По картинам

Как разложить на множители алгебраическое выражение. Искусственные приемы при разложении многочлена на множители. Способ замены переменной при разложении многочлена на множители

Многочлен представляет собой выражение, состоящее из суммы одночленов. Последние являются произведением константы (числа) и корня (или корней) выражения в степени k. В таком случае говорят о многочлене степени k. Разложение многочлена предполагает трансформацию выражения, при которой на смену слагаемых приходят множители. Рассмотрим основные способы проведения такого рода преобразования.

Метод разложения многочлена путем выделения общего множителя

Данный способ основывается на закономерностях распределительного закона. Так, mn + mk = m * (n + k).

  • Пример: разложите 7y 2 + 2uy и 2m 3 – 12m 2 + 4lm.

7y 2 + 2uy = y * (7y + 2u),

2m 3 – 12m 2 + 4lm = 2m(m 2 – 6m + 2l).

Однако, множитель, присутствующий обязательно в каждом многочлене может найтись не всегда, поэтому данный способ не является универсальным.

Метод разложения многочлена на базе формул сокращенного умножения

Формулы сокращенного умножения справедливы для многочлена любой степени. В общем виде выражение-преобразование выглядит следующим образом:

u k – l k = (u – l)(u k-1 + u k-2 * l + u k-3 *l 2 + … u * l k-2 + l k-1), где k является представителем натуральных чисел.

Наиболее часто на практике применяются формулы для многочленов второго и третьего порядков:

u 2 – l 2 = (u – l)(u + l),

u 3 – l 3 = (u – l)(u 2 + ul + l 2),

u 3 + l 3 = (u + l)(u 2 – ul + l 2).

  • Пример: разложите 25p 2 – 144b 2 и 64m 3 – 8l 3 .

25p 2 – 144b 2 = (5p – 12b)(5p + 12b),

64m 3 – 8l 3 = (4m) 3 – (2l) 3 = (4m – 2l)((4m) 2 + 4m * 2l + (2l) 2) = (4m – 2l)(16m 2 + 8ml + 4l 2).


Метод разложения многочлена – группировка слагаемых выражения

Данный метод некоторым образом перекликается с техникой выведения общего множителя, но имеет некоторые отличия. В частности, перед тем, как выделять общий множитель, следует произвести группировку одночленов. В основе группирования лежат правила сочетательного и переместительного законов.

Все одночлены, представленные в выражении разбиваются на группы, в каждой из которых выносится общее значение такое, что второй множитель будет одинаковым во всех группах. В общем виде подобный способ разложения можно представить в виде выражения:

pl + ks + kl + ps = (pl + ps) + (ks + kl) ⇒ pl + ks + kl + ps = p(l + s) + k(l + s),

pl + ks + kl + ps = (p + k)(l + s).

  • Пример: разложите 14mn + 16ln – 49m – 56l.

14mn + 16ln – 49m – 56l = (14mn – 49m) + (16ln – 56l) = 7m * (2n – 7) + 8l * (2n – 7) = (7m + 8l)(2n – 7).


Метод разложения многочлена – формирование полного квадрата

Данный способ является одним из наиболее эффективных в ходе разложения многочлена. На первоначальном этапе необходимо определить одночлены, которые можно “свернуть” в квадрат разности или суммы. Для этого используется одно из соотношений:

(p – b) 2 = p 2 – 2pb + b 2 ,

  • Пример: разложите выражение u 4 + 4u 2 – 1.

Выделим среди его одночленов слагаемые, которые образуют полный квадрат: u 4 + 4u 2 – 1 = u 4 + 2 * 2u 2 + 4 – 4 – 1 =

= (u 4 + 2 * 2u 2 + 4) – 4 – 1 = (u 4 + 2 * 2u 2 + 4) – 5.

Завершаете преобразование, используя правила сокращенного умножения: (u 2 + 2) 2 – 5 = (u 2 + 2 – √5)(u 2 + 2 + √5).

Т.о. u 4 + 4u 2 – 1 = (u 2 + 2 – √5)(u 2 + 2 + √5).


При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Где - корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен - схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}

Любой алгебраический многочлен степени n может быть представлен в виде произведения n-линейных множителей вида и постоянного числа, которое является коэффициентов многочлена при старшей ступени х, т.е.

где - являются корнями многочлена.

Корнем многочлена называют число (действительное или комплексное), обращающее многочлен в нуль. Корнями многочлена могут быть как действительные корни, так и комплексно-сопряженные корни, тогда многочлен может быть представлен в следующем виде:

Рассмотрим методы разложения многочленов степени «n» в произведение множителей первой и второй степени.

Способ №1. Метод неопределенных коэффициентов.

Коэффициенты такого преобразованного выражения определяются методом неопределенных коэффициентов. Суть метода сводится к тому, что заранее известен вид множителей, на которые разлагается данный многочлен. При использовании метода неопределённых коэффициентов справедливы следующие утверждения:

П.1. Два многочлена тождественно равны в случае, если равны их коэффициенты при одинаковых степенях х.

П.2. Любой многочлен третьей степени разлагается в произведение линейного и квадратного множителей.

П.3. Любой многочлен четвертой степени разлагается на произведение двух многочленов второй степени.

Пример 1.1. Необходимо разложить на множители кубическое выражение:

П.1. В соответствии с принятыми утверждениями для кубического выражения справедливо тождественное равенство:

П.2. Правая часть выражения может быть представлена в виде слагаемых следующим образом:

П.3. Составляем систему уравнений из условия равенства коэффициентов при соответствующих степенях кубического выражения.

Данная система уравнений может быть решена методом подбора коэффициентов (если простая академическая задача) или использованы методы решения нелинейных систем уравнений. Решая данную систему уравнений, получим, что неопределённые коэффициенты определяются следующим образом:

Таким образом, исходное выражение раскладывается на множители в следующем виде:

Данный метод может использоваться как при аналитических выкладках, так и при компьютерном программировании для автоматизации процесса поиска корня уравнения.

Способ №2. Формулы Виета

Формулы Виета - это формулы, связывающие коэффициенты алгебраических уравнений степени n и его корни. Данные формулы были неявно представлены в работах французского математика Франсуа Виета (1540 - 1603). В связи с тем, что Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем явном виде.

Для любого алгебраического многочлена степени n, который имеет n-действительных корней,

справедливы следующие соотношения, которые связывают корни многочлена с его коэффициентами:

Формулами Виета удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Пример 2.1. Рассмотрим, как связаны корни многочлена с его коэффициентами на примере кубического уравнения

В соответствии с формулами Виета взаимосвязь корней многочлена с его коэффициентами имеет следующий вид:

Аналогичные соотношения можно составить для любого полинома степени n.

Способ №3. Разложение квадратного уравнения на множители с рациональными корнями

Из последней формулы Виета следует, что корни многочлена являются делителями его свободного члена и старшего коэффициента. В связи с этим, если в условии задачи задан многочлен степени n c целыми коэффициентами

то данный многочлен имеет рациональный корень (несократимая дробь), где p - делитель свободного члена , а q – делитель старшего коэффициента . В таком случае многочлен степени n можно представить в виде (теорема Безу):

Многочлен , степень которого на 1 меньше степени начального многочлена, определяется делением многочлена степени n двучлен , например, с помощью схемы Горнера или самым простым способом - «столбиком».

Пример 3.1. Необходимо разложить многочлен на множители

П.1. В связи с тем, что коэффициент при старшем слагаемом равен единицы, то рациональные корни данного многочлена являются делителями свободного члена выражения, т.е. могут быть целыми числами . Подставляем каждое из представленных чисел в исходное выражение найдем, что корень представленного многочлена равен .

Выполним деление исходного многочлена на двучлен:

Воспользуемся схемой Горнера

В верхней строке выставляются коэффициенты исходного многочлена, при этом первая ячейка верхней строки остается пустой.

В первой ячейке второй строки записывается найденный корень (в рассматриваемом примере записывается число «2»), а следующие значения в ячейках вычисляются определенным образом и они являются коэффициентами многочлена, который получится в результате деления многочлена на двучлен. Неизвестные коэффициенты определяются следующим образом:

Во вторую ячейку второй строки переносится значение из соответствующей ячейки первой строки (в рассматриваемом примере записывается число «1»).

В третью ячейку второй строки записывается значение произведения первой ячейки на вторую ячейку второй строки плюс значение из третьей ячейки первой строки (в рассматриваемом примере 2 ∙1 -5 = -3).

В четвертую ячейку второй строки записывается значение произведения первой ячейки на третью ячейку второй строки плюс значение из четвертой ячейки первой строки (в рассматриваемом примере 2 ∙ (-3) +7 = 1).

Таким образом, исходный многочлен раскладывается на множители:

Способ №4. Использование формул сокращенного умножения

Формулы сокращенного умножения применяют для упрощения вычислений, а также разложение многочленов на множители. Формулы сокращенного умножения позволяют упростить решение отдельных задач.

Формулы, используемые для разложения на множители

Приводится 8 примеров разложения многочленов на множители. Они включают в себя примеры с решением квадратных и биквадратных уравнений, примеры с возвратными многочленами и примеры с нахождением целых корней у многочленов третьей и четвертой степени.

1. Примеры с решением квадратного уравнения

Пример 1.1


x 4 + x 3 - 6 x 2 .

Решение

Выносим x 2 за скобки:
.
2 + x - 6 = 0 :
.
Корни уравнения:
, .


.

Ответ

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Решение

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Ответ

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 - 2 x 4 + 10 x 3 .

Решение

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Ответ

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 - 20 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) .

;
.

Ответ

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) :

;

;
.

Ответ

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Решение

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;


;
.

Ответ

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

6
-6, -3, -2, -1, 1, 2, 3, 6 .
(-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
(-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
(-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
(-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
1 3 - 6·1 2 + 11·1 - 6 = 0 ;
2 3 - 6·2 2 + 11·2 - 6 = 0 ;
3 3 - 6·3 2 + 11·3 - 6 = 0 ;
6 3 - 6·6 2 + 11·6 - 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Ответ

Пример 3.2

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
-2, -1, 1, 2 .
Подставляем поочередно эти значения:
(-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
(-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид.

Для того, чтобы разложить на множители, необходимо упрощать выражения. Это необходимо для того, чтобы можно было в дальнейшем сократить. Разложение многочлена имеет смысл тогда, когда его степень не ниже второй. Многочлен с первой степенью называют линейным.

Yandex.RTB R-A-339285-1

Статья раскроет все понятия разложения, теоретические основы и способы разложений многочлена на множители.

Теория

Теорема 1

Когда любой многочлен со степенью n , имеющие вид P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , представляют в виде произведения с постоянным множителем со старшей степенью a n и n линейных множителей (x - x i) , i = 1 , 2 , … , n , тогда P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 1) , где x i , i = 1 , 2 , … , n – это и есть корни многочлена.

Теорема предназначена для корней комплексного типа x i , i = 1 , 2 , … , n и для комплексных коэффициентов a k , k = 0 , 1 , 2 , … , n . Это и есть основа любого разложения.

Когда коэффициенты вида a k , k = 0 , 1 , 2 , … , n являются действительными числами, тогда комплексные корни, которые будут встречаться сопряженными парами. Например, корни x 1 и x 2 , относящиеся к многочлену вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 считаются комплексно сопряженным, тогда другие корни являются действительными, отсюда получаем, что многочлен примет вид P n (x) = a n (x - x n) (x - x n - 1) · . . . · (x - x 3) x 2 + p x + q , где x 2 + p x + q = (x - x 1) (x - x 2) .

Замечание

Корни многочлена могут повторяться. Рассмотрим доказательство теоремы алгебры, следствия из теоремы Безу.

Основная теорема алгебры

Теорема 2

Любой многочлен со степенью n имеет как минимум один корень.

Теорема Безу

После того, как произвели деление многочлена вида P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 на (x - s) , тогда получаем остаток, который равен многочлену в точке s , тогда получим

P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) + P n (s) , где Q n - 1 (x) является многочленом со степенью n - 1 .

Следствие из теоремы Безу

Когда корень многочлена P n (x) считается s , тогда P n x = a n x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 = (x - s) · Q n - 1 (x) . Данное следствие является достаточным при употреблении для описания решения.

Разложение на множители квадратного трехчлена

Квадратный трехчлен вида a x 2 + b x + c можно разложить на линейные множители. тогда получим, что a x 2 + b x + c = a (x - x 1) (x - x 2) , где x 1 и x 2 - это корни (комплексные или действительные).

Отсюда видно, что само разложение сводится к решению квадратного уравнения впоследствии.

Пример 1

Произвести разложение квадратного трехчлена на множители.

Решение

Необходимо найти корни уравнения 4 x 2 - 5 x + 1 = 0 . Для этого необходимо найти значение дискриминанта по формуле, тогда получим D = (- 5) 2 - 4 · 4 · 1 = 9 . Отсюда имеем, что

x 1 = 5 - 9 2 · 4 = 1 4 x 2 = 5 + 9 2 · 4 = 1

Отсюда получаем, что 4 x 2 - 5 x + 1 = 4 x - 1 4 x - 1 .

Для выполнения проверки нужно раскрыть скобки. Тогда получим выражение вида:

4 x - 1 4 x - 1 = 4 x 2 - x - 1 4 x + 1 4 = 4 x 2 - 5 x + 1

После проверки приходим к исходному выражению. То есть можно сделать вывод, что разложение выполнено верно.

Пример 2

Произвести разложение на множители квадратный трехчлен вида 3 x 2 - 7 x - 11 .

Решение

Получим, что необходимо вычислить получившееся квадратное уравнение вида 3 x 2 - 7 x - 11 = 0 .

Чтобы найти корни, надо определить значение дискриминанта. Получим, что

3 x 2 - 7 x - 11 = 0 D = (- 7) 2 - 4 · 3 · (- 11) = 181 x 1 = 7 + D 2 · 3 = 7 + 181 6 x 2 = 7 - D 2 · 3 = 7 - 181 6

Отсюда получаем, что 3 x 2 - 7 x - 11 = 3 x - 7 + 181 6 x - 7 - 181 6 .

Пример 3

Произвести разложение многочлена 2 x 2 + 1 на множители.

Решение

Теперь нужно решить квадратное уравнение 2 x 2 + 1 = 0 и найти его корни. Получим, что

2 x 2 + 1 = 0 x 2 = - 1 2 x 1 = - 1 2 = 1 2 · i x 2 = - 1 2 = - 1 2 · i

Эти корни называют комплексно сопряженными, значит само разложение можно изобразить как 2 x 2 + 1 = 2 x - 1 2 · i x + 1 2 · i .

Пример 4

Произвести разложение квадратного трехчлена x 2 + 1 3 x + 1 .

Решение

Для начала необходимо решить квадратное уравнение вида x 2 + 1 3 x + 1 = 0 и найти его корни.

x 2 + 1 3 x + 1 = 0 D = 1 3 2 - 4 · 1 · 1 = - 35 9 x 1 = - 1 3 + D 2 · 1 = - 1 3 + 35 3 · i 2 = - 1 + 35 · i 6 = - 1 6 + 35 6 · i x 2 = - 1 3 - D 2 · 1 = - 1 3 - 35 3 · i 2 = - 1 - 35 · i 6 = - 1 6 - 35 6 · i

Получив корни, запишем

x 2 + 1 3 x + 1 = x - - 1 6 + 35 6 · i x - - 1 6 - 35 6 · i = = x + 1 6 - 35 6 · i x + 1 6 + 35 6 · i

Замечание

Если значение дискриминанта отрицательное, то многочлены останутся многочленами второго порядка. Отсюда следует, что раскладывать их не будем на линейные множители.

Способы разложения на множители многочлена степени выше второй

При разложении предполагается универсальный метод. Большинство всех случаев основано на следствии из теоремы Безу. Для этого необходимо подбирать значение корня x 1 и понизить его степень при помощи деления на многочлена на 1 делением на (x - x 1) . Полученный многочлен нуждается в нахождении корня x 2 , причем процесс поиска цикличен до тех пор, пока не получим полное разложение.

Если корень не нашли, тогда применяются другие способы разложения на множители: группировка, дополнительные слагаемые. Данная тема полагает решение уравнений с высшими степенями и целыми коэффициентами.

Вынесение общего множителя за скобки

Рассмотрим случай, когда свободный член равняется нулю, тогда вид многочлена становится как P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x .

Видно, что корень такого многочлена будет равняться x 1 = 0 , тогда можно представить многочлен в виде выражения P n (x) = a n x n + a n - 1 x n - 1 + . . . + a 1 x = = x (a n x n - 1 + a n - 1 x n - 2 + . . . + a 1)

Данный способ считается вынесением общего множителя за скобки.

Пример 5

Выполнить разложение многочлена третьей степени 4 x 3 + 8 x 2 - x на множители.

Решение

Видим, что x 1 = 0 - это корень заданного многочлена, тогда можно произвести вынесение х за скобки всего выражения. Получаем:

4 x 3 + 8 x 2 - x = x (4 x 2 + 8 x - 1)

Переходим к нахождению корней квадратного трехчлена 4 x 2 + 8 x - 1 . Найдем дискриминант и корни:

D = 8 2 - 4 · 4 · (- 1) = 80 x 1 = - 8 + D 2 · 4 = - 1 + 5 2 x 2 = - 8 - D 2 · 4 = - 1 - 5 2

Тогда следует, что

4 x 3 + 8 x 2 - x = x 4 x 2 + 8 x - 1 = = 4 x x - - 1 + 5 2 x - - 1 - 5 2 = = 4 x x + 1 - 5 2 x + 1 + 5 2

Для начала примем за рассмотрение способ разложения, содержащий целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , где коэффициента при старшей степени равняется 1 .

Когда многочлен имеет целые корни, тогда их считают делителями свободного члена.

Пример 6

Произвести разложение выражения f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 .

Решение

Рассмотрим, имеются ли целые корни. Необходимо выписать делители числа - 18 . Получим, что ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 . Отсюда следует, что данный многочлен имеет целые корни. Можно провести проверку по схеме Горнера. Она очень удобная и позволяет быстро получить коэффициенты разложения многочлена:

Отсюда следует, что х = 2 и х = - 3 – это корни исходного многочлена, который можно представить как произведение вида:

f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x 3 + 5 x 2 + 9 x + 9) = = (x - 2) (x + 3) (x 2 + 2 x + 3)

Переходим к разложению квадратного трехчлена вида x 2 + 2 x + 3 .

Так как дискриминант получаем отрицательный, значит, действительных корней нет.

Ответ: f (x) = x 4 + 3 x 3 - x 2 - 9 x - 18 = (x - 2) (x + 3) (x 2 + 2 x + 3)

Замечание

Допускается использование подбором корня и деление многочлена на многочлен вместо схемы Горнера. Перейдем к рассмотрению разложения многочлена, содержащим целые коэффициенты вида P n (x) = x n + a n - 1 x n - 1 + . . . + a 1 x + a 0 , старший из которых на равняется единице.

Этот случай имеет место быть для дробно-рациональных дробей.

Пример 7

Произвести разложение на множители f (x) = 2 x 3 + 19 x 2 + 41 x + 15 .

Решение

Необходимо выполнить замену переменной y = 2 x , следует переходить к многочлену с коэффициентами равными 1 при старшей степени. Необходимо начать с умножения выражения на 4 . Получаем, что

4 f (x) = 2 3 · x 3 + 19 · 2 2 · x 2 + 82 · 2 · x + 60 = = y 3 + 19 y 2 + 82 y + 60 = g (y)

Когда получившаяся функция вида g (y) = y 3 + 19 y 2 + 82 y + 60 имеет целые корни, тогда их нахождение среди делителей свободного члена. Запись примет вид:

± 1 , ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 10 , ± 12 , ± 15 , ± 20 , ± 30 , ± 60

Перейдем к вычислению функции g (y) в этих точка для того, чтобы получить в результате ноль. Получаем, что

g (1) = 1 3 + 19 · 1 2 + 82 · 1 + 60 = 162 g (- 1) = (- 1) 3 + 19 · (- 1) 2 + 82 · (- 1) + 60 = - 4 g (2) = 2 3 + 19 · 2 2 + 82 · 2 + 60 = 308 g (- 2) = (- 2) 3 + 19 · (- 2) 2 + 82 · (- 2) + 60 = - 36 g (3) = 3 3 + 19 · 3 2 + 82 · 3 + 60 = 504 g (- 3) = (- 3) 3 + 19 · (- 3) 2 + 82 · (- 3) + 60 = - 42 g (4) = 4 3 + 19 · 4 2 + 82 · 4 + 60 = 756 g (- 4) = (- 4) 3 + 19 · (- 4) 2 + 82 · (- 4) + 60 = - 28 g (5) = 5 3 + 19 · 5 2 + 82 · 5 + 60 = 1070 g (- 5) = (- 5) 3 + 19 · (- 5) 2 + 82 · (- 5) + 60

Получаем, что у = - 5 – это корень уравнения вида y 3 + 19 y 2 + 82 y + 60 , значит, x = y 2 = - 5 2 - это корень исходной функции.

Пример 8

Необходимо произвести деление столбиком 2 x 3 + 19 x 2 + 41 x + 15 на x + 5 2 .

Решение

Запишем и получим:

2 x 3 + 19 x 2 + 41 x + 15 = x + 5 2 (2 x 2 + 14 x + 6) = = 2 x + 5 2 (x 2 + 7 x + 3)

Проверка делителей займет много времени, поэтому выгодней предпринять разложение на множители полученного квадратного трехчлена вида x 2 + 7 x + 3 . Приравниванием к нулю и находим дискриминант.

x 2 + 7 x + 3 = 0 D = 7 2 - 4 · 1 · 3 = 37 x 1 = - 7 + 37 2 x 2 = - 7 - 37 2 ⇒ x 2 + 7 x + 3 = x + 7 2 - 37 2 x + 7 2 + 37 2

Отсюда следует, что

2 x 3 + 19 x 2 + 41 x + 15 = 2 x + 5 2 x 2 + 7 x + 3 = = 2 x + 5 2 x + 7 2 - 37 2 x + 7 2 + 37 2

Искусственные приемы при разложении многочлена на множители

Рациональные корни не присущи всем многочленам. Для этого необходимо пользоваться специальными способами для нахождения множителей. Но не все многочлены можно разложить или представить в виде произведения.

Способ группировки

Бывают случаи, когда можно сгруппировывать слагаемые многочлена для нахождения общего множителя и вынесения его за скобки.

Пример 9

Произвести разложение многочлена x 4 + 4 x 3 - x 2 - 8 x - 2 на множители.

Решение

Потому как коэффициенты – целые числа, тогда корни предположительно тоже могут быть целыми. Для проверки возьмем значения 1 , - 1 , 2 и - 2 для того, чтобы вычислить значение многочлена в этих точках. Получаем, что

1 4 + 4 · 1 3 - 1 2 - 8 · 1 - 2 = - 6 ≠ 0 (- 1) 4 + 4 · (- 1) 3 - (- 1) 2 - 8 · (- 1) - 2 = 2 ≠ 0 2 4 + 4 · 2 3 - 2 2 - 8 · 2 - 2 = 26 ≠ 0 (- 2) 4 + 4 · (- 2) 3 - (- 2) 2 - 8 · (- 2) - 2 = - 6 ≠ 0

Отсюда видно, что корней нет, необходимо использовать другой способ разложения и решения.

Необходимо провести группировку:

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 4 + 4 x 3 - 2 x 2 + x 2 - 8 x - 2 = = (x 4 - 2 x 2) + (4 x 3 - 8 x) + x 2 - 2 = = x 2 (x 2 - 2) + 4 x (x 2 - 2) + x 2 - 2 = = (x 2 - 2) (x 2 + 4 x + 1)

После группировки исходного многочлена необходимо представить его как произведение двух квадратных трехчленов. Для этого нам понадобится произвести разложение на множители. получаем, что

x 2 - 2 = 0 x 2 = 2 x 1 = 2 x 2 = - 2 ⇒ x 2 - 2 = x - 2 x + 2 x 2 + 4 x + 1 = 0 D = 4 2 - 4 · 1 · 1 = 12 x 1 = - 4 - D 2 · 1 = - 2 - 3 x 2 = - 4 - D 2 · 1 = - 2 - 3 ⇒ x 2 + 4 x + 1 = x + 2 - 3 x + 2 + 3

x 4 + 4 x 3 - x 2 - 8 x - 2 = x 2 - 2 x 2 + 4 x + 1 = = x - 2 x + 2 x + 2 - 3 x + 2 + 3

Замечание

Простота группировки не говорит о том, что выбрать слагаемы достаточно легко. Определенного способа решения не существует, поэтому необходимо пользоваться специальными теоремами и правилами.

Пример 10

Произвести разложение на множители многочлен x 4 + 3 x 3 - x 2 - 4 x + 2 .

Решение

Заданный многочлен не имеет целых корней. Следует произвести группировку слагаемых. Получаем, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = = (x 4 + x 3) + (2 x 3 + 2 x 2) + (- 2 x 2 - 2 x) - x 2 - 2 x + 2 = = x 2 (x 2 + x) + 2 x (x 2 + x) - 2 (x 2 + x) - (x 2 + 2 x - 2) = = (x 2 + x) (x 2 + 2 x - 2) - (x 2 + 2 x - 2) = (x 2 + x - 1) (x 2 + 2 x - 2)

После разложения на множители получим, что

x 4 + 3 x 3 - x 2 - 4 x + 2 = x 2 + x - 1 x 2 + 2 x - 2 = = x + 1 + 3 x + 1 - 3 x + 1 2 + 5 2 x + 1 2 - 5 2

Использование формул сокращенного умножения и бинома Ньютона для разложения многочлена на множители

Внешний вид зачастую не всегда дает понять, каким способом необходимо воспользоваться при разложении. После того, как были произведены преобразования, можно выстроить строчку, состоящую из треугольника Паскаля, иначе их называют биномом Ньютона.

Пример 11

Произвести разложение многочлена x 4 + 4 x 3 + 6 x 2 + 4 x - 2 на множители.

Решение

Необходимо выполнить преобразование выражения к виду

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3

На последовательность коэффициентов суммы в скобках указывает выражение x + 1 4 .

Значит, имеем x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 .

После применения разности квадратов, получим

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3

Рассмотрим выражение, которое находится во второй скобке. Понятно, что там коней нет, поэтому следует применить формулу разности квадратов еще раз. Получаем выражение вида

x 4 + 4 x 3 + 6 x 2 + 4 x - 2 = x 4 + 4 x 3 + 6 x 2 + 4 x + 1 - 3 = x + 1 4 - 3 = = x + 1 4 - 3 = x + 1 2 - 3 x + 1 2 + 3 = = x + 1 - 3 4 x + 1 + 3 4 x 2 + 2 x + 1 + 3

Пример 12

Произвести разложение на множители x 3 + 6 x 2 + 12 x + 6 .

Решение

Займемся преобразованием выражения. Получаем, что

x 3 + 6 x 2 + 12 x + 6 = x 3 + 3 · 2 · x 2 + 3 · 2 2 · x + 2 3 - 2 = (x + 2) 3 - 2

Необходимо применить формулу сокращенного умножения разности кубов. Получаем:

x 3 + 6 x 2 + 12 x + 6 = = (x + 2) 3 - 2 = = x + 2 - 2 3 x + 2 2 + 2 3 x + 2 + 4 3 = = x + 2 - 2 3 x 2 + x 2 + 2 3 + 4 + 2 2 3 + 4 3

Способ замены переменной при разложении многочлена на множители

При замене переменной производится понижение степени и разложение многочлена на множители.

Пример 13

Произвести разложение на множители многочлена вида x 6 + 5 x 3 + 6 .

Решение

По условию видно, что необходимо произвести замену y = x 3 . Получаем:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6

Корни полученного квадратного уравнения равны y = - 2 и y = - 3 , тогда

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3

Необходимо применить формулу сокращенного умножения суммы кубов. Получим выражения вида:

x 6 + 5 x 3 + 6 = y = x 3 = y 2 + 5 y + 6 = = y + 2 y + 3 = x 3 + 2 x 3 + 3 = = x + 2 3 x 2 - 2 3 x + 4 3 x + 3 3 x 2 - 3 3 x + 9 3

То есть получили искомое разложение.

Рассмотренные выше случаи помогут в рассмотрении и разложении многочлена на множители разными способами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter