По картинам

Чему равно эдс. Что такое электродвижущая сила. Обозначение и единицы измерения


Для поддержаниязаданного значения электрического тока в проводнике требуется какой-то внешний источник энергии, который все время обеспечивал бы нужную разность потенциалов на концах этого проводника. Такими источниками энергии являются так называемые источники электрического тока, обладающие какой-то заданной электродвижущей силой , которая способна создать и длительное время поддерживать разность потенциалов.

Электродвижущая сила или сокращенно ЭДС обозначается латинской буквой Е . Единицей измерения является вольт . Таким образом, чтобы получить непрерывное движение электрического тока в проводнике, нужна электродвижущая сила, т. е. требуется источник электрического тока.

Историческая справка . Первым подобным источником тока в электротехнике являлся "вольтов столб", который был сделан из нескольких медных и цинковых кружков, проложенных коровьей кожей, смоченной в слабом растворе кислоты. Таким образом, самым простым способом получения электродвижущей силы считается химическое взаимодействие ряда веществ и материалов, в результате чего химическая энергия преобразуется в электрическую энергию. Источники питания, в которых подобным методом генерируется электродвижущая сила ЭДС, получили название химических источников тока.

Сегодня химические источники питания - батарейки и все возможные виды аккумуляторов - получили огромное распространение в электронике и электротехнике, а также электроэнергетике.

Также распространены и различные виды генераторов, которые в роли единственного источника, способны запитать электрической энергией промышленные предприятия, дать освещение в города, на фунционирование систем железных дорог, трамваев и метро.

ЭДС действует совершенно одинаково как на химические источники, так и на генераторы. Ее действие заключается в создании разности потенциалов на каждом из зажимов источника питания и поддержании ее в течение всего необходимого времени. Зажимы источника питания называют полюсами. На одном из полюсов всегда создается нехватка электронов, т.е. такой полюс имеет положительный заряд и маркируется «+ », а на другом наоборот создается повышенная концентрация свободных электронов, т.е. этот полюс имеет отрицательный заряд и маркируется знаком « - ».

Источники ЭДС применяются для подключения различных приборов и устройств, являющихся потребителями электрической энергии. С помощью проводов потребители подключаются к полюсам источников тока, так что получается замкнутая электрическая цепь. Разность потенциалов, возникшая в замкнутой электроцепи получило название и обозначают латинской буквой «U». Единица измерения напряжения один вольт . Например, запись U=12 В говорит о том, что напряжение источника ЭДС составляет 12 В.

Для того, чтобы измерить напряжение или ЭДС применяют специальный измерительный прибор - .

При необходимости осуществить правильные измерения ЭДС или напряжения источника питания, вольтметр подсоединяют напрямую к полюсам. При разомкнутой электрической цепи вольтметр будет показывать ЭДС. При замкнутой цепи вольтметр выведит на дисплей значение напряжение на каждом зажиме источника питания. PS: Источник тока всегда развивает большую ЭДС, чем напряжение на зажимах.

Видео урок: ЭДС

Видео урок: Электродвижущая сила от учителя физики

Напряжение на каждом из зажимов источника тока меньше электродвижущей силы на значение величины падения напряжения, имеющее место быть на внутреннем сопротивлении источника питания:


Идеальный источник

У идеальных источников, напряжение на зажимах не зависит от величины потребляемого тока.

Все источники электродвижущей силы обладают характеризующими их параметрами: напряжение холостого хода U хх , ток короткого замыкания I кз и внутреннее сопротивление (для источника постоянного тока R вн ). U хх – это напряжение при токе источника равным нулю. У идеального источника при любом токе U хх =0 . I кз – это ток при напряжении равном нулю. У идеального источника напряжения он бесконечен I кз = ∞ . Внутреннее сопротивление определяется из соотношений . Так как напряжение у идеального источника напряжения постоянно при любом токе ΔU = 0, то его внутреннее сопротивление также имеет нулевые значения.

R вн =ΔU / ΔI = 0;

При положительном напряжении и токе источник шлет свою электрическую энергию в эцепь и работает в режиме генератора. При противоположном движении тока – источник принимает электрическую энергию из цепи и работает в режиме приёмника.

В случае идеального источника тока егот значение, не зависит от велечины напряжения на его зажимах: I = const .

Так как, ток у идеального источника тока неизменен ΔI = 0 , то он имеет внутреннее сопротивление, равное бесконечности.

R вн =ΔU / ΔI = ∞

При положительном напряжении и токе источник шлет в цепь энергию и работает в режиме генератора. При обратном направлении он работает в режиме приёмника.

Реальный источник электродвижущей силы

У реального источника электродвижущей силы напряжение на зажимах снижается при увеличении тока. Такой ВАХ соответствует уравнение для определения напряжения при любом значении токе.

U = U xx - R вн ×I,

Где , вычисляется по формуле

R вн =ΔU / Δ I≠ 0

Его также можно вычислить и через U хх и I кз

R вн =U хх / II кз

Самоиндукция. ЭДС самоиндукции

При подсоединении источника тока в любую замкнутую цепь площадь, ограниченная этой цепью, начинает пронизываться внешними магнитными силовыми линиями. Каждая силовая линия, извне, пересекая проводник, наводя в нем ЭДС самоиндукции.

>>Физика: Электродвижущая сила

Любой источник тока характеризуется электродвижущей силой, или, сокращенно, ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?
Соедините проводником два металлических шарика, несущих заряды противоположных знаков. Под влиянием электрического поля этих зарядов в проводнике возникает электрический ток (рис.15.7 ). Но этот ток будет очень кратковременным. Заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет.
Сторонние силы. Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство (источник тока ), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис.15.8 ). Одно лишь электрическое поле заряженных частиц (кулоновское поле ) не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами.
Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет еще очевиднее, если обратиться к закону сохранения энергии. Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. В нем, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы. Работа этих сил вдоль замкнутого контура должна быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают ее затем проводникам электрической цепи.
Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д.
При замыкании цепи создается электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис.15.8 ).
Природа сторонних сил. Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы - это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике.
В гальваническом элементе, например элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток в замкнутой электрической цепи.
Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС).
Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда :

Электродвижущую силу, как и напряжение, выражают в вольтах.
Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке. Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого источника равна нулю.
Теперь вы знаете, что такое ЭДС. Если на батарейке написано 1,5 В, то это означает, что сторонние силы (химические в данном случае) совершают работу 1,5 Дж при перемещении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замкнутой цепи, если в ней не действуют сторонние силы, т. е. нет ЭДС.

???
1. Почему электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный электрический ток в цепи?
2. Какие силы принято называть сторонними?
3. Что называют электродвижущей силой?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Онлайн библиотека с учебниками и книгами по физике , планы-конспекты уроков по всем предметам , задания по физике для 10 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Электродвижущая сила (сокр. - ЭДС ) - величина, характеризующая источник энергии в электрической цепи, необходимый для поддержания в ней электрического тока . ЭДС численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная ЭДС в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. ЭДС индукции создается вихревым электрическое поле , порождаемым переменным магнитным полем . В системе "СИ " измеряется в вольтах.

Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии - нагреванием проводников. Сторонние силы приводят в движение заряженные частицы внутри источников тока : генераторов , гальванических элементов , аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы - это силы со стороны вихревого электрического поля , возникающего при изменении магнитного поля со временем, или сила Лоренца, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах - это химические силы и т. д. ЭДС определяет силу тока в цепи при заданном её сопротивлении. Измеряется ЭДС, как и напряжение , в вольтах.

Источники

  • Калашников С. Г. Электричество. - 4 изд.. - М.: 1977.
  • Тамм И. Е. Основы теории электричества,. - 9 изд.. - М.: 1976.

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где - поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

41. Индуктивность, ее единица СИ. Индуктивность длинного соленоида.

Индукти́вность (или коэффициент самоиндукции ) - коэффициент пропорциональности между электрическим током , текущим в каком-либо замкнутом контуре, и магнитным потоком , создаваемым этим током через поверхность , краем которой является этот контур. .

В формуле

Магнитный поток, - ток в контуре, - индуктивность.

    Нередко говорят об индуктивности прямого длинного провода(см. ). В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока :

.

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции , возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током :

Обозначение и единицы измерения

В системе единиц СИ индуктивность измеряется в генри , сокращенно Гн, в системе СГС - в сантиметрах (1 Гн = 10 9 см) . Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт. Реальный, не сверхпроводящий, контур обладает омическим сопротивлением R, поэтому на нём будет дополнительно возникать напряжение U=I*R, где I - сила тока, протекающего по контуру в данное мгновение времени.

Символ , используемый для обозначения индуктивности, был взят в честь Ленца Эмилия Христиановича (Heinrich Friedrich Emil Lenz) [ источник не указан 1017 дней ] . Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry) . Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года [ источник не указан 1017 дней ] .

Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре: (1) где коэффициент пропорциональности L называетсяиндуктивностью контура . При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называетсясамоиндукцией . Из выражения (1) задается единица индуктивности генри (Гн): 1 Гн - индуктивность контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В

Вычислим индуктивность бесконечно длинного соленоида. Полный магнитный поток сквозь соленоид (потокосцепление) равен μ 0 μ(N 2 I/l )S . Подставив в (1), найдем (2) т. е. индуктивность соленоида зависит от длиныl солениода, числа его витков N, его, площади S и магнитной проницаемости μ вещества, из которого изготовлен сердечник соленоида. Доказано, что индуктивность контура зависит в общем случае только от геометрической формы контура, его размеров и магнитной проницаемости среды, в которой он расположен, и можно провести аналог индуктивности контура с электрической емкостью уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды. Найдем, применяя к явлению самоиндукции закон Фарадея, что э.д.с. самоиндукции равна Если контур не претерпевает деформаций и магнитная проницаемость среды остается неизменной (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и(3) где знак минус, определяемый правилом Ленца, говорит о том, чтоналичие индуктивности в контуре приводит к замедлению изменения тока в нем . Если ток со временем увеличивается, то (dI/dt<0) и ξ s >0 т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его увеличение. Если ток со временем уменьшается, то (dI/dt>0) и ξ s <0 т. е. индукционный ток имеет такое же направление, как и уменьшающийся ток в контуре, и замедляет его уменьшение. Значит, контур, обладая определенной индуктивностью, имеет электрическую инертность, заключающуюся в том, что любое изменение тока уменьшается тем сильнее, чем больше индуктивность контура.

42. Ток при размыкании и замыкании цепи.

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции . Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L . Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t =0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент време­ни ток в цепи определяется закономОмаI = s / R , или

Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I 0 до I ) и t (от 0 до t ), находим ln (I /I 0) = Rt / L , или

где =L / R - постоянная, называемаявременем релаксации. Из (127.2) следует, что  есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше  и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или

Введя новую переменную преобразуем это уравнение к виду

где  - время релаксации.

В момент замыкания (t =0) сила тока I = 0 и u = –. Следовательно, интегрируя по и (от – до IR ) и t (от 0 до t ), находим ln[(IR )]/–= - t / , или

где - установившийся ток (при t ).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I = 0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации = L / R , что и убывание тока. Установление тока происходит тем быстрее, чем меньше индук­тивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R 0 до R . Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение дляI 0 и , получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопротивления цепи (R / R 0 >>1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

43. Явление взаимной индукции. Трансформатор.

Рассмотрим два неподвижных контура (1 и 2), которые расположены достаточно близко друг от друга (рис. 1). Если в контуре 1 протекает ток I 1 , то магнитный поток, который создавается этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), прямо пропорционален I 1 . Обозначим через Ф 21 часть потока,пронизывающая контур 2. Тогда (1) где L 21 - коэффициент пропорциональности.

Рис.1

Если ток I 1 меняет свое значение, то в контуре 2 индуцируется э.д.с. ξ i2 , которая по закону Фарадея будет равна и противоположна по знаку скорости изменения магнитного потока Ф 21 , который создается током в первом контуре и пронизыващет второй: Аналогичным образом, при протекании в контуре 2 тока I 2 магнитный поток (его поле изображено на рис. 1 штрихами) пронизывает первый контур. Если Ф 12 - часть этого потока, который пронизывает контур 1, то Если ток I 2 меняет свое значение, то в контуре 1 индуцируется э.д.с. ξ i1 , которая равна и противоположна по знаку скорости изменения магнитного потока Ф 12 , который создается током во втором контуре и пронизывает первый: Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией . Коэффициенты пропорциональности L 21 и L 12 называются взаимной индуктивностью контуров . Расчеты, которые подтверждены опытом, показывают, что L 21 и L 12 равны друг другу, т. е. (2) Коэффициенты пропорциональности L 12 и L 21 зависят от размеров, геометрической формы, взаимного расположения контуров и от магнитной проницаемости среды, окружающей контуры. Единица взаимной индуктивности та же, что и для индуктивности, - генри (Гн). Найдем взаимную индуктивность двух катушек, которые намотаны на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 2). Магнитная индукция поля, которое создавается первой катушкой с числом витков N 1 , током I 1 и магнитной проницаемостью μ сердечника, B = μμ 0 (N 1 I 1 /l ) где l - длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки Ф 2 = BS = μμ 0 (N 1 I 1 /l )S

Значит, полный магнитный поток (потокосцепление) сквозь вторичную обмотку, которая содержит N 2 витков, Поток Ψ создается током I 1 , поэтому, используя (1), найдем (3) Если рассчитать магнитный поток, который создавается катушкой 2 сквозь катушку 1, то для L 12 получим выражение в соответствии с формулой (3). Значит, взаимная индуктивность двух катушек, которые намотаны на общий тороидальный сердечник,

Трансформа́тор (от лат. transformo - преобразовывать) - это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредствомэлектромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока

В век электричества, наверное, нет такого человека, что не знал бы о существовании электрического тока. Но мало кто помнит из школьного курса физики больше, чем название величин: сила тока, напряжение, сопротивление, закон Ома. И лишь очень немногие помнят, в чём заключается смысл этих слов.

В этой статье мы обсудим, как появляется электрический ток, как он передаётся по цепи и как использовать эту величину в расчётах. Но перед тем как перейти к основной части, обратимся к истории открытия электрического тока и его источников, а также определению того, чем является электродвижущая сила.

История

Электричество как источник энергии было известно ещё с древних времён, ведь сама природа генерирует его в огромных объёмах. Яркий пример - молния или электрический скат. Несмотря на такую близость к человеку, обуздать эту энергию удалось лишь в середине семнадцатого века: Отто фон Герике, бургомистр из Магдебурга, создал машину, позволяющую генерировать электростатический заряд. В середине восемнадцатого века Питер фон Мушенбрук - учёный из Голландии - создаёт первый в мире электрический конденсатор, названный Лейденской банкой в честь университета, где он работал.

Пожалуй, отсчёт эпохи настоящих открытий, посвящённых электричеству, принято начинать с работ Луиджи Гальвани и Алессандро Вольта, изучивших соответственно электрические токи в мышцах и возникновение тока в так называемых гальванических элементах. Дальнейшие исследования открыли нам глаза на связь электричества и магнетизма, а также на несколько очень полезных явлений (таких как электромагнитная индукция), без которых сегодня невозможно представить нашу жизнь.

Но мы не будем углубляться в магнитные явления и остановимся только на электрических. Итак, разберём, как же возникает электричество в гальванических элементах и что это вообще такое.

Что такое гальванический элемент?

Можно сказать, что это производящий электроэнергию за счёт химических реакций, происходящих между его компонентами. Самый простой гальванический элемент был изобретён Алессандро Вольтом и назван в его честь вольтовым столбом. Он состоит из нескольких слоёв, чередующихся между собой: медная пластина, проводящая прокладка (в домашнем варианте конструкции используется вата, смоченная солёной водой) и цинковая пластина.

Какие реакции протекают в нём?

Рассмотрим подробнее процессы, позволяющие нам получить электричество с помощью гальванического элемента. Таких превращений всего два: окисление и восстановление. При окислении одного элемента, восстановителя, происходит отдача им электронов другому элементу - окислителю. Окислитель, в свою очередь, восстанавливается, принимая электроны. Таким образом происходит движение заряженных частиц от одной пластины к другой, а это, как известно, и называется электрическим током.

А сейчас плавно перейдём к основной теме этой статьи - ЭДС источника тока. И для начала рассмотрим, что же представляет собой эта электродвижущая сила (ЭДС).

Что такое ЭДС?

Эту величину можно представить как работу сил (именно "работу"), совершаемую при перемещении заряда по замкнутой электрической цепи. Очень часто ещё делают уточнения, что заряд должен обязательно быть положительным и единичным. И это существенное дополнение, так как только при этих условиях можно считать электродвижущую силу точной измеримой величиной. Кстати, измеряется она в тех же единицах, что и напряжение: в вольтах (В).

ЭДС источника тока

Как известно, каждый аккумулятор или батарейка обладают своим значением сопротивления, которое они способны выдавать. Это значение, ЭДС источника тока, показывает, какую работу производят внешние силы для перемещения заряда по цепи, в которую включена батарейка или аккумулятор.

Уточнить стоит также и то, какой вид тока производит источник: постоянный, переменный или импульсный. Гальванические элементы, в том числе аккумуляторы и батарейки, производят всегда только постоянный электрический ток. ЭДС источника тока в таком случае будет равна по модулю выходному напряжению на контактах источника.

Сейчас пришла пора разобраться, для чего такая величина, как ЭДС, нужна вообще, как её использовать при расчётах других величин электрической цепи.

Формула ЭДС

Мы уже выяснили, что ЭДС источника тока равна работе сторонних сил по перемещению заряда. Для большей наглядности мы решили записать формулу этой величины: E=A сторонних сил /q, где A - работа, а q - заряд, над которым была совершена работа. Обратите внимание, что берётся общий заряд, а не единичный. Делается это потому, что мы считаем работу сил по перемещению всех зарядов в проводнике. И это отношение работы к заряду всегда будет постоянным для данного источника, так как какое количество заряженных частиц ни бери, удельная величина работы на каждый из них будет одинаковой.

Как видите, формула электродвижущей силы не так сложна и состоит всего из двух величин. Пришла пора перейти к одному из главных вопросов, вытекающих из этой статьи.

Зачем нужна ЭДС?

Уже было сказано, что ЭДС и напряжение - величины, фактически, одинаковые. Если мы знаем значения ЭДС и внутреннее сопротивление источника тока, то несложно будет подставить их в закон Ома для полной цепи, который выглядит следующим образом: I=e/(R+r), где I - сила тока, e - ЭДС, R - сопротивление цепи, r - внутреннее сопротивление источника тока. Отсюда мы можем находить две характеристики цепи: I и R. Следует обратить внимание, что все эти рассуждения и формулы справедливы лишь для цепи постоянного тока. В случае с переменным формулы будут совсем другие, так как он подчиняется своим колебательным законам.

Но всё же остаётся непонятным, какое применение имеет ЭДС источника тока. В цепи, как правило, очень много элементов, выполняющих свою функцию. В любом телефоне стоит плата, представляющая также не что иное, как электрическую цепь. А каждой такой схеме для работы требуется источник тока. И очень важно, чтобы его ЭДС подходила по параметрам для всех элементов цепи. Иначе схема либо перестанет работать, либо сгорит из-за высокого напряжения внутри неё.

Заключение

Думаем, для многих эта статья оказалась полезной. Ведь в современном мире очень важно знать как можно больше о том, что нас окружает. В том числе существенны знания о природе электрического тока и его поведении внутри цепей. И если вы думаете, что такая вещь, как электрическая цепь, применяется только в лабораториях и вы далеки от этого, то вы сильно ошибаетесь: все приборы, потребляющие электроэнергию, на самом деле состоят из цепей. И у каждой из них есть свой источник тока, создающий ЭДС.