лесов и загрязнением Мирового океана. Растения при фотосинтезе связывают ежегодно 6...7 % СO 2 воздуха, причем наиболее интенсивен процесс в лесных экосистемах. Дождевой тропический лес за год фиксирует 1...2 кг диоксида углерода на 1 м 2 , в тундрах и пустынях фиксируется лишь 1 % этого количества. Всего экосистемы суши фиксируют за год 20...30 млрд т СО 2 Примерно столько же фиксируется фитопланктоном Мирового океана.

Возрастание содержания диоксида углерода в атмосфере имеет отрицательные экологические последствия в планетарном масштабе и проявляется в виде "парникового эффекта". В общих чертах указанный эффект можно охарактеризовать как постоянное потепление климата, вызываемое тем, что, подобно пленке в парнике, накопившийся в чрезмерном количестве СO 2 препятствует оттоку длинноволнового теплового излучения от поверхности Земли, свободно пропуская при этом солнечные лучи. Конкретные проявления "парникового эффекта" неодинаковы в различных регионах. В одном случае это небывалые засухи, в другом, наоборот, возрастание количества осадков, необычно теплые зимы и т. д.

Из непостоянных компонентов атмосферного воздуха экологически для растений наиболее неблагоприятны (как для человека и животных) промышленные газы - диоксид серы, фтор, фтористый водород, хлориды, диоксид азота, аммиак и др. Высокая ранимость "воздушными ядами" растительных организмов объясняется отсутствием у них специальных адаптации к упомянутому, сравнительно недавно возникшему фактору. Относительная устойчивость некоторых растений к промышленным газам связана с их преадаптацией, т. е. наличием тех или иных особенностей, оказавшихся полезными в новых условиях. Так, лиственные деревья легче, чем хвойные, переносят загрязнение воздуха, что объясняется ежегодной листопадностью первых, дающей им возможность регулярно выводить ядовитые вещества с опадом. Однако и у лиственных растений при неблагоприятном газовом составе атмосферы нарушается ритм сезонного развития: задерживается распускание почек, значительно раньше времени наступает листопад.