По картинам

Движение тела по окружности с постоянной по модулю скоростью. Движение по окружности

Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

Положение тела на окружности определяется радиусом-вектором \(~\vec r\), проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 1).

За время Δt тело, двигаясь из точки А в точку В , совершает перемещение \(~\Delta \vec r\), равное хорде АВ , и проходит путь, равный длине дуги l .

Радиус-вектор поворачивается на угол Δφ . Угол выражают в радианах.

Скорость \(~\vec \upsilon\) движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью . Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt за который эта дуга пройдена:

\(~\upsilon = \frac{l}{\Delta t}.\)

Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью :

\(~\omega = \frac{\Delta \varphi}{\Delta t}.\)

В СИ единицей угловой скорости является радиан в секунду (рад/с).

При равномерном движении по окружности угловая скорость и модуль линейной скорости - величины постоянные: ω = const; υ = const.

Положение тела можно определить, если известен модуль радиуса-вектора \(~\vec r\) и угол φ , который он составляет с осью Ox (угловая координата). Если в начальный момент времени t 0 = 0 угловая координата равна φ 0 , а в момент времени t она равна φ , то угол поворота Δφ радиуса-вектора за время \(~\Delta t = t - t_0 = t\) равен \(~\Delta \varphi = \varphi - \varphi_0\). Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности :

\(~\varphi = \varphi_0 + \omega t.\)

Оно позволяет определить положение тела в любой момент времени t . Учитывая, что \(~\Delta \varphi = \frac{l}{R}\), получаем\[~\omega = \frac{l}{R \Delta t} = \frac{\upsilon}{R} \Rightarrow\]

\(~\upsilon = \omega R\) - формула связи между линейной и угловой скоростью.

Промежуток времени Τ , в течение которого тело совершает один полный оборот, называется периодом вращения :

\(~T = \frac{\Delta t}{N},\)

где N - число оборотов, совершенных телом за время Δt .

За время Δt = Τ тело проходит путь \(~l = 2 \pi R\). Следовательно,

\(~\upsilon = \frac{2 \pi R}{T}; \ \omega = \frac{2 \pi}{T} .\)

Величина ν , обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения :

\(~\nu = \frac{1}{T} = \frac{N}{\Delta t}.\)

Следовательно,

\(~\upsilon = 2 \pi \nu R; \ \omega = 2 \pi \nu .\)

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 18-19.

Александрова Зинаида Васильевна, учитель физики и информатики

Образовательное учреждение: МБОУ СОШ №5 п. Печенга, Мурманская обл.

Предмет: физика

Класс : 9 класс

Тема урока : Движение тела по окружности с постоянной по модулю скоростью

Цель урока:

    дать представление о криволинейном движении, ввести понятия частоты, периода, угловой скорости, центростремительного ускорения и центростремительной силы.

Задачи урока:

Образовательные:

    Повторить виды механического движения, познакомить с новыми понятиями: движение по окружности, центростремительное ускорение, период, частота;

    Выявить на практике связь периода, частоты и центростремительного ускорения с радиусом обращения;

    Использовать учебное лабораторное оборудование для решения практических задач.

Развивающие :

    Развивать умения применять теоретические знания для решения конкретных задач;

    Развивать культуру логического мышления;

    Развивать интерес к предмету; познавательную деятельность при постановке и проведении эксперимента.

Воспитательные :

    Формировать мировоззрение в процессе изучения физики и аргументировать свои выводы, воспитывать самостоятельность, аккуратность;

    Воспитывать коммуникативную и информационную культуру учащихся

Оснащение урока:

    компьютер, проектор, экран, презентация к уроку « Движение тела по окружности» , распечатка карточек с заданиями;

    теннисный шар, волан для бадминтона, игрушечный автомобиль, шарик на нити, штатив;

    наборы для эксперимента: секундомер, штатив с муфтой и лапкой, шарик на нити, линейка.

Форма организации обучения: фронтальная, индивидуальная, групповая.

Тип урока: изучение и первичное закрепление знаний.

Учебно-методическое обеспечение: Физика. 9 класс. Учебник. Перышкин А.В., Гутник Е.М. 14-е изд., стер. - М.: Дрофа, 2012 г.

Время реализации урока : 45 минут

1. Редактор, в котором выполнен мультимедиа ресурс: MS PowerPoint

2. Вид мультимедиа ресурса: наглядная презентация учебного материала с использованием триггеров, встроенного видео и интерактивного теста.

План проведения урока

    Организационный момент. Мотивация к учебной деятельности.

    Актуализация опорных знаний.

    Изучение нового материала.

    Беседа по вопросам;

    Решение задач;

    Выполнение исследовательской практической работы.

    Подведение итогов урока.

Ход урока

Этапы урока

Временная реализация

    Организационный момент. Мотивация к учебной деятельности.

Слайд 1. ( Проверка готовности к уроку, объявление темы и целей урока.)

Учитель. Сегодня на уроке вы узнаете, что такое ускорение при равномерном движении тела по окружности и как его определить.

2 мин

    Актуализация опорных знаний.

Слайд 2.

Ф изический диктант:

    Изменение положения тела в пространстве с течением времени. (Движение)

    Физическая величина, измеряемая в метрах. (Перемещение)

    Физическая векторная величина, характеризующая быстроту движения. (Скорость)

    Основная единица измерения длины в физике. (Метр)

    Физическая величина, единицами измерения которой служат год, сутки, час. (Время)

    Физическая векторная величина, которую можно измерить с помощью прибора акселерометра. (Ускорение)

    Длина траектории . (Путь)

    Единицы измерения ускорения (м/с 2 ).

(Проведение диктанта с последующей проверкой, самооценка работ учениками)

5 мин

    Изучение нового материала.

Слайд 3.

Учитель. Мы достаточно часто наблюдаем такое движение тела, при котором его траекторией является окружность. По окружности движется, например, точка обода колеса при его вращении, точки вращающихся деталей станков, конец стрелки часов.

Демонстрации опытов 1. Падение теннисного шара, полёт волана для бадминтона, перемещение игрушечного автомобиля, колебания шарика на нити, закреплённого в штативе. Что общего и чем отличаются эти движения по виду? (Ответы учеников)

Учитель. Прямолинейное движение – это движение, траектория которого - прямая линия, криволинейное – кривая. Приведите примеры прямолинейного и криволинейного движения, с которыми вы встречались в жизни. (Ответы учеников)

Движение тела по окружности является частным случаем криволинейного движения .

Любую кривую можно представить, как сумму дуг окружностей разного (или одинакового) радиуса.

Криволинейным движением называют такое движение, которое совершается по дугам окружностей.

Введём некоторые характеристики криволинейного движения.

Слайд 4. (просмотр видео « скорость.avi» по ссылке на слайде)

Криволинейное движение с постоянной по модулю скоростью. Движение с ускорением, т.к. скорость меняет направление.

Слайд 5 . (просмотр видео «Зависимость центростремительного ускорения от радиуса и скорости. аvi » по ссылке на слайде)

Слайд 6. Направление векторов скорости и ускорения.

(работа с материалами слайда и анализ рисунков, рациональное использование эффектов анимации, заложенных в элементы рисунков, рис 1.)

Рис.1.

Слайд 7.

При равномерном движении тела по окружности вектор ускорения всё время перпендикулярен вектору скорости, который направлен по касательной к окружности.

Тело движется по окружности при условии, что вектор линейной скорости перпендикулярен вектору центростремительного ускорения.

Слайд 8. (работа с иллюстрациями и материалами слайда)

Центростремительное ускорение - ускорение, с которым тело движется по окружности с постоянной по модулю скоростью, всегда направлено вдоль радиуса окружности к центру.

a ц =

Слайд 9.

При движении по окружности тело через определённый промежуток времени вернётся в первоначальную точку. Движение по окружности – периодическое.

Период обращения – это промежуток времени Т , в течение которого тело (точка) совершает один оборот по окружности.

Единица измерения периода - секунда

Частота вращения  – число полных оборотов в единицу времени.

[ ] = с -1 = Гц


Единица измерения частоты

Сообщение ученика 1. Период - это величина, которая часто встречается в природе, науке и технике. Земля вращается вокруг своей оси, средний период этого вращения составляет 24 часа; полный оборот Земли вокруг Солнца происходит примерно за 365,26 суток; винт вертолёта имеет средний период вращения от 0,15 до 0,3 с; период кровообращения у человека равен примерно 21 - 22 с.

Сообщение ученика 2. Частоту измеряют специальными приборами – тахометрами.

Частота вращения технических устройств: ротор газовой турбины вращается с частотой от 200 до 300 1/с; пуля, вылетевшая из автомата Калашникова, вращается с частотой 3000 1/с.

Слайд 10. Связь периода с частотой:

Если за время t тело совершило N полных оборотов, то период обращения равен:

Период и частота – это взаимообратные величины: частота обратно пропорциональна периоду, а период обратно пропорционален частоте

Слайд 11. Быстроту обращения тела характеризуют угловой скоростью.

Угловая скорость (циклическая частота)- число оборотов за единицу времени, выраженное в радианах.

Угловая скорость – угол поворота, на который поворачивается точка за время t .

Угловая скорость измеряется в рад/с.

Слайд 12. (просмотр видео «Путь и перемещение при криволинейном движении.avi» по ссылке на слайде)

Слайд 13 . Кинематика движения по окружности.

Учитель. При равномерном движении по окружности модуль его скорости не изменяется. Но скорость - векторная величина, и она характеризуется не только числовым значением, но и направлением. При равномерном движении по окружности всё время изменяется направление вектора скорости. Поэтому такое равномерное движение является ускоренным.

Линейная скорость: ;

Линейная и угловая скорости связаны соотношением:

Центростремительное ускорение: ;

Угловая скорость: ;

Слайд 14. (работа с иллюстрациями на слайде)

Направление вектора скорости. Линейная (мгновенная скорость) всегда направлена по касательной к траектории, проведенной к той ее точке, где в данный момент находится рассматриваемое физическое тело.

Вектор скорости направлен по касательной к описываемой окружности.

Равномерное движение тела по окружности является движением с ускорением. При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора.

Слайд 15. Центростремительная сила.

Сила, удерживающая вращающееся тело на окружности и направленная к центру вращения, называется центростремительной силой.

Чтобы получить формулу для расчёта величины центростремительной силы, надо воспользоваться вторым законом Ньютона, который применим и к любому криволинейному движению.

Подставляя в формулу значение центростремительного ускорения a ц = , получим формулу центростремительной силы:

F =

Из первой формулы видно, что при одной и той же скорости чем меньше радиус окружности, тем больше центростремительная сила. Так, на поворотах дороги на движущееся тело (поезд, автомобиль, велосипед) должна действовать по направлению к центру закругления тем большая сила, чем круче поворот, т. е. чем меньше радиус закругления.

Центростремительная сила зависит от линейной скорости: с увеличением скорости она увеличивается. Это хорошо известно всем конькобежцам, лыжникам и велосипедистам: чем с большей скоростью движешься, тем труднее сделать поворот. Шофёры очень хорошо знают, как опасно круто поворачивать автомобиль на большой скорости.

Слайд 16.

Сводная таблица физических величин, характеризующих криволинейное движение (анализ зависимостей между величинами и формулами)

Слайды 17, 18, 19. Примеры движение по окружности.

Круговое движение на дорогах. Движение спутников вокруг Земли.

Слайд 20. Аттракционы, карусели.

Сообщение ученика 3. В Средние века каруселями (слово тогда имело мужской род) называли рыцарские турниры. Позднее, в XVIII веке, для подготовки к турнирам, вместо схваток с реальными соперниками, стали использовать вращающуюся платформу, прообраз современной развлекательной карусели, которая тогда же появилась на городских ярмарках.

В России первый карусель был построен 16 июня 1766 года перед Зимним дворцом. Карусель состоял из четырёх кадрилей: Славянской, Римской, Индийской, Турецкой. Второй раз карусель была построена на том же месте, в том же году 11 июля. Подробное описание этих каруселей приводятся в газете Санкт-Петербургские ведомости 1766 года.

Карусель, распространённая во дворах в советское время. Карусель может приводиться в движение как двигателем (обычно электрическим), так и силами самих крутящихся, которые перед тем как сесть на карусель, раскручивают её. Такие карусели, которые нужно раскручивать самим катающимся, часто устанавливают на детских игровых площадках.

Кроме аттракционов, каруселями часто называют другие механизмы, имеющие сходное поведение - например, в автоматизированных линиях по разливу напитков, упаковке сыпучих веществ или производству печатной продукции.

В переносном смысле каруселью называют череду быстро сменяющихся предметов или событий.

18 мин

    Закрепление нового материала. Применение знаний и умений в новой ситуации.

Учитель. Сегодня на этом уроке мы познакомились с описанием криволинейного движения, с новыми понятиями и новыми физическими величинами.

Беседа по вопросам:

    Что такое период? Что такое частота? Как связаны между собой эти величины? В каких единицах измеряются? Как их можно определить?

    Что такое угловая скорость? В каких единицах она измеряется? Как можно её рассчитать?

    Что называют угловой скоростью? Что является единицей угловой скорости?

    Как связаны угловая и линейная скорости движения тела?

    Как направлено центростремительное ускорение? По какой формуле оно рассчитывается?

Слайд 21.

Задание 1. Заполните таблицу, решив задачи по исходным данным (Рис.2), затем мы сверим ответы. (Ученики работают самостоятельно с таблицей, необходимо заранее приготовить распечатку таблицы для каждого ученика)

Рис.2

Слайд 22. Задание 2. (устно)

Обратите внимание на анимационные эффекты рисунка. Сравните характеристики равномерного движения синего и красного шара . (Работа с иллюстрацией на слайде).

Слайд 23. Задание 3. (устно)

Колёса представленных видов транспорта за одно и то же время совершают равное количество оборотов. Сравните их центростремительные ускорения. (Работа с материалами слайда)

(Работа в группе, проведение эксперимента, распечатка инструкции для проведения эксперимента есть на каждом столе)

Оборудование: секундомер, линейка, шарик, закреплённый на нити, штатив с муфтой и лапкой.

Цель: исследовать зависимость периода, частоты и ускорения от радиуса вращения .

План работы

    Измерьте время t 10 полных оборотов вращательного движения и радиус R вращения, шарика, закреплённого на нити в штативе.

    Вычислите период Т и частоту, скорость вращения, центростремительное ускорение Результаты оформите в виде задачи.

    Измените радиус вращения (длину нити), повторите опыт ещё 1 раза, стараясь сохранить прежней скорость, прикладывая прежнее усилие.

    Сделайте вывод о зависимости периода, частоты и ускорения от радиуса вращения (чем меньше радиус вращения, тем меньше период обращения и больше значение частоты).

Слайды 24 -29.

Фронтальная работа с интерактивным тестом.

Необходимо выбрать один ответ из трёх возможных, если был выбран правильный ответ, то он остаётся на слайде, и начинает мигать зелёный индикатор, неверные ответы исчезают.

    Тело движется по окружности с постоянной по модулю скоростью. Как изменится его центростремительное ускорение при уменьшении радиуса окружности в 3 раза?

    В центрифуге стиральной машины белье при отжиме движется по окружности с постоянной по модулю скоростью в горизонтальной плоскости. Как при этом направлен вектор его ускорения?

    Конькобежец движется со скоростью 10 м/с по окружности радиусом 20 м. Определите его центростремительное ускорение.

    Куда направлено ускорение тела при его движении по окружности с постоянной по модулю скоростью?

    Материальная точка движется по окружности с постоянной по модулю скоростью. Как изменится модуль ее центростремительного ускорения, если скорость точки увеличить втрое?

    Колесо машины делает 20 оборотов за 10 с. Определите период обращения колеса?


Слайд 30. Решение задач (самостоятельная работа при наличии времени на уроке)

Вариант 1.

С каким периодом должна вращаться карусель радиусом 6,4 м для того, чтобы центростремительное ускорение человека на карусели было равно 10 м/с 2 ?

На арене цирка лошадь скачет с такой скоростью, что за 1 минуту обегает 2 круга. Радиус арены равен 6,5 м. Определите период и частоту вращения, скорость и центростремительное ускорение.

Вариант 2.

Частота обращения карусели 0,05 с -1 . Человек, вращающийся на карусели, находится на расстоянии 4 м от оси вращения. Определите центростремительное ускорение человека, период обращения и угловую скорость карусели.

Точка обода колеса велосипеда совершает один оборот за 2 с. Радиус колеса 35 см. Чему равно центростремительное ускорение точки обода колеса?

18 мин

    Подведение итогов урока.

Выставление оценок. Рефлексия.

Слайд 31 .

Д/з: п. 18-19, Упр.18 (2,4).

http :// www . stmary . ws / highschool / physics / home / lab / labGraphic . gif

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Вы сейчас здесь: Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • 1. Достаточно часто можно наблюдать такое движение тела, при котором его траекторией является окружность. По окружности движется, например, точка обода колеса при его вращении, точки вращающихся деталей станков, конец стрелки часов, ребенок, сидящий на какой‑либо фигуре вращающихся каруселей.

    При движении по окружности может изменяться не только направление скорости тела, но и ее модуль. Возможно движение, при котором изменяется только направление скорости, а ее модуль остается постоянным. Такое движение называют равномерным движением тела по окружности . Введем характеристики этого движения.

    2. Движение тела по окружности повторяется через определенные промежутки времени, равные периоду обращения.

    Периодом обращения называют время, в течение которого тело совершает один полный оборот.

    Период обращения обозначают буквой T . За единицу периода обращения в СИ принята секунда (1 с ).

    Если за время t тело совершило N полных оборотов, то период обращения равен:

    T = .

    Частотой обращения называют число полных оборотов тела за одну секунду.

    Частоту обращения обозначают буквой n .

    n = .

    За единицу частоты обращения в СИ принята секунда в минус первой степени (1 с– 1 ).

    Частота и период обращения связаны следующим образом:

    n = .

    3. Рассмотрим величину, характеризующую положение тела на окружности. Пусть в начальный момент времени тело находилось в точке A , а за время t оно переместилось в точку B (рис. 38).

    Проведем радиус‑вектор из центра окружности в точку A и радиус‑вектор из центра окружности в точку B . При движении тела по окружности радиус‑вектор повернется за время t на угол j. Зная угол поворота радиуса‑вектора, можно определить положение тела на окружности.

    Единица угла поворота радиуса‑вектора в СИ - радиан (1 рад ).

    При одном и том же угле поворота радиуса‑вектора точки A и B , находящиеся на разных расстояниях от его центра равномерно вращающегося диска (рис. 39), пройдут разные пути.

    4. При движении тела по окружности мгновенную скорость называют линейной скоростью .

    Линейная скорость тела, равномерно движущегося по окружности, оставаясь постоянной по модулю, меняется по направлению и в любой точке направлена по касательной к траектории.

    Модуль линейной скорости можно определить по формуле:

    v = .

    Пусть тело, двигаясь по окружности радиусом R , совершило один полный оборот, Тогда пройденный им путь равен длине окружности: l = 2pR , а время равно периоду обращения T . Следовательно, линейная скорость тела:

    v = .

    Поскольку T = , то можно записать

    v = 2pRn .

    Быстроту обращения тела характеризуют угловой скоростью .

    Угловой скоростью называют физическую величину, равную отношению угла поворота радиуса-вектора к промежутку времени, за которое этот поворот произошел.

    Угловая скорость обозначается буквой w.

    w = .

    За единицу угловой скорости в СИ принимают радиан в секунду (1 рад/с ):

    [w] == 1 рад/с.

    За время, равное периоду обращения T , тело совершает полный оборот и угол поворота радиуса-вектора j = 2p. Поэтому угловая скорость тела:

    w =или w = 2pn .

    Линейная и угловая скорости связаны друг с другом. Запишем отношение линейной скорости к угловой:

    == R .

    Таким образом,

    v = wR .

    При одинаковой угловой скорости точек A и B , расположенных на равномерно вращающемся диске (см. рис. 39), линейная скорость точки A больше линейной скорости точки B : v A > v B .

    5. При равномерном движении тела по окружности модуль его линейной скорости остается постоянным, а направление скорости меняется. Поскольку скорость - величина векторная, то изменение направления скорости означает, что тело движется по окружности с ускорением.

    Выясним, как направлено и чему равно это ускорение.

    Напомним, что ускорение тела определяется по формуле:

    a == ,

    где Dv - вектор изменения скорости тела.

    Направление вектора ускорения a совпадает с направлением вектора Dv .

    Пусть тело, движущееся по окружности радиусом R , за ма-лый промежуток времени t переместилось из точки A в точку B (рис. 40). Чтобы найти изменение скорости тела Dv , в точку A перенесем параллельно самому себе вектор v и вычтем из него v 0 , что равноценно сложению вектора v с вектором –v 0 . Вектор, направленный от v 0 к v , и есть вектор Dv .

    Рассмотрим треугольники AOB и ACD . Оба они равнобедренные (AO = OB и AC = AD, поскольку v 0 = v ) и имеют равные углы: _AOB = _CAD (как углы со взаимно перпендикулярными сторонами: AO B v 0 , OB B v ). Следовательно, эти треугольники подобны и можно записать отношение соответствующих сторон:= .

    Поскольку точки A и B расположены близко друг к другу, то хорда AB мала и ее можно заменить дугой. Длина дуги- путь, пройденный телом за время t с постоянной скоростью v : AB = vt .

    Кроме того, AO = R , DC = Dv , AD = v . Следовательно,

    = ;= ;= a .

    Откуда ускорение тела

    a = .

    Из рисунка 40 видно, что чем меньше хорда AB , тем точнее направление вектора Dv совпадает с радиусом окружности. Следовательно, вектор изменения скорости Dv и вектор ускорения a направлены по радиусу к центру окружности. Поэтому ускорение при равномерном движении тела по окружности называют центростремительным .

    Таким образом,

    при равномерном движении тела по окружности его ускорение постоянно по модулю и в любой точке направлено по радиусу окружности к ее центру.

    Учитывая, что v = wR , можно записать другую формулу центростремительного ускорения:

    a = w 2 R .

    6. Пример решения задачи

    Частота обращения карусели 0,05 с– 1 . Человек, вращающийся на карусели, находится на расстоянии 4 м от оси вращения. Определите центростремительное ускорение человека, период обращения и угловую скорость карусели.

    Дано :

    Решение

    n = 0,05 с– 1

    R = 4 м

    Центростремительное ускорение равно:

    a = w2R =(2pn )2R =4p2n 2R .

    Период обращения: T = .

    Угловая скорость карусели: w = 2pn .

    a ?

    T ?

    a = 4 (3,14) 2 (0,05с– 1) 2 4 м 0,4 м/с 2 ;

    T == 20 с;

    w = 2 3,14 0,05 с– 1 0,3 рад/с.

    Ответ: a 0,4 м/с 2 ; T = 20 с; w 0,3 рад/с.

    Вопросы для самопроверки

    1. Какое движение называют равномерным движением по окружности?

    2. Что называют периодом обращения?

    3. Что называют частотой обращения? Как связаны между собой период и частота обращения?

    4. Что называют линейной скоростью? Как она направлена?

    5. Что называют угловой скоростью? Что является единицей угловой скорости?

    6. Как связаны угловая и линейная скорости движения тела?

    7. Как направлено центростремительное ускорение? По какой формуле оно рассчитывается?

    Задание 9

    1. Чему равна линейная скорость точки обода колеса, если радиус колеса 30 см и один оборот она совершает за 2 с? Чему равна угловая скорость колеса?

    2. Скорость автомобиля 72 км/ч. Каковы угловая скорость, частота и период обращения колеса автомобиля, если диаметр колеса70 см? Сколько оборотов совершит колесо за 10 мин?

    3. Чему равен путь, пройденный концом минутной стрелки будильника за 10 мин, если ее длина 2,4 см?

    4. Каково центростремительное ускорение точки обода колеса автомобиля, если диаметр колеса 70 см? Скорость автомобиля 54 км/ч.

    5. Точка обода колеса велосипеда совершает один оборот за 2 с. Радиус колеса 35 см. Чему равно центростремительное ускорение точки обода колеса?

    Движение по окружности - простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

    Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

    ∆ l = R ∆ φ

    Если угол поворота мал, то ∆ l ≈ ∆ s .

    Проиллюстрируем сказанное:

    Угловая скорость

    При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

    Определение. Угловая скорость

    Угловая скорость в данной точке траектории - предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

    ω = ∆ φ ∆ t , ∆ t → 0 .

    Единица измерения угловой скорости - радиан в секунду (р а д с).

    Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

    При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

    При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

    a n = ∆ v → ∆ t , ∆ t → 0

    Модуль центростремительного ускорения можно вычислить по формуле:

    a n = v 2 R = ω 2 R

    Докажем эти соотношения.

    Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → - v A → .

    В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

    По определению ускорения:

    a → = ∆ v → ∆ t , ∆ t → 0

    Взглянем на рисунок:

    Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

    Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

    R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

    При ∆ φ → 0 , направление вектора ∆ v → = v B → - v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

    a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

    При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

    Запись центростремительного ускорения в векторной форме выглядит следующим образом:

    a n → = - ω 2 R → .

    Здесь R → - радиус вектор точки на окружности с началом в ее центре.

    В общем случае ускорение при движении по окружности состоит из двух компонент - нормальное, и тангенциальное.

    Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

    a τ = ∆ v τ ∆ t ; ∆ t → 0

    Здесь ∆ v τ = v 2 - v 1 - изменение модуля скорости за промежуток ∆ t

    Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

    Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

    Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter